Kernel Internals for Real-Time

David R. Donari, Leo Ordinez, Rodrigo Santos, and Javier Orozco

Instituto de Investigaciones en Ingenieria Eléctrica
Universidad Nacional del Sur - CONICET
Av. Alem 1253 - (8000) Bahia Blanca
Buenos Aires - Argentina
{ddonari,lordinez,ierms, jorozco}Quns.edu.ar

Abstract. In this paper, some main features of the design and imple-
mentation of a Real-Time Operating System are presented. The hier-
archical model to schedule task from the theoretical point of view to
the implementation is explained. In addition, several implementation
improvements related to the reduction of kernel overhead are also pro-
posed. A comparative analysis shows how differents RTOS implement
the scheduling process. Finally, an experimental evaluation is exposed.
This evaluation shows the influence of each kernel improvement to the
overall performance of the system.

1 Introduction

In the last years there has been an important growth in the production of Em-
bedded Systems (ES) understood as those in which a computer forms part of
a bigger system and that depends on its own microprocessor. This growth has
brought new challenges for the software developers.

The rapid development of new hardware architectures make possible impor-
tant improvements in performance that would require a design from scratch of
the software if no OS is present to handle the hardware. In fact, there is an im-
portant research activity in the OS area oriented to ES. These OS have particular
requirements that are not present in general-purpose OS. Among the main ones,
the OS should have a small footprint on memory as this is a scarce resource
in ES. It also has to provide real-time primitives since most ES are built upon
physical processes with stringent timing constraints. Finally, the OS overhead or
interference on the execution of the processes of the system should be minimal.

In this paper, some main features of design and implementation of the SOOS
kernel [1] are presented. The first one is directly related to the way in which SOOS
schedules and dispatches tasks. SOOS provides real-time scheduling for both
soft and hard tasks by means of the resource reservation paradigm [2]. In this
sense, it introduces this kind of hierarchical scheduling approach in a native and
inexpensive way. The second contribution is related to the way in which kernel
implements the scheduling time. This implementation significantly reduces the
overhead involved, because of the interaction between chosen scheduling policy
and the data structures used. Finally a syscall is introduced to show how to

take advantage of the gained slack time [3]. These three contributions are deeply
explained, in the rest of the paper, both from a theoretical and practical point
of view.

The rest of the paper is organized as follows: several previous works on Real-
Time Operating Systems are analyzed in Section 2; Section 3 shows how to
model server-based real-time systems; the SOOS scheduling process is explained
in Section 4; in Section 5 an experimental study is performed to show how
the theoretical concepts applied on SOOS are reflected in the practice; finally,
conclusions are exposed.

2 Related Work

Within the academy, there are many papers that described and proposed differ-
ent RTOS for ES, which can be highlighted:

EMERALDS is a real-time operating system designed for small-memory em-
bedded applications proposed by Zuberi et at in [4]. The authors introduce a
mixed scheduling policy that combines fixed and dynamic priorities to reduce
the overhead of the kernel in the scheduling and dispatching of tasks. The new
algorithm orders the tasks by increasing periods and divides the ready queue in
two. The higher priority one is scheduled by dynamic priorities, Earliest Deadline
First, and the second by fixed priority with Rate Monotonic.

In [5] a very simple real-time kernel is proposed for performing flexible control
on low-cost microcontrollers. The objective of the kernel is to provide a multi-
tasking platform on low performance processors in such a way that the control
algorithms can be implemented in a simple manner. There are three different
scheduling policies that are selected at system startup which are Earliest Dead-
line First, Rate Monotonic and Deadline Monotonic. The main contribution of
the paper is the creation of an intermediate layer named the reflective layer that
is in charge of transferring the data between the kernel and user spaces. However,
there is a small number of tasks that the OS can handle, 13 plus the background
task that keeps the system running. Asterix is a real-time kernel that provides
some tools for the implementation, analysis and debugging of real-time applica-
tions [6]. The kernel can schedule tasks with fixed or dynamic priorities. The OS
provides also a monitoring tool for debugging and performing time analysis of
the system under construction.

3 Real-Time Systems Modeling

When modeling a particular real-time application that will be implemented on
an RTOS, it is necessary to clearly distinguish between policies and mechanisms.
Moreover, the analysis is tightly related to the concrete definition of tasks and
servers. In addition, a data structure is proposed to support the implementation
of the concepts explained.

3.1 System Modeling

A general-purpose operating system (GPOS) generally manages software entities
named processes. In an RTOS, those entities are called tasks and the set of them
compose a particular real-time application. However, real-time tasks differ from
normal processes in that the former ones have intrinsic timing constraints.

When analyzing tasks according to the real-time scheduling theory [7] the
actual functions that they perform in the system are stood on the sidelines and
the analysis focuses only on their timing restrictions. This is, a task is seen as
a tuple (C;,T;, D;), where C; stands for its worst-case execution time (WCET),
T; for the task’s period and D; for its deadline.

A server is defined as an abstract software entity in which a task is contained.
A task within a server is subject to the server own rules. Usually, a server is
characterized by an activation period P, and a budget @, which is its available
time to serve a task. The relation Uy = % establishes the bandwidth of a server.
In this sense, a task is said to run on a virtual processor whose speed is Uy times
the actual processor speed.

In SOOS, the server’s paradigm applied is based on BIDS. This algorithm
uses dynamic priorities [8,9] and a parameter «; to establish a variation in the
server reactivation.

3.2 Linking Tasks and Servers

The SOOS implementation provides a priority management based on BIDS and
a task dispatching mechanism. In this way, a server is considered linked to a
particular task (see Figure 1(a)). Therefore, a server will have its period P
equal to the task’s interarrival time associated to it and a budget Qs greater
or equal to the WCET. In the case of a soft task, the server budget is defined
according to the expected Quality of Service (QoS) of the task.

The set of servers are the scheduling entities. On the other hand, it will
be defined as ezecution entities the set of parameters that establishes the task
execution in SOOS (program counter, registers, flags, etc). This is, a logical
viewpoint is concerned with scheduling policies; and a physical viewpoint with
dispatching mechanisms. In this sense, SOOS schedules servers, but executes
tasks. Figure 1(b) shows the set of fields that belong to each entity. On the one
hand, TaskList saves the information relative to the execution of a task. On
the other, SCBList stores information relative to scheduling parameters. Both
lists are fixed, in the sense that no insertion or deletion is done on any of them
during runtime. In particular, they are implemented with arrays of n elements
(being n the number of servers in the system).

3.3 Server List

The ServerList structure is used to keep track of active servers during runtime.
Since this is a dynamic list, a pointer indicating the end of the list is maintained.

TaskList

preemplLev

SCBList

(a) Logical scheme. (b) Implementation scheme.

Fig. 1: Server scheme.

In addition, the structure has two pointers to the first and second place of the
list, this is the two highest priority servers.

The previous list design allows to find the highest priority server in an O(1)
time. Deletion time is O(n), since the deletion is always of the first component,
then the second one takes its place and finally a new second component must
be found. However, insertion of a new element is O(1) !. This is because it is
first checked against the highest priority elements, if its priority is higher than
any of the two, the second one is always sent to the end of the list. If the new
element is not greater than any of the two first ones, it is put at the end. Thus,
the list can be seen as queue with the two highest priority elements ordered but
respecting the natural behavior of a queue.

This kernel structure is useful when a bounded search time is required. In
the following sections several advantages of this design will be explained.

4 Scheduling Real-Time Tasks

The Server Oriented Operating Systems implements a two-level hierarchical
scheduling scheme. This is, the SOOS kernel schedules servers and the servers
dispatch tasks. Particularly, the highest level scheduling policy is Earliest Dead-
line First (EDF) [10]. This policy establishes that the server whose deadline is
the closest one to the current time is the one with highest priority. In the second
level is the Behavioral Scheduling Server (BIDS) [11,12], that is in charge of
dispatching the actual tasks that compose the real-time system. The BIDS pol-
icy is a server-based approach that adjusts dynamically the execution frequency
of each encapsulated task according to its last instance behavior. In this sense,

1 O(1) stands for a bounded time. This is, it is independent of the number of tasks in
the system.

each task before ending returns a value to its server that is used to determine
its next reactivation period.

4.1 Scheduling Process Description

In SOOS the scheduling points (SP) are determined by a periodic timer, which
imposes a time base to the system. This time base is known as slot and it has the
duration of the timer period. When the timer expires, it generates an interrupt
that is attended by the Timer Tick Handler (TTH). This handler is in charge of
giving control to the SOOS kernel.

In addition to the periodic scheduling points set by the timer, when a task
ends (generally in some point in the middle of a slot), it makes the syscall
taskEnds () in order to inform the SOOS kernel of that situation. With this,
the kernel could quickly send the highest priority pending task to execute. Thus,
the SOOS kernel exploits what is commonly known as gained slack time [3] to
execute tasks, when it is possible. This is, the time left by tasks that require less
than their WCET.

Timer Tick Handler

This kernel operation is invoked in each SP to schedule and dispatch task. In ad-
dition, the TTH uses the kernel data structures to guarantee the correct system
behavior. The kernel execution time has to be just a percentage of the slot time.
Thus, the set functions called during a timer interrupt must be bounded. There-
fore, the TTH implementation is of major importance for the overall functioning
of the system both for correctness purposes and real-time constraints.

Basically, preemption mechanism saves all information about the running
task when it is deallocated the processor. This instance uses the physical data
structure TaskList to save the execution parameters (program counter, flags,
stack, registers, etc).

In the reactivation stage, the SOOS kernel checks the SCBList to deter-
mine which BIDS server has to be reactivated. This is done by analyzing the field
r; of every server to see whether they are equal to zero or not. SOOS improves
the process by keeping track of a variable named nextReactivation, that indi-
cates the closest reactivation time. In this way, only the value of the variable is
tested. When the value of the variable reaches the calculated reactivation time
(i.e., one or more servers must be reactivated in that slot), nextReactivation
is recalculated. Particularly, in any other slot (i.e. a slot where there would be
no reactivations) the reactivation function takes O(1) to execute (see Figure 3)
due to the insertion policy.

One of the limitations of RTOS concerning scheduling is the excessive over-
head involved in the case of simultaneous reactivations. Generally, to overcome
this situation, an RTOS establishes a limit on the number of supported tasks
in the system. As a consequence, it restricts the application developer to build
its system with a bounded number of tasks. For instance, in [5] the maximum
number of tasks is set to 13 due to the previous situation. The mentioned over-
head is given when every task must be checked and inserted in the ready tasks

list. Particularly, in the case of SOOS the worst-case scheduling scenario is given
when all the servers must be reactivated and inserted in the ServerList. Gen-
erally, the previous process would take an O(n?) time, since it involves searching
in an unsorted list and inserting in an ordered one. However, SOOS reduces
this time to O(n) by means of the ServerList structure presented in Section
3.3. Recall that the ServerList has only two elements ordered, the two highest
priority servers. With this, SOOS increases the number of possible reactivations
and consequently the potential number of supported servers. Figure 2(b) shows
the average distribution of time in the TTH.

Preempt()

Reactivate()

% Kernel Overhead

Schedule()

Dispatch()

Preempt Save ContextReactivate Schedule Dispatch Load Context

(a) TTH (b) TTH Time Distribution

Fig.2: Timer tick handler

Based on the structure of ServerList and the reactivation algorithm, the
scheduling stage remains simple, since it only checks which is the ready server
with the closest deadline and the chosen one is sent to execute. In the actual im-
plementation, the scheduler just takes the server in the front of the ServerList.
Thus, the scheduling stage takes an O(1) execution time. The chosen server iden-
tifier is then stored in a variable named ExePid, that is taken by the dispatcher
to perform the necessary functions (i.e., loading context, adjusting stack, etc.)
to put the corresponding task in an eze state.

Task Ends()

The syscall taskends() is an operation implemented in the kernel whose fun-
damental objectives are to correctly complete the execution of a task and allow
a fast scheduling, when it is possible. This operation must be invoked for ev-

Reactivate () {
if (nextReact == t){
for 1 to n server {
if (server.ri == timeElapsed){
server.state=ready
server.ri=task.Ti
insertToServerList (serverPid) }
else
server.ri = server.ri - timeElapsed;
nextReact = MIN(nextReact,server.ri);}
timeElapsed = nextReact;}
else
nextReact = nextReact-1;}

Fig. 3: Reactivation algoritm

ery task at the end of its source code, to indicate completion. When invoked,
the kernel starts the process of ending a task, saving the information about the
execution and setting a internal parameter. In the next SP, the previously men-
tioned parameter is used to indicate that the task must be removed from the
ServerList.

Once the kernel correctly performed the ending of a task, the next step is
to make a fast scheduling. This fast scheduling is given by a sequence of three
actions: take the second element of the ServerList, dispatch the task associated
to the chosen server and report success.

The execution of this fast scheduling is an atomic process. So, if the timer
interrupts in the middle of the process, operations are discarded. The atomicity
is achieved through the use of internal kernel flags that indicate the status of
operation reached. These flags can be seen as internal checkpoints.

Finally, it could be a situation where the two highest priority tasks finish
their execution within a slot. In that case, the gained slack time obtained by the
ending of the second task is wasted. Therefore, that time is used by the dummy
task.

4.2 Comparative Analysis

In general, when there is a reactivation in a system, the kernel performs basically
three activities: 1) it has to check which scheduling entity must be reactivated;
2) each reactivation has to be marked in order to be considered for scheduling
(i.e., change a field of the entity control block or insert it in a READY list).
This activity is done while doing the previous one. Finally, activity 3) is a re-
scheduling process. These three activities are the main sources of the kernel
overhead. In what follows, a comparative analysis of them is done. The analysis
is made comparing SOOS with two other real-time kernels: one proposed by
Thane et al. in [6] and the other proposed by Marau et al. in [5].

In the first place, the approach proposed by Thane et al. has an execution
time of O(n) in activities 1) and 3), and O(1) in activity 2). This is because
activity 1) checks in every slot the complete list of tasks; activity 2) just changes
one field of the reactivated tasks and inserts the task in the READY list in an
unordered way. Activity 3) searches the complete READY list for the highest
priority task.

Secondly, the kernel proposed by Marau et al. has an execution time order
of O(n) or O(1) in activity 1), depending whether there are reactivations or not,
respectively. Activity 2) has O(1), since it only changes one field of the tasks.
Activity 3) is identical to case of Thane et al., this is O(n).

In SOOS, Activity 1) has the same execution time order of the approach
proposed by Marau et al., that is O(n) or O(1) depending on the slot. Activity 2)
has an order O(1), since it inserts in an orderly fashion in the ServerList. This
process always involves two comparisons. Lastly, due to the ordered insertion in
the previous activity, activity 3) has execution time order of O(1). Note that the
highest priority server is always in the front of the ServerList.

The previous discussion shows theoretically that SOOS implements the timer
tick handler in a very efficient manner. This is because of the improvements done
in the reactivate function and especially in the ServerList structure. Neverthe-
less, a price is always paid. In this case, SOOS pays that price only in the slot
following that of a task ending, since the kernel has to find the second highest
priority server, as explained in Section 4.1. With all, this search is only made
when a task ends and only two tasks can be deleted in the same SP, so the price
is not expensive per slot.

5 Experimental Study

The Server Oriented Operating System was implemented in the RCX Lego
Mindstorms® as a prototype to analyze the features exposed in this paper. The
decision of choosing the Lego platform was based on the hardware management,
facilities provided by that system. The main characteristics of the platform can
be summarized as follows: the microcontroller used is a Hitachi H8/3297 oper-
ating at 16 Mhz; the system has 16KB of Flash memory and 32KB of RAM.

The prototype implementation of SOOS was executed with several configu-
rations. In all cases, the Logic Analyzer HP 1651A was used to capture timing
information. Figure 4 summarizes the SOOS characteristics for a randomly gen-
erated set of 15 tasks.

In Figure 5 the kernel overhead time is depicted for different SOOS imple-
mentations with several random sets of tasks in groups between 5 and 40. In the
first place, it can be seen that the modification to the reactivate function and the
implementation of the ServerList produce a significant outcome with respect
to the implementation without any improvement. However, when both the reac-
tivate improvement and the ServerList implementation are used together the
result is even better, approximately 46% on average of kernel overhead decrease.
From this comes up that the two improvements presented are not contradictory,

Description Measure

Kernel Size 3.76KB
Executable Image Size 6.3KB
Workload 15 tasks
Slot Time 10ms
Experiment Length 10min

Average Kernel Overhead 180us
Minimum Kernel Overhead 60us
Maximum Kernel Overhead 435us

Fig. 4: SOOS characteristics.

since the reactivate one alone presented a decrease of 20% and ServerList one
a decrease of 35%. With this, both improvements can normally coexist and sub-
stantially decrease the kernel overhead time.

600
2]
35
> 500} 1
E
T 400 | 1
[}
£
Q 300} |
o
3
O 200 | 1
(@]
@
g 100 r 1
<
O L L L L L L

0 5 10 15 20 25 30 35 40 45
Number of tasks

Fig. 5: Kernel overhead under different configurations: + SOOS without modifications,
x SOOS with reactivate improved, o SOOS with ServerList improved, [0 SOOS with
both improvements

6 Conclusions

In this paper some aspect related to the implementation of a RTOS was pre-
sented for embedded systems. Usually this kind of systems have limited memory
capacity both in ROM and RAM, low speed processors, and a strong interaction
with the external world in the form of I/O ports to sense variables and handle
actuators. These characteristics impose strict restrictions on the RTOS that are

translated in a set of requirements or design goals: small size, low kernel over-
head, I/O management, shared resources and programming facilities. The Server
Oriented Operating System (SOOS) proposed here was oriented to fulfill these
requirements and made advances in three basic areas that are detailed in what
follows.

SOOS was designed following the resource reservation paradigm. With it, a
hierarchical scheduling can be done providing the important property of tempo-
ral isolation. The reservation mechanism is used for every kind of task, hard, soft
or non-real time. With this, the operation of the system can be guaranteed for
each particular task based only on its own characteristics. SOOS introduces in
this aspect new ideas for the scheduling and dispatching. The logical and phys-
ical viewpoints of tasks help in the creation an efficient management of data
structures for that scheduling and dispatching. Experimental results validate
the improvements in the timing behavior of SOOS.

References

1. Donari, D., Ordinez, L., Santos, R., Orozco, J.: Real-time server oriented operating
system for embedded applications. In: Proceedings of the XXXIV Conferencia
Latinoamericana de Informtica, Santa Fe, Argentina

2. Rajkumar, R., Juvva, K., Molano, A., Oikawa, S.: Resource kernels: a resource-
centric approach to real-time and multimedia systems. (2001) 476-490

3. Davis, R., Tindell, K., Burns, A.: Scheduling slack time in fixed priority pre-
emptive systems. In: Real-Time Systems Symposium, 1993., Proceedings.

4. Zuberi, K.M., Pillai, P., Shin, K.G.: Emeralds: a small-memory real-time microker-
nel. In: SOSP ’99: Proceedings of the seventeenth ACM symposium on Operating
systems principles, New York, NY, USA, ACM (1999) 277-299

5. Marau, R., Leite, P., Velasco, M., Marti, P., Almeida, L., Pedreiras, P., Fuertes, J.:
Performing flexible control on low-cost microcontrollers using a minimal real-time
kernel. Industrial Informatics, IEEE Transactions on 4(2) (May 2008) 125-133

6. Thane, H., Pettersson, A., Sundmark, D.: The asterix real-time kernel. In: 13th
EUROMICRO INTERNATIONAL CONFERENCE ON REAL-TIME SYSTEMS,
INDUSTRIAL SESSION, IEEE Computer Society (June 2001)

7. Sha, L., Abdelzaher, T., Arzén, K., Cervin, A., Baker, T., Burns, A., Buttazzo, G.,
Caccamo, M., Lehoczky, J., Mok, A.K.: Real time scheduling theory: A historical
perspective. Real-Time Syst. 28(2-3) (2004) 101-155

8. Spuri, M., Buttazzo, G.: Efficient aperiodic service under earliest deadline schedul-
ing. Real-Time Systems Symposium, 1994., Proceedings. (Dec 1994) 2-11

9. Abeni, L., Buttazzo, G.: Integrating multimedia applications in hard real-time
systems. In: RTSS '98: Proceedings of the IEEE Real-Time Systems Symposium,
Washington, DC, USA, IEEE Computer Society (1998) 4

10. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in hard
real time environment. ACM 20 (1973) 46-61

11. Ordinez, L., Donari, D., Santos, R.., Orozco, J.: A behavior priority driven approach
for resource reservation scheduling. In: SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, New York, NY, USA, ACM (2008) 315-319

12. Ordinez, L., Donari, D., Santos, R., Orozco, J.: Resource sharing in behavioral
based scheduling. In: SAC ’09: Proceedings of the 2009 ACM symposium on Ap-
plied computing, New York, NY, USA, ACM (2009)

