
Towards a Process to Design Aspect-Oriented
Reference Architectures

Elisa Yumi Nakagawa, Rafael Messias Martins,
Katia Romero Felizardo, and José Carlos Maldonado

Dept. of Computer Systems
University of São Paulo
São Carlos, SP, Brazil

{elisa, rafaelmm, katiarf, jcmaldon}@icmc.usp.br

Abstract. Since software architecture design is essential in the software
development, attention has been taken to this task. There are, however,
little initiatives to systematize the reference architecture design, in spe-
cial, when these architectures include aspects (from AOSD - Aspect-
Oriented Software Development) in their structures. This paper presents
ProSA-RA, a process to build aspect-oriented reference architectures,
systematizing the development, design and evaluation of these architec-
tures. In order to illustrate the feasibility of this process, we illustrate
its application in the Visual Mining domain. Positive results have been
achieved, mainly related to facilities to build reference architectures and
to identify aspects in architectural level.

Keywords: reference architecture, aspect-oriented software development,
visual mining

1 Introduction

Software architectures play a major role in determining system quality (e.g. per-
formance, maintainability, and reliability), since they form the backbone for any
successful software-intensive system [1, 2]. Thus, decisions made at the architec-
tural level directly enable, facilitate, hamper, or interfere with the achievement
of business goals as well as meeting functional and quality requirements. Essen-
tially, software architecture is the structure or structures of the system which
comprise software elements, the externally visible properties of those elements,
and the relationships among them [3]. In this context, reference architectures for
different domains — for instance, service-oriented systems, embedded systems,
e-commerce, web browsers, among others — have emerged. A reference archi-
tecture captures the essence of the architectures of a collection of systems of a
given domain. The purpose of a reference architecture is to provide guidance
for the development of architectures for new systems or extended systems and
product families. In other words, they can be seen as a knowledge repository of
a given domain. Considering the relevance of software architectures, approaches



to design adequate software architectures have been proposed [4, 5]. Regarding
to reference architectures, initiatives can be also found [6, 7].

In another perspective, Aspect-Oriented Programming (AOP) has arisen,
supporting a better SoC (Separation of Concerns) and reflecting more adequately
the way developers think about the system [8]. Essentially, this approach intro-
duces a unit of modular implementation — the aspect — that has been typically
used to encapsulate crosscutting concerns (i.e. concerns spread across or tangled
with other concerns). Modularity, maintainability and facility to write software
can be achieved with AOP [9]. Aspects have also been explored in the early
life cycle phases, including architectural design [10–12]. According to Baniassad
[13], aspects in early phases support easier identification and analysis of aspects
during later activities and, as a consequence, a better SoC in the systems. Ad-
ditionally, positive results exploring the use of aspects in reference architectures
can also be found [14]. Although approaches to design software architectures
and reference architectures have been proposed, there is a lack of work that
systematize specifically the design of aspect-oriented reference architectures, i.e.
architectures that include aspects (called architectural aspects1 in this paper) in
their structure.

In this scenario, we have proposed a process, named ProSA-RA, to design
aspect-oriented reference architectures. Thus, in this paper, we have two main
goals: (i) to present ProSA-RA, giving emphasis in how to deal with architec-
tural aspects, as well as how to represent and evaluate reference architectures,
and; (ii) to illustrate the use of ProSA-RA in the Visual Mining domain, in order
to perform a critical evaluation of the utility of this process with respect to fa-
cility of creating aspect-oriented reference architectures. It is worth highlighting
that ProSA-RA is part of a more comprehensive software development process
centered in reference architectures.

The remainder of this paper is organized as follows. In Section 2 related work
are presented. In Section 3 we present ProSA-RA. In Section 4 we illustrate the
use of ProSA-RA to establish a reference architecture for Visual Mining domain.
In Section 5 we discuss about achieved results. In Section 6 we summarize our
contributions and discuss perspectives for further work.

2 Related Work

From the first work of Kruchten on iterative software development with a focus
on software architecture [15], a number of work has recognized the value of con-
sidering explicitly software architectures in the system development processes
[3, 5]. In this scenario, works that encompass the software architecture design
have been proposed, for instance, Attribute-Driven Design (ADD) [3] and Ra-
tional Unified Process 4+1 View [16]. Regarding to reference architecture de-
sign, Muller [7] has proposed recommendations in order to create and maintain

1 An architectural aspect refers to an element that crosscuts other architectural ele-
ments, for instance, packages and components, or even other architectural aspects.



reference architectures; basically, references architecture must be understand-
able, up-to-date and maintainable. In the context of product line development,
Bayer [6] presents PuLSE-DSSA (Product Line Software Engineering - Domain-
Specific Software Architecture), a systematic approach to define reference ar-
chitectures capturing knowledge from existing system architectures. Other work
have pointed out the need of formalizing processes to design reference architec-
tures [17], since informal processes have still been used. Furthermore, processes
that support the design of aspect-oriented reference architectures are not also
found. This has therefore motivated the conduction of our work.

3 ProSA-RA

ProSA-RA is a process that systematizes the development, design and evaluation
of aspect-oriented reference architectures. ProSA-RA is result of our experience
in establishing aspect-oriented reference architectures for software engineering
domain [18, 19]. The outline structure of ProSA-RA is illustrated in Figure 1.
In short, to establish reference architectures by using ProSA-RA, information
sources are firstly selected and investigated (in Step RA-1) and architectural
requirements2 are identified (in Step RA-2). After that, an architectural de-
scription of the reference architecture is established (in Step RA-3) and the
evaluation of this architecture is conducted by using a checklist inspection ap-
proach (in Step RA-4). Analysts, software architects and domain experts are
involved and conduct these steps. In more details, the steps of ProSA-RA are:

Fig. 1. Outline Structure of ProSA-RA

2 An architectural requirement refers to requirement of a reference architecture of a
given domain and describes common functionalities and configurations presented in
systems of that domain.



Step RA-1: Information Source Investigation: In this step, the main sour-
ces of information are selected. These sources must provide information
about processes, activities and tasks that must be automated to that do-
main. In general, these sources are more comprehensive, since reference ar-
chitectures are basis of a set of systems of a specific domain. We have selected
those more relevant: (i) people: customers, users, researchers, domain experts
and developers of systems of the domain are important information sources.
Interviews, questionnaires and other requirements elicitation techniques can
be used. Needs and limitations must be identified; (ii) systems: main sys-
tems of the domain are investigated through their use (when available) and
related documentation. Their architectures are also investigated, observing
the evolution and adaptation capability; (iii) publications/documents: infor-
mation related to processes/activities/tasks and system architectural model
of the given domain are identified; and (iv) ontologies: they are particularly
important to support this step, since they represent the knowledge domain
— i.e. concepts/terms of the domain and relationships among them — in a
well-structured format. Furthermore, Systematic Reviews can be applied as
a means of evaluating and interpreting all available research relevant to a
particular question, topic area, or phenomenon of interest, using a trustwor-
thy, rigorous, and auditable methodology [20]. As a result, a set of informa-
tion sources are arisen. In this step, there is not a concern if architecture is
aspect-based or not; this concern is treated in the next steps.

Step RA-2: Architectural Requirement Establishment: Based on selec-
ted sources, information related to domain are arisen, resulting in a set of
requirements of the reference architecture, as well as related concepts that
must be considered in the architecture. For this, four main tasks are con-
ducted: (i) requirements of systems of the domain are identified. These re-
quirements reflect the processes/activities/tasks that must be automated by
systems; (ii) based on those system requirements, a set of architectural re-
quirements is established. Probably more than one system requirement will
be aggregated in an architectural requirement. It is observed that architec-
tural requirements are more comprehensive than the system requirements,
since they describe the requirements of a set of systems of the domain; (iii)
architectural requirements are mapped in domain concepts, aiming at going
toward an architectural design. Ontologies, when available, can be used to
perform this task, since they usually embody all domain concepts; and (iv)
concepts are classified in crosscutting or non-crosscutting, intending to iden-
tify architectural aspects. In general, concepts related to many requirements
or related to non-functional requirement have crosscutting characteristic.
This previous categorization makes easy the posterior task of designing the
aspect-oriented reference architecture.

Step RA-3: Reference Architecture Design: The effective reuse of knowl-
edge contained in reference architectures depends not only on raising the
domain knowledge, but also documenting efficiently this knowledge through
an adequate architectural description. To build this description, well known
architectural styles, software patterns and approaches are investigated and



used as basis to organize the concepts identified on the previous step. For
instance, if three-tier architecture3 is used, the identified concepts are or-
ganized in the application layer. A special treatment must be taken to the
concepts marked as crosscutting. They will be considered architectural as-
pects and, therefore, must be represented using an adequate notation.
In the previous work [21], we selected architectural views — module, run-
time, deployment and conceptual views — and UML 2.0 to describe reference
architectures. Besides that, when designing an aspect-oriented reference ar-
chitecture, aspects must be adequately represented, as presented in another
previous work [22]. Thus, architectural views, UML techniques and required
extensions to represent aspect-oriented reference architectures are:

– Module view: it shows the structure of the software in terms of code
units. Packages, classes, containment, specialization/generalization, and
dependency relations can be used to represent this view. Thus, UML
class diagram is an adequate technique. In this diagram, when aspects
are used to encompass architectural aspects, we have used the stereotype
<<crosscuts>> to represent the dependency relation between the aspect
and the elements affected by this aspect;

– Runtime view: it shows the structure of the system when it is execut-
ing. Components, provided and required interfaces, packages, ports, and
connectors are used. Interfaces of modules that encapsulate architectural
aspects are obviously different from the provided and required interfaces
of modules composed only by objects. We proposed a filled circle, la-
belled with the name of the interface, attached by a solid line to the
modules that encapsulate an architectural aspect in order to represent
the interface of them. We named this type of interface as Interface Made
by Aspects (IMA) [22]. We have also proposed a half-square, attached by
a solid line to the module that is affected by modules that encapsulate
an architectural aspect. Differently from provided interface, IMA rep-
resents the characteristics that modules must have to use the modules
that encapsulate an architectural aspect. UML component diagram can
be used to represent this view;

– Deployment view: it describes the machines, software that is installed
on that machines and network connections. An adequate technique to
represent this view is UML deployment diagram. Considering its higher
abstraction level, architectural aspects are not required to be explicitly
represented in this view; and

– Conceptual view: it aims at describing and supporting understanding of
each concept of the domain that is used in the reference architecture,
since other views do not present this property. For describing this view,
ontologies, controlled vocabularies, taxonomies, thesauri, concept maps,
among others can be used. Regarding to ontology, it basically consists
of concepts and relations, as well as their definitions, properties and

3 http://www.sei.cmu.edu/str/descriptions/threetier.html



constraints expressed by means of axioms [23]. In our work, ontologies
have been explored to represent this view [18].

As a result of this step, a set of architectural views composing the description
of the aspect-oriented reference architecture is created.

Step RA-4: Reference Architecture Evaluation: Checklist inspection ap-
proach is used in order to evaluate the quality of the reference architectures.
A checklist corresponds to a list of questions that guides reviewers on detect-
ing defects in documents and, specifically in our work, defects in documents
related to reference architecture design. Ontologies are important to guide
the evaluation, since this step involves, besides domain experts, software ar-
chitects that do not have deep knowledge about the application domain. By
using this checklist, we have evaluated quality characteristics: maintainabil-
ity, performance, security, usability, portability and reuse. We also evaluate
the architectural description itself, through identification and elimination
of defects related to omission, ambiguity, inconsistency, as well as strange
and incorrect information. As a result, a more reliable architecture can be
achieved.

4 Case Study on the Visual Mining Domain

Nowadays, a large quantity of information — images, videos and text, for exam-
ple — is available digitally. In their original form, it is impossible to effectively
analyze such a quantity of data; that is why information extraction has been a
challenge for many research areas, such as data mining, visualization and others.
On Visual Mining, the original data is processed and transformed with the use of
mining algorithms and then presented to the viewers; viewers can then interact
with it in order to create and validate a hypothesis about the data [24]. Even
though software tools are very important for the effective application of visual
mining techniques, as they rely heavily on good graphical representations and
proper user interaction, these tools have almost always been individually and
independently implemented, relying on tailor-made architectures. In this con-
text, a reference architecture could be used to aggregate knowledge about the
Visual Mining domain aiming at facilitating the building of new tools, as well
as of a product family. We intended then to establish a reference architecture
for that domain, exploring the possible advantages that aspects can provide to
architectural level and, as a consequence, to target systems. Thus, we conducted
the steps of ProSA-RA:

Step RA-1: Information Source Investigation: This first step consisted on
putting together a list of the most relevant information sources among all
that was available. This resulted in: (i) three visual mining researchers and
five tool developers; (ii) six visual mining tools, with available documenta-
tion and source code; and (iii) 35 important publications: three books, six
technical reports and 26 scientific papers. These sources seemed sufficient to
extract domain knowledge, although ontologies for the Visual Mining domain
are not available yet.



Step RA-2: Architectural Requirement Establishment: Each source lis-
ted on the previous step was consulted in the following way: (i) the re-
searchers and developers were interviewed and asked about features and
attributes they know and also about what they would desire on a visual
mining tool; (ii) by analyzing the tools’ user interfaces — menus, buttons
and features provided — it was possible to extract information about what
they do and what they should do; (iii) documentation and source code did
not help sufficiently to the requirements extraction, since the best practices
were often not used; and (iv) publications were important to gather require-
ments, specially those that presented descriptions of visual mining tools and
domain reference models. During this first stage, many fine-grained System
Requirements were gathered, which were then analyzed to derive the more
coarse-grained Architectural Requirements. This is partially illustrated in Ta-
ble 1. We can see the relationship between System Requirements, which were
extracted directly from the information sources, and Architectural Require-
ments derived from them. Many System Requirements were often grouped
into a single Architectural Requirement.

Table 1. Deriving Architectural Requirements from System Requirements

N. System Requirement Source Architectural Requirement

3 ... 1 ...
4 Accept Image Collections as Input 2 Accept Different Data Types as Input
5 Accept Text Collections as Input 2 Accept Different Data Types as Input
6 Accept Video Collections as Input 2 Accept Different Data Types as Input
7 Save Visualization Settings for Future Re-

running
3 Persistence of the Pipeline’s Intermediate

Objects
8 ... 3 ...

In Table 2, it is shown the relationship between Architectural Requirements
and Concepts derived from them. Similarly to the previous table, often many
Architectural Requirements related to the same Concept. Concepts are also
classified as crosscutting or not; one example is the Persistence concept,
which is important so that multiple visualizations can be created from the
same — or slightly altered — settings.

Table 2. Deriving Concepts from Architectural Requirements

N. Architectural Requirement Concept Crosscutting (Yes/No)

1 Accept Different Data Types as Input Data Acquisition No
2 Accept Data from Different Sources Data Acquisition No
3 Persistence of the Pipeline’s Intermediate Objects Persistence Yes
4 ... ... ...

Step RA-3: Reference Architecture Design: From the Architectural Requi-
rements and the Concepts defined on the previous step, the architectural de-
sign was a quite straight-forward task. Architectural styles that matched the



requirements were studied and selected, and the four proposed architectural
views were built. For the sake of space, only the module view is presented
herein and showed in Fig. 2. Model-View-Controller (MVC) was used to en-
sure that derived systems will be able to deliver diverse rich and powerful
graphical user interfaces. Common concepts were encapsulated in modules.
For the sake of space, only some decisions are explained. For instance, Data
Acquisition (in Table 2) was encapsulated in the DataAcquisition module
(in Figure 2). On the other hand, crosscutting concepts were encapsulated
in architectural aspects and <<crosscuts>> relations were used to indi-
cate the relationship between these aspects and other modules. For example,
Persistence concept in Table 2 is represented as an architectural aspects in
Figure 2. Another example is Documentation (in Figure 2) related directly
to domain functional requirements that was also found as an architectural
aspects. Currently, the evaluation of this architecture is in progress. RefVM
will be also used to design applications on the Visual Mining domain.

Fig. 2. Module View of the Visual Mining Reference Architecture

5 Discussion

The design of aspect-oriented reference architecture using ProSA-RA has showed
to be useful in two main perspectives: (i) ProSA-RA supports organization of
domain knowledge, systematizing the architecture establishment. It encompasses
steps typically found in approaches to design software architectures: requirement
identification, creation, representation and evaluation of the architecture. More-
over, differently from these approaches, ProSA-RA has the concern of dealing
with aspects along all steps; (ii) An informal qualitative analysis provides evi-
dences about a better modularization in the reference architecture, since ProSA-
RA supports identification of architectural aspects. In other words, a better SoC
seems to be achieved. SoC improves software reuse, comprehensibility, compo-
nent integration and high impact of change in software systems and, therefore, it



is also desired in reference architectures. The case study presented in this paper
has pointed out to these perspectives. We have also found these same obser-
vation in two other aspect-oriented reference architectures that we have built:
RefASSET [19] and RefTEST [18].

However, even using ProSA-RA, the establishment of aspect-oriented refer-
ence architectures is a complex activity, requiring a deep knowledge on diverse
subjects related to software development. This difficulty occurs mainly due to
the fact that the understanding of the domain and generalization of domain ele-
ments are hard to be conducted. Another difficulty is to identify the architectural
aspects. Some traditional architectural aspects, such as persistence, are easy to
identify; however, experience is required to identify aspects related to applica-
tion domain. Furthermore, there is still a gap between the reference architecture
and implementation. Thus, activities to instantiate the reference architecture
in order to obtain architectural instances must be conducted. For this, specific
information about the system to be developed must be arisen, conducting, for
instance, requirement identification and analysis/design.

6 Conclusion

Considering the relevance of reference architectures to the productivity of soft-
ware systems, the main contribution of this work is ProSA-RA, a process that
systematizes the building of aspect-oriented reference architectures. Special at-
tention has been taken to the identification and representation of aspects, aiming
at achieving a full potential of early aspects in the architecture level. Further-
more, ProSA-RA provides mechanisms to the representation and evaluation of
reference architectures, considering readability and understandability of these
architectures as fundamental to their dissemination, reuse and to posterior evo-
lution. Results of our investigations, such as the case study presented in this
paper, have pointed out that ProSA-RA supports organization of domain knowl-
edge and seems to provide a better SoC in architectural level. As future perspec-
tives, we intend to apply ProSA-RA in different domains. Furthermore, there is
a number of interesting directions for future work. One of them is to investigate
how this process can contribute in a wider software development approach, such
as software product line. Another research line is to investigate the difficulties
to automate ProSA-RA, aiming at achieving more productivity and reliability
in the resulting architectures.

Acknowledgments: This work is supported by Brazilian funding agencies (FAPESP,
Capes and CNPq), QualiPSo European research project (Grant: IST- FP6-IP-034763)
and INCT-SEC Project (Processes: 573963/2008-8 and 08/57870-9).

References

1. Kruchten, P., Obbink, H., Stafford, J.: The past, present, and future for software
architecture. IEEE Software 23 (2006) 22–30



2. Shaw, M., Clements, P.: The golden age of software architecture. IEEE Software
23 (2006) 31–39

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley (2003)

4. Bass, L., Kazman, R.: Architecture-based development. Technical Report Techni-
cal Report CMU/SEI-99-TR-007, SEI, Pittsburgh, USA (1999)

5. You-Sheng, Z., Yu-Yun, H.: Architecture-based software process model. ACM
SIGSOFT Software Engineering Notes 28 (2003) 1–5

6. Bayer, J., Forster, T., Ganesan, D., Girard, J.F., John, I., Knodel, J., Kolb, R.,
Muthig, D.: Definition of reference architectures based on existing systems. Tech-
nical Report 034.04/E, Fraunhofer IESE (2004)

7. Muller, G.: A reference architecture primer. [On-line], World Wide Web (2008)
Available: http://www.gaudisite.nl/ (Access: 06/19/2009).

8. Kiczales, G., Irwin, J., Lamping, J., Loingtier, J., Lopes, C., Maeda, C., Menhd-
hekar, A.: Aspect-oriented programming. In: Proc. of the 11th Eur. Conf. on
Object-Oriented Programming, Jyväskylä, Finland (1997) 220–242

9. Laddad, R.: Aspect-oriented programming will improve quality. IEEE Software
20 (2003) 90–91

10. Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B., Silva, J.R.O.: Docu-
menting component and connector views with UML 2.0. Technical report (2004)
CMU/SEI-2004-TR-008.

11. Keuler, T.: An aspect-oriented approach for improving architecture design effi-
ciency. In: Companion of the ICSE’08. (2008) 1007–1010

12. Navarro, E., Letelier, P., Ramos, I.: Requirements and scenarios: Running aspect-
oriented software architectures. In: WICSA’07, Washington, USA (2007) 23

13. Baniassad, E., Clements, P.C., Araujo, J., Moreira, A., Rashid, A., Tekinerdogan,
B.: Discovering early aspects. IEEE Software 23 (2006) 61–70

14. Greenwood, P., Surajbali, B., Coulson, G., Rashid, A., Lagaisse, B., Truyen, E.,
Sanen, F., Joosen, W.: Reference architecture for aspect-oriented middleware (ver-
sion 3.0). Technical report, AOSD-Europe (2008) AOSD-Europe deliverable D103.

15. Kruchten, P.: An iterative software development process centered on architecture.
In: Proc. 4ème Congrès de Génie Logiciel. (1991) 369–378

16. Kruchten, P.: The Rational Unified Process: An Introduction. 3 edn. The Addison-
Wesley Object Technology Series. Addison-Wesley (2003)

17. Eklund, U., Örjan Askerdal, Granholm, J., Alminger, A., Axelsson, J.: Experience
of introducing reference architectures in the development of automotive electronic
systems. SIGSOFT Softw. Eng. Notes 30 (2005) 1–6

18. Nakagawa, E.Y., Simão, A.S., Ferrari, F., Maldonado, J.C.: Towards a reference
architecture for software testing tools. In: SEKE’2007, Boston, USA (2007) 1–6

19. Nakagawa, E.Y., Maldonado, J.C.: Architectural requirements as basis to quality of
software engineering environments. IEEE Latin America Trans. 6 (2008) 260–266

20. Kitchenham, B.: Procedures for performing systematic reviews. Technical Report
TR/SE-0401, Keele University (2004)

21. Nakagawa, E.Y., Maldonado, J.C.: Reference architecture knowledge representa-
tion: An experience. In: SHARK’2008 at ICSE’2008, Germany (2008) 1–4

22. Nakagawa, E.Y., Maldonado, J.C.: Representing aspect-based architecture of soft-
ware engineering environments. In: AArch’07 at AOSD’07, Canada (2007) 1–4

23. Uschold, M., Grüninger, M.: Ontologies: principles, methods, and applications.
Knowledge Engineering Review 11 (1996) 93–155

24. Keim, D.: Information visualization and visual data mining. IEEE Transactions
on Visualization and Computer Graphics 8 (2002) 1–8


