
Kernel Internals for Real-TimeDavid R. Donari, Leo Ordinez, Rodrigo Santos, and Javier Oroz
oInstituto de Investiga
iones en Ingeniería Elé
tri
aUniversidad Na
ional del Sur - CONICETAv. Alem 1253 - (8000) Bahía Blan
aBuenos Aires - Argentina{ddonari,lordinez,ierms,joroz
o}�uns.edu.arAbstra
t. In this paper, some main features of the design and imple-mentation of a Real-Time Operating System are presented. The hier-ar
hi
al model to s
hedule task from the theoreti
al point of view tothe implementation is explained. In addition, several implementationimprovements related to the redu
tion of kernel overhead are also pro-posed. A
omparative analysis shows how di�erents RTOS implementthe s
heduling pro
ess. Finally, an experimental evaluation is exposed.This evaluation shows the in�uen
e of ea
h kernel improvement to theoverall performan
e of the system.1 Introdu
tionIn the last years there has been an important growth in the produ
tion of Em-bedded Systems (ES) understood as those in whi
h a
omputer forms part ofa bigger system and that depends on its own mi
ropro
essor. This growth hasbrought new
hallenges for the software developers.The rapid development of new hardware ar
hite
tures make possible impor-tant improvements in performan
e that would require a design from s
rat
h ofthe software if no OS is present to handle the hardware. In fa
t, there is an im-portant resear
h a
tivity in the OS area oriented to ES. These OS have parti
ularrequirements that are not present in general-purpose OS. Among the main ones,the OS should have a small footprint on memory as this is a s
ar
e resour
ein ES. It also has to provide real-time primitives sin
e most ES are built uponphysi
al pro
esses with stringent timing
onstraints. Finally, the OS overhead orinterferen
e on the exe
ution of the pro
esses of the system should be minimal.In this paper, some main features of design and implementation of the SOOSkernel [1℄ are presented. The �rst one is dire
tly related to the way in whi
h SOOSs
hedules and dispat
hes tasks. SOOS provides real-time s
heduling for bothsoft and hard tasks by means of the resour
e reservation paradigm [2℄. In thissense, it introdu
es this kind of hierar
hi
al s
heduling approa
h in a native andinexpensive way. The se
ond
ontribution is related to the way in whi
h kernelimplements the s
heduling time. This implementation signi�
antly redu
es theoverhead involved, be
ause of the intera
tion between
hosen s
heduling poli
yand the data stru
tures used. Finally a sys
all is introdu
ed to show how to

take advantage of the gained sla
k time [3℄. These three
ontributions are deeplyexplained, in the rest of the paper, both from a theoreti
al and pra
ti
al pointof view.The rest of the paper is organized as follows: several previous works on Real-Time Operating Systems are analyzed in Se
tion 2; Se
tion 3 shows how tomodel server-based real-time systems; the SOOS s
heduling pro
ess is explainedin Se
tion 4; in Se
tion 5 an experimental study is performed to show howthe theoreti
al
on
epts applied on SOOS are re�e
ted in the pra
ti
e; �nally,
on
lusions are exposed.2 Related WorkWithin the a
ademy, there are many papers that des
ribed and proposed di�er-ent RTOS for ES, whi
h
an be highlighted:EMERALDS is a real-time operating system designed for small-memory em-bedded appli
ations proposed by Zuberi et at in [4℄. The authors introdu
e amixed s
heduling poli
y that
ombines �xed and dynami
 priorities to redu
ethe overhead of the kernel in the s
heduling and dispat
hing of tasks. The newalgorithm orders the tasks by in
reasing periods and divides the ready queue intwo. The higher priority one is s
heduled by dynami
 priorities, Earliest DeadlineFirst, and the se
ond by �xed priority with Rate Monotoni
.In [5℄ a very simple real-time kernel is proposed for performing �exible
ontrolon low-
ost mi
ro
ontrollers. The obje
tive of the kernel is to provide a multi-tasking platform on low performan
e pro
essors in su
h a way that the
ontrolalgorithms
an be implemented in a simple manner. There are three di�erents
heduling poli
ies that are sele
ted at system startup whi
h are Earliest Dead-line First, Rate Monotoni
 and Deadline Monotoni
. The main
ontribution ofthe paper is the
reation of an intermediate layer named the re�e
tive layer thatis in
harge of transferring the data between the kernel and user spa
es. However,there is a small number of tasks that the OS
an handle, 13 plus the ba
kgroundtask that keeps the system running. Asterix is a real-time kernel that providessome tools for the implementation, analysis and debugging of real-time appli
a-tions [6℄. The kernel
an s
hedule tasks with �xed or dynami
 priorities. The OSprovides also a monitoring tool for debugging and performing time analysis ofthe system under
onstru
tion.3 Real-Time Systems ModelingWhen modeling a parti
ular real-time appli
ation that will be implemented onan RTOS, it is ne
essary to
learly distinguish between poli
ies and me
hanisms.Moreover, the analysis is tightly related to the
on
rete de�nition of tasks andservers. In addition, a data stru
ture is proposed to support the implementationof the
on
epts explained.

3.1 System ModelingA general-purpose operating system (GPOS) generally manages software entitiesnamed pro
esses. In an RTOS, those entities are
alled tasks and the set of them
ompose a parti
ular real-time appli
ation. However, real-time tasks di�er fromnormal pro
esses in that the former ones have intrinsi
 timing
onstraints.When analyzing tasks a

ording to the real-time s
heduling theory [7℄ thea
tual fun
tions that they perform in the system are stood on the sidelines andthe analysis fo
uses only on their timing restri
tions. This is, a task is seen asa tuple (Ci, Ti, Di), where Ci stands for its worst-
ase exe
ution time (WCET),
Ti for the task's period and Di for its deadline.A server is de�ned as an abstra
t software entity in whi
h a task is
ontained.A task within a server is subje
t to the server own rules. Usually, a server is
hara
terized by an a
tivation period Ps and a budget Qs, whi
h is its availabletime to serve a task. The relation Us = Qs

Ps

establishes the bandwidth of a server.In this sense, a task is said to run on a virtual pro
essor whose speed is Us timesthe a
tual pro
essor speed.In SOOS, the server's paradigm applied is based on BIDS. This algorithmuses dynami
 priorities [8, 9℄ and a parameter αs to establish a variation in theserver rea
tivation.3.2 Linking Tasks and ServersThe SOOS implementation provides a priority management based on BIDS anda task dispat
hing me
hanism. In this way, a server is
onsidered linked to aparti
ular task (see Figure 1(a)). Therefore, a server will have its period Psequal to the task's interarrival time asso
iated to it and a budget Qs greateror equal to the WCET. In the
ase of a soft task, the server budget is de�neda

ording to the expe
ted Quality of Servi
e (QoS) of the task.The set of servers are the s
heduling entities. On the other hand, it willbe de�ned as exe
ution entities the set of parameters that establishes the taskexe
ution in SOOS (program
ounter, registers, �ags, et
). This is, a logi
alviewpoint is
on
erned with s
heduling poli
ies; and a physi
al viewpoint withdispat
hing me
hanisms. In this sense, SOOS s
hedules servers, but exe
utestasks. Figure 1(b) shows the set of �elds that belong to ea
h entity. On the onehand, TaskList saves the information relative to the exe
ution of a task. Onthe other, SCBList stores information relative to s
heduling parameters. Bothlists are �xed, in the sense that no insertion or deletion is done on any of themduring runtime. In parti
ular, they are implemented with arrays of n elements(being n the number of servers in the system).3.3 Server ListThe ServerList stru
ture is used to keep tra
k of a
tive servers during runtime.Sin
e this is a dynami
 list, a pointer indi
ating the end of the list is maintained.

(a) Logi
al s
heme. (b) Implementation s
heme.Fig. 1: Server s
heme.In addition, the stru
ture has two pointers to the �rst and se
ond pla
e of thelist, this is the two highest priority servers.The previous list design allows to �nd the highest priority server in an O(1)time. Deletion time is O(n), sin
e the deletion is always of the �rst
omponent,then the se
ond one takes its pla
e and �nally a new se
ond
omponent mustbe found. However, insertion of a new element is O(1) 1. This is be
ause it is�rst
he
ked against the highest priority elements, if its priority is higher thanany of the two, the se
ond one is always sent to the end of the list. If the newelement is not greater than any of the two �rst ones, it is put at the end. Thus,the list
an be seen as queue with the two highest priority elements ordered butrespe
ting the natural behavior of a queue.This kernel stru
ture is useful when a bounded sear
h time is required. Inthe following se
tions several advantages of this design will be explained.4 S
heduling Real-Time TasksThe Server Oriented Operating Systems implements a two-level hierar
hi
als
heduling s
heme. This is, the SOOS kernel s
hedules servers and the serversdispat
h tasks. Parti
ularly, the highest level s
heduling poli
y is Earliest Dead-line First (EDF) [10℄. This poli
y establishes that the server whose deadline isthe
losest one to the
urrent time is the one with highest priority. In the se
ondlevel is the Behavioral S
heduling Server (BIDS) [11, 12℄, that is in
harge ofdispat
hing the a
tual tasks that
ompose the real-time system. The BIDS pol-i
y is a server-based approa
h that adjusts dynami
ally the exe
ution frequen
yof ea
h en
apsulated task a

ording to its last instan
e behavior. In this sense,1 O(1) stands for a bounded time. This is, it is independent of the number of tasks inthe system.

ea
h task before ending returns a value to its server that is used to determineits next rea
tivation period.4.1 S
heduling Pro
ess Des
riptionIn SOOS the s
heduling points (SP) are determined by a periodi
 timer, whi
himposes a time base to the system. This time base is known as slot and it has theduration of the timer period. When the timer expires, it generates an interruptthat is attended by the Timer Ti
k Handler (TTH). This handler is in
harge ofgiving
ontrol to the SOOS kernel.In addition to the periodi
 s
heduling points set by the timer, when a taskends (generally in some point in the middle of a slot), it makes the sys
alltaskEnds() in order to inform the SOOS kernel of that situation. With this,the kernel
ould qui
kly send the highest priority pending task to exe
ute. Thus,the SOOS kernel exploits what is
ommonly known as gained sla
k time [3℄ toexe
ute tasks, when it is possible. This is, the time left by tasks that require lessthan their WCET.Timer Ti
k HandlerThis kernel operation is invoked in ea
h SP to s
hedule and dispat
h task. In ad-dition, the TTH uses the kernel data stru
tures to guarantee the
orre
t systembehavior. The kernel exe
ution time has to be just a per
entage of the slot time.Thus, the set fun
tions
alled during a timer interrupt must be bounded. There-fore, the TTH implementation is of major importan
e for the overall fun
tioningof the system both for
orre
tness purposes and real-time
onstraints.Basi
ally, preemption me
hanism saves all information about the runningtask when it is deallo
ated the pro
essor. This instan
e uses the physi
al datastru
ture TaskList to save the exe
ution parameters (program
ounter, �ags,sta
k, registers, et
).In the rea
tivation stage, the SOOS kernel
he
ks the SCBList to deter-mine whi
h BIDS server has to be rea
tivated. This is done by analyzing the �eld
ri of every server to see whether they are equal to zero or not. SOOS improvesthe pro
ess by keeping tra
k of a variable named nextRea
tivation, that indi-
ates the
losest rea
tivation time. In this way, only the value of the variable istested. When the value of the variable rea
hes the
al
ulated rea
tivation time(i.e., one or more servers must be rea
tivated in that slot), nextRea
tivationis re
al
ulated. Parti
ularly, in any other slot (i.e. a slot where there would beno rea
tivations) the rea
tivation fun
tion takes O(1) to exe
ute (see Figure 3)due to the insertion poli
y.One of the limitations of RTOS
on
erning s
heduling is the ex
essive over-head involved in the
ase of simultaneous rea
tivations. Generally, to over
omethis situation, an RTOS establishes a limit on the number of supported tasksin the system. As a
onsequen
e, it restri
ts the appli
ation developer to buildits system with a bounded number of tasks. For instan
e, in [5℄ the maximumnumber of tasks is set to 13 due to the previous situation. The mentioned over-head is given when every task must be
he
ked and inserted in the ready tasks

list. Parti
ularly, in the
ase of SOOS the worst-
ase s
heduling s
enario is givenwhen all the servers must be rea
tivated and inserted in the ServerList. Gen-erally, the previous pro
ess would take an O(n2) time, sin
e it involves sear
hingin an unsorted list and inserting in an ordered one. However, SOOS redu
esthis time to O(n) by means of the ServerList stru
ture presented in Se
tion3.3. Re
all that the ServerList has only two elements ordered, the two highestpriority servers. With this, SOOS in
reases the number of possible rea
tivationsand
onsequently the potential number of supported servers. Figure 2(b) showsthe average distribution of time in the TTH.

(a) TTH Preempt Save ContextReactivate Schedule Dispatch Load Context
0

5

10

15

20

25

30

35

40

45

50

%
 K

er
ne

l O
ve

rh
ea

d

(b) TTH Time DistributionFig. 2: Timer ti
k handlerBased on the stru
ture of ServerList and the rea
tivation algorithm, thes
heduling stage remains simple, sin
e it only
he
ks whi
h is the ready serverwith the
losest deadline and the
hosen one is sent to exe
ute. In the a
tual im-plementation, the s
heduler just takes the server in the front of the ServerList.Thus, the s
heduling stage takes an O(1) exe
ution time. The
hosen server iden-ti�er is then stored in a variable named ExePid, that is taken by the dispat
herto perform the ne
essary fun
tions (i.e., loading
ontext, adjusting sta
k, et
.)to put the
orresponding task in an exe state.Task Ends()The sys
all taskends() is an operation implemented in the kernel whose fun-damental obje
tives are to
orre
tly
omplete the exe
ution of a task and allowa fast s
heduling, when it is possible. This operation must be invoked for ev-

Rea
tivate(){if (nextRea
t == t){for 1 to n server {if (server.ri == timeElapsed){server.state=readyserver.ri=task.TiinsertToServerList(serverPid)}else server.ri = server.ri - timeElapsed;nextRea
t = MIN(nextRea
t,server.ri);}timeElapsed = nextRea
t;}elsenextRea
t = nextRea
t-1;}
} Fig. 3: Rea
tivation algoritmery task at the end of its sour
e
ode, to indi
ate
ompletion. When invoked,the kernel starts the pro
ess of ending a task, saving the information about theexe
ution and setting a internal parameter. In the next SP, the previously men-tioned parameter is used to indi
ate that the task must be removed from theServerList.On
e the kernel
orre
tly performed the ending of a task, the next step isto make a fast s
heduling. This fast s
heduling is given by a sequen
e of threea
tions: take the se
ond element of the ServerList, dispat
h the task asso
iatedto the
hosen server and report su

ess.The exe
ution of this fast s
heduling is an atomi
 pro
ess. So, if the timerinterrupts in the middle of the pro
ess, operations are dis
arded. The atomi
ityis a
hieved through the use of internal kernel �ags that indi
ate the status ofoperation rea
hed. These �ags
an be seen as internal
he
kpoints.Finally, it
ould be a situation where the two highest priority tasks �nishtheir exe
ution within a slot. In that
ase, the gained sla
k time obtained by theending of the se
ond task is wasted. Therefore, that time is used by the dummytask.4.2 Comparative AnalysisIn general, when there is a rea
tivation in a system, the kernel performs basi
allythree a
tivities: 1) it has to
he
k whi
h s
heduling entity must be rea
tivated;2) ea
h rea
tivation has to be marked in order to be
onsidered for s
heduling(i.e.,
hange a �eld of the entity
ontrol blo
k or insert it in a READY list).This a
tivity is done while doing the previous one. Finally, a
tivity 3) is a re-s
heduling pro
ess. These three a
tivities are the main sour
es of the kerneloverhead. In what follows, a
omparative analysis of them is done. The analysisis made
omparing SOOS with two other real-time kernels: one proposed byThane et al. in [6℄ and the other proposed by Marau et al. in [5℄.

In the �rst pla
e, the approa
h proposed by Thane et al. has an exe
utiontime of O(n) in a
tivities 1) and 3), and O(1) in a
tivity 2). This is be
ausea
tivity 1)
he
ks in every slot the
omplete list of tasks; a
tivity 2) just
hangesone �eld of the rea
tivated tasks and inserts the task in the READY list in anunordered way. A
tivity 3) sear
hes the
omplete READY list for the highestpriority task.Se
ondly, the kernel proposed by Marau et al. has an exe
ution time orderof O(n) or O(1) in a
tivity 1), depending whether there are rea
tivations or not,respe
tively. A
tivity 2) has O(1), sin
e it only
hanges one �eld of the tasks.A
tivity 3) is identi
al to
ase of Thane et al., this is O(n).In SOOS, A
tivity 1) has the same exe
ution time order of the approa
hproposed by Marau et al., that is O(n) or O(1) depending on the slot. A
tivity 2)has an order O(1), sin
e it inserts in an orderly fashion in the ServerList. Thispro
ess always involves two
omparisons. Lastly, due to the ordered insertion inthe previous a
tivity, a
tivity 3) has exe
ution time order of O(1). Note that thehighest priority server is always in the front of the ServerList.The previous dis
ussion shows theoreti
ally that SOOS implements the timerti
k handler in a very e�
ient manner. This is be
ause of the improvements donein the rea
tivate fun
tion and espe
ially in the ServerList stru
ture. Neverthe-less, a pri
e is always paid. In this
ase, SOOS pays that pri
e only in the slotfollowing that of a task ending, sin
e the kernel has to �nd the se
ond highestpriority server, as explained in Se
tion 4.1. With all, this sear
h is only madewhen a task ends and only two tasks
an be deleted in the same SP, so the pri
eis not expensive per slot.5 Experimental StudyThe Server Oriented Operating System was implemented in the RCX LegoMindstormsr as a prototype to analyze the features exposed in this paper. Thede
ision of
hoosing the Lego platform was based on the hardware managementfa
ilities provided by that system. The main
hara
teristi
s of the platform
anbe summarized as follows: the mi
ro
ontroller used is a Hita
hi H8/3297 oper-ating at 16 Mhz; the system has 16KB of Flash memory and 32KB of RAM.The prototype implementation of SOOS was exe
uted with several
on�gu-rations. In all
ases, the Logi
 Analyzer HP 1651A was used to
apture timinginformation. Figure 4 summarizes the SOOS
hara
teristi
s for a randomly gen-erated set of 15 tasks.In Figure 5 the kernel overhead time is depi
ted for di�erent SOOS imple-mentations with several random sets of tasks in groups between 5 and 40. In the�rst pla
e, it
an be seen that the modi�
ation to the rea
tivate fun
tion and theimplementation of the ServerList produ
e a signi�
ant out
ome with respe
tto the implementation without any improvement. However, when both the rea
-tivate improvement and the ServerList implementation are used together theresult is even better, approximately 46% on average of kernel overhead de
rease.From this
omes up that the two improvements presented are not
ontradi
tory,

Des
ription MeasureKernel Size 3.76KBExe
utable Image Size 6.3KBWorkload 15 tasksSlot Time 10msExperiment Length 10minAverage Kernel Overhead 180µsMinimum Kernel Overhead 60µsMaximum Kernel Overhead 435µsFig. 4: SOOS
hara
teristi
s.sin
e the rea
tivate one alone presented a de
rease of 20% and ServerList onea de
rease of 35%. With this, both improvements
an normally
oexist and sub-stantially de
rease the kernel overhead time.

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 O
S

 o
ve

rh
ea

d
tim

e
us

Number of tasksFig. 5: Kernel overhead under di�erent
on�gurations: + SOOS without modi�
ations,
× SOOS with rea
tivate improved, ◦ SOOS with ServerList improved, � SOOS withboth improvements6 Con
lusionsIn this paper some aspe
t related to the implementation of a RTOS was pre-sented for embedded systems. Usually this kind of systems have limited memory
apa
ity both in ROM and RAM, low speed pro
essors, and a strong intera
tionwith the external world in the form of I/O ports to sense variables and handlea
tuators. These
hara
teristi
s impose stri
t restri
tions on the RTOS that are

translated in a set of requirements or design goals: small size, low kernel over-head, I/O management, shared resour
es and programming fa
ilities. The ServerOriented Operating System (SOOS) proposed here was oriented to ful�ll theserequirements and made advan
es in three basi
 areas that are detailed in whatfollows.SOOS was designed following the resour
e reservation paradigm. With it, ahierar
hi
al s
heduling
an be done providing the important property of tempo-ral isolation. The reservation me
hanism is used for every kind of task, hard, softor non-real time. With this, the operation of the system
an be guaranteed forea
h parti
ular task based only on its own
hara
teristi
s. SOOS introdu
es inthis aspe
t new ideas for the s
heduling and dispat
hing. The logi
al and phys-i
al viewpoints of tasks help in the
reation an e�
ient management of datastru
tures for that s
heduling and dispat
hing. Experimental results validatethe improvements in the timing behavior of SOOS.Referen
es1. Donari, D., Ordinez, L., Santos, R., Oroz
o, J.: Real-time server oriented operatingsystem for embedded appli
ations. In: Pro
eedings of the XXXIV Conferen
iaLatinoameri
ana de Informti
a, Santa Fe, Argentina2. Rajkumar, R., Juvva, K., Molano, A., Oikawa, S.: Resour
e kernels: a resour
e-
entri
 approa
h to real-time and multimedia systems. (2001) 476�4903. Davis, R., Tindell, K., Burns, A.: S
heduling sla
k time in �xed priority pre-emptive systems. In: Real-Time Systems Symposium, 1993., Pro
eedings.4. Zuberi, K.M., Pillai, P., Shin, K.G.: Emeralds: a small-memory real-time mi
roker-nel. In: SOSP '99: Pro
eedings of the seventeenth ACM symposium on Operatingsystems prin
iples, New York, NY, USA, ACM (1999) 277�2995. Marau, R., Leite, P., Velas
o, M., Marti, P., Almeida, L., Pedreiras, P., Fuertes, J.:Performing �exible
ontrol on low-
ost mi
ro
ontrollers using a minimal real-timekernel. Industrial Informati
s, IEEE Transa
tions on 4(2) (May 2008) 125�1336. Thane, H., Pettersson, A., Sundmark, D.: The asterix real-time kernel. In: 13thEUROMICRO INTERNATIONALCONFERENCE ONREAL-TIME SYSTEMS,INDUSTRIAL SESSION, IEEE Computer So
iety (June 2001)7. Sha, L., Abdelzaher, T.,
Arzén, K., Cervin, A., Baker, T., Burns, A., Buttazzo, G.,Ca

amo, M., Leho
zky, J., Mok, A.K.: Real time s
heduling theory: A histori
alperspe
tive. Real-Time Syst. 28(2-3) (2004) 101�1558. Spuri, M., Buttazzo, G.: E�
ient aperiodi
 servi
e under earliest deadline s
hedul-ing. Real-Time Systems Symposium, 1994., Pro
eedings. (De
 1994) 2�119. Abeni, L., Buttazzo, G.: Integrating multimedia appli
ations in hard real-timesystems. In: RTSS '98: Pro
eedings of the IEEE Real-Time Systems Symposium,Washington, DC, USA, IEEE Computer So
iety (1998) 410. Liu, C.L., Layland, J.W.: S
heduling algorithms for multiprogramming in hardreal time environment. ACM 20 (1973) 46�6111. Ordinez, L., Donari, D., Santos, R., Oroz
o, J.: A behavior priority driven approa
hfor resour
e reservation s
heduling. In: SAC '08: Pro
eedings of the 2008 ACMsymposium on Applied
omputing, New York, NY, USA, ACM (2008) 315�31912. Ordinez, L., Donari, D., Santos, R., Oroz
o, J.: Resour
e sharing in behavioralbased s
heduling. In: SAC '09: Pro
eedings of the 2009 ACM symposium on Ap-plied
omputing, New York, NY, USA, ACM (2009)

