
Kernel Internals for Real-TimeDavid R. Donari, Leo Ordinez, Rodrigo Santos, and Javier OrozoInstituto de Investigaiones en Ingeniería ElétriaUniversidad Naional del Sur - CONICETAv. Alem 1253 - (8000) Bahía BlanaBuenos Aires - Argentina{ddonari,lordinez,ierms,jorozo}�uns.edu.arAbstrat. In this paper, some main features of the design and imple-mentation of a Real-Time Operating System are presented. The hier-arhial model to shedule task from the theoretial point of view tothe implementation is explained. In addition, several implementationimprovements related to the redution of kernel overhead are also pro-posed. A omparative analysis shows how di�erents RTOS implementthe sheduling proess. Finally, an experimental evaluation is exposed.This evaluation shows the in�uene of eah kernel improvement to theoverall performane of the system.1 IntrodutionIn the last years there has been an important growth in the prodution of Em-bedded Systems (ES) understood as those in whih a omputer forms part ofa bigger system and that depends on its own miroproessor. This growth hasbrought new hallenges for the software developers.The rapid development of new hardware arhitetures make possible impor-tant improvements in performane that would require a design from srath ofthe software if no OS is present to handle the hardware. In fat, there is an im-portant researh ativity in the OS area oriented to ES. These OS have partiularrequirements that are not present in general-purpose OS. Among the main ones,the OS should have a small footprint on memory as this is a sare resourein ES. It also has to provide real-time primitives sine most ES are built uponphysial proesses with stringent timing onstraints. Finally, the OS overhead orinterferene on the exeution of the proesses of the system should be minimal.In this paper, some main features of design and implementation of the SOOSkernel [1℄ are presented. The �rst one is diretly related to the way in whih SOOSshedules and dispathes tasks. SOOS provides real-time sheduling for bothsoft and hard tasks by means of the resoure reservation paradigm [2℄. In thissense, it introdues this kind of hierarhial sheduling approah in a native andinexpensive way. The seond ontribution is related to the way in whih kernelimplements the sheduling time. This implementation signi�antly redues theoverhead involved, beause of the interation between hosen sheduling poliyand the data strutures used. Finally a sysall is introdued to show how to



take advantage of the gained slak time [3℄. These three ontributions are deeplyexplained, in the rest of the paper, both from a theoretial and pratial pointof view.The rest of the paper is organized as follows: several previous works on Real-Time Operating Systems are analyzed in Setion 2; Setion 3 shows how tomodel server-based real-time systems; the SOOS sheduling proess is explainedin Setion 4; in Setion 5 an experimental study is performed to show howthe theoretial onepts applied on SOOS are re�eted in the pratie; �nally,onlusions are exposed.2 Related WorkWithin the aademy, there are many papers that desribed and proposed di�er-ent RTOS for ES, whih an be highlighted:EMERALDS is a real-time operating system designed for small-memory em-bedded appliations proposed by Zuberi et at in [4℄. The authors introdue amixed sheduling poliy that ombines �xed and dynami priorities to reduethe overhead of the kernel in the sheduling and dispathing of tasks. The newalgorithm orders the tasks by inreasing periods and divides the ready queue intwo. The higher priority one is sheduled by dynami priorities, Earliest DeadlineFirst, and the seond by �xed priority with Rate Monotoni.In [5℄ a very simple real-time kernel is proposed for performing �exible ontrolon low-ost miroontrollers. The objetive of the kernel is to provide a multi-tasking platform on low performane proessors in suh a way that the ontrolalgorithms an be implemented in a simple manner. There are three di�erentsheduling poliies that are seleted at system startup whih are Earliest Dead-line First, Rate Monotoni and Deadline Monotoni. The main ontribution ofthe paper is the reation of an intermediate layer named the re�etive layer thatis in harge of transferring the data between the kernel and user spaes. However,there is a small number of tasks that the OS an handle, 13 plus the bakgroundtask that keeps the system running. Asterix is a real-time kernel that providessome tools for the implementation, analysis and debugging of real-time applia-tions [6℄. The kernel an shedule tasks with �xed or dynami priorities. The OSprovides also a monitoring tool for debugging and performing time analysis ofthe system under onstrution.3 Real-Time Systems ModelingWhen modeling a partiular real-time appliation that will be implemented onan RTOS, it is neessary to learly distinguish between poliies and mehanisms.Moreover, the analysis is tightly related to the onrete de�nition of tasks andservers. In addition, a data struture is proposed to support the implementationof the onepts explained.



3.1 System ModelingA general-purpose operating system (GPOS) generally manages software entitiesnamed proesses. In an RTOS, those entities are alled tasks and the set of themompose a partiular real-time appliation. However, real-time tasks di�er fromnormal proesses in that the former ones have intrinsi timing onstraints.When analyzing tasks aording to the real-time sheduling theory [7℄ theatual funtions that they perform in the system are stood on the sidelines andthe analysis fouses only on their timing restritions. This is, a task is seen asa tuple (Ci, Ti, Di), where Ci stands for its worst-ase exeution time (WCET),
Ti for the task's period and Di for its deadline.A server is de�ned as an abstrat software entity in whih a task is ontained.A task within a server is subjet to the server own rules. Usually, a server isharaterized by an ativation period Ps and a budget Qs, whih is its availabletime to serve a task. The relation Us = Qs

Ps

establishes the bandwidth of a server.In this sense, a task is said to run on a virtual proessor whose speed is Us timesthe atual proessor speed.In SOOS, the server's paradigm applied is based on BIDS. This algorithmuses dynami priorities [8, 9℄ and a parameter αs to establish a variation in theserver reativation.3.2 Linking Tasks and ServersThe SOOS implementation provides a priority management based on BIDS anda task dispathing mehanism. In this way, a server is onsidered linked to apartiular task (see Figure 1(a)). Therefore, a server will have its period Psequal to the task's interarrival time assoiated to it and a budget Qs greateror equal to the WCET. In the ase of a soft task, the server budget is de�nedaording to the expeted Quality of Servie (QoS) of the task.The set of servers are the sheduling entities. On the other hand, it willbe de�ned as exeution entities the set of parameters that establishes the taskexeution in SOOS (program ounter, registers, �ags, et). This is, a logialviewpoint is onerned with sheduling poliies; and a physial viewpoint withdispathing mehanisms. In this sense, SOOS shedules servers, but exeutestasks. Figure 1(b) shows the set of �elds that belong to eah entity. On the onehand, TaskList saves the information relative to the exeution of a task. Onthe other, SCBList stores information relative to sheduling parameters. Bothlists are �xed, in the sense that no insertion or deletion is done on any of themduring runtime. In partiular, they are implemented with arrays of n elements(being n the number of servers in the system).3.3 Server ListThe ServerList struture is used to keep trak of ative servers during runtime.Sine this is a dynami list, a pointer indiating the end of the list is maintained.



(a) Logial sheme. (b) Implementation sheme.Fig. 1: Server sheme.In addition, the struture has two pointers to the �rst and seond plae of thelist, this is the two highest priority servers.The previous list design allows to �nd the highest priority server in an O(1)time. Deletion time is O(n), sine the deletion is always of the �rst omponent,then the seond one takes its plae and �nally a new seond omponent mustbe found. However, insertion of a new element is O(1) 1. This is beause it is�rst heked against the highest priority elements, if its priority is higher thanany of the two, the seond one is always sent to the end of the list. If the newelement is not greater than any of the two �rst ones, it is put at the end. Thus,the list an be seen as queue with the two highest priority elements ordered butrespeting the natural behavior of a queue.This kernel struture is useful when a bounded searh time is required. Inthe following setions several advantages of this design will be explained.4 Sheduling Real-Time TasksThe Server Oriented Operating Systems implements a two-level hierarhialsheduling sheme. This is, the SOOS kernel shedules servers and the serversdispath tasks. Partiularly, the highest level sheduling poliy is Earliest Dead-line First (EDF) [10℄. This poliy establishes that the server whose deadline isthe losest one to the urrent time is the one with highest priority. In the seondlevel is the Behavioral Sheduling Server (BIDS) [11, 12℄, that is in harge ofdispathing the atual tasks that ompose the real-time system. The BIDS pol-iy is a server-based approah that adjusts dynamially the exeution frequenyof eah enapsulated task aording to its last instane behavior. In this sense,1 O(1) stands for a bounded time. This is, it is independent of the number of tasks inthe system.



eah task before ending returns a value to its server that is used to determineits next reativation period.4.1 Sheduling Proess DesriptionIn SOOS the sheduling points (SP) are determined by a periodi timer, whihimposes a time base to the system. This time base is known as slot and it has theduration of the timer period. When the timer expires, it generates an interruptthat is attended by the Timer Tik Handler (TTH). This handler is in harge ofgiving ontrol to the SOOS kernel.In addition to the periodi sheduling points set by the timer, when a taskends (generally in some point in the middle of a slot), it makes the sysalltaskEnds() in order to inform the SOOS kernel of that situation. With this,the kernel ould quikly send the highest priority pending task to exeute. Thus,the SOOS kernel exploits what is ommonly known as gained slak time [3℄ toexeute tasks, when it is possible. This is, the time left by tasks that require lessthan their WCET.Timer Tik HandlerThis kernel operation is invoked in eah SP to shedule and dispath task. In ad-dition, the TTH uses the kernel data strutures to guarantee the orret systembehavior. The kernel exeution time has to be just a perentage of the slot time.Thus, the set funtions alled during a timer interrupt must be bounded. There-fore, the TTH implementation is of major importane for the overall funtioningof the system both for orretness purposes and real-time onstraints.Basially, preemption mehanism saves all information about the runningtask when it is dealloated the proessor. This instane uses the physial datastruture TaskList to save the exeution parameters (program ounter, �ags,stak, registers, et).In the reativation stage, the SOOS kernel heks the SCBList to deter-mine whih BIDS server has to be reativated. This is done by analyzing the �eld
ri of every server to see whether they are equal to zero or not. SOOS improvesthe proess by keeping trak of a variable named nextReativation, that indi-ates the losest reativation time. In this way, only the value of the variable istested. When the value of the variable reahes the alulated reativation time(i.e., one or more servers must be reativated in that slot), nextReativationis realulated. Partiularly, in any other slot (i.e. a slot where there would beno reativations) the reativation funtion takes O(1) to exeute (see Figure 3)due to the insertion poliy.One of the limitations of RTOS onerning sheduling is the exessive over-head involved in the ase of simultaneous reativations. Generally, to overomethis situation, an RTOS establishes a limit on the number of supported tasksin the system. As a onsequene, it restrits the appliation developer to buildits system with a bounded number of tasks. For instane, in [5℄ the maximumnumber of tasks is set to 13 due to the previous situation. The mentioned over-head is given when every task must be heked and inserted in the ready tasks



list. Partiularly, in the ase of SOOS the worst-ase sheduling senario is givenwhen all the servers must be reativated and inserted in the ServerList. Gen-erally, the previous proess would take an O(n2) time, sine it involves searhingin an unsorted list and inserting in an ordered one. However, SOOS reduesthis time to O(n) by means of the ServerList struture presented in Setion3.3. Reall that the ServerList has only two elements ordered, the two highestpriority servers. With this, SOOS inreases the number of possible reativationsand onsequently the potential number of supported servers. Figure 2(b) showsthe average distribution of time in the TTH.
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(b) TTH Time DistributionFig. 2: Timer tik handlerBased on the struture of ServerList and the reativation algorithm, thesheduling stage remains simple, sine it only heks whih is the ready serverwith the losest deadline and the hosen one is sent to exeute. In the atual im-plementation, the sheduler just takes the server in the front of the ServerList.Thus, the sheduling stage takes an O(1) exeution time. The hosen server iden-ti�er is then stored in a variable named ExePid, that is taken by the dispatherto perform the neessary funtions (i.e., loading ontext, adjusting stak, et.)to put the orresponding task in an exe state.Task Ends()The sysall taskends() is an operation implemented in the kernel whose fun-damental objetives are to orretly omplete the exeution of a task and allowa fast sheduling, when it is possible. This operation must be invoked for ev-



Reativate(){if (nextReat == t){for 1 to n server {if (server.ri == timeElapsed){server.state=readyserver.ri=task.TiinsertToServerList(serverPid)}else server.ri = server.ri - timeElapsed;nextReat = MIN(nextReat,server.ri);}timeElapsed = nextReat;}elsenextReat = nextReat-1;}
} Fig. 3: Reativation algoritmery task at the end of its soure ode, to indiate ompletion. When invoked,the kernel starts the proess of ending a task, saving the information about theexeution and setting a internal parameter. In the next SP, the previously men-tioned parameter is used to indiate that the task must be removed from theServerList.One the kernel orretly performed the ending of a task, the next step isto make a fast sheduling. This fast sheduling is given by a sequene of threeations: take the seond element of the ServerList, dispath the task assoiatedto the hosen server and report suess.The exeution of this fast sheduling is an atomi proess. So, if the timerinterrupts in the middle of the proess, operations are disarded. The atomiityis ahieved through the use of internal kernel �ags that indiate the status ofoperation reahed. These �ags an be seen as internal hekpoints.Finally, it ould be a situation where the two highest priority tasks �nishtheir exeution within a slot. In that ase, the gained slak time obtained by theending of the seond task is wasted. Therefore, that time is used by the dummytask.4.2 Comparative AnalysisIn general, when there is a reativation in a system, the kernel performs basiallythree ativities: 1) it has to hek whih sheduling entity must be reativated;2) eah reativation has to be marked in order to be onsidered for sheduling(i.e., hange a �eld of the entity ontrol blok or insert it in a READY list).This ativity is done while doing the previous one. Finally, ativity 3) is a re-sheduling proess. These three ativities are the main soures of the kerneloverhead. In what follows, a omparative analysis of them is done. The analysisis made omparing SOOS with two other real-time kernels: one proposed byThane et al. in [6℄ and the other proposed by Marau et al. in [5℄.



In the �rst plae, the approah proposed by Thane et al. has an exeutiontime of O(n) in ativities 1) and 3), and O(1) in ativity 2). This is beauseativity 1) heks in every slot the omplete list of tasks; ativity 2) just hangesone �eld of the reativated tasks and inserts the task in the READY list in anunordered way. Ativity 3) searhes the omplete READY list for the highestpriority task.Seondly, the kernel proposed by Marau et al. has an exeution time orderof O(n) or O(1) in ativity 1), depending whether there are reativations or not,respetively. Ativity 2) has O(1), sine it only hanges one �eld of the tasks.Ativity 3) is idential to ase of Thane et al., this is O(n).In SOOS, Ativity 1) has the same exeution time order of the approahproposed by Marau et al., that is O(n) or O(1) depending on the slot. Ativity 2)has an order O(1), sine it inserts in an orderly fashion in the ServerList. Thisproess always involves two omparisons. Lastly, due to the ordered insertion inthe previous ativity, ativity 3) has exeution time order of O(1). Note that thehighest priority server is always in the front of the ServerList.The previous disussion shows theoretially that SOOS implements the timertik handler in a very e�ient manner. This is beause of the improvements donein the reativate funtion and espeially in the ServerList struture. Neverthe-less, a prie is always paid. In this ase, SOOS pays that prie only in the slotfollowing that of a task ending, sine the kernel has to �nd the seond highestpriority server, as explained in Setion 4.1. With all, this searh is only madewhen a task ends and only two tasks an be deleted in the same SP, so the prieis not expensive per slot.5 Experimental StudyThe Server Oriented Operating System was implemented in the RCX LegoMindstormsr as a prototype to analyze the features exposed in this paper. Thedeision of hoosing the Lego platform was based on the hardware managementfailities provided by that system. The main harateristis of the platform anbe summarized as follows: the miroontroller used is a Hitahi H8/3297 oper-ating at 16 Mhz; the system has 16KB of Flash memory and 32KB of RAM.The prototype implementation of SOOS was exeuted with several on�gu-rations. In all ases, the Logi Analyzer HP 1651A was used to apture timinginformation. Figure 4 summarizes the SOOS harateristis for a randomly gen-erated set of 15 tasks.In Figure 5 the kernel overhead time is depited for di�erent SOOS imple-mentations with several random sets of tasks in groups between 5 and 40. In the�rst plae, it an be seen that the modi�ation to the reativate funtion and theimplementation of the ServerList produe a signi�ant outome with respetto the implementation without any improvement. However, when both the rea-tivate improvement and the ServerList implementation are used together theresult is even better, approximately 46% on average of kernel overhead derease.From this omes up that the two improvements presented are not ontraditory,



Desription MeasureKernel Size 3.76KBExeutable Image Size 6.3KBWorkload 15 tasksSlot Time 10msExperiment Length 10minAverage Kernel Overhead 180µsMinimum Kernel Overhead 60µsMaximum Kernel Overhead 435µsFig. 4: SOOS harateristis.sine the reativate one alone presented a derease of 20% and ServerList onea derease of 35%. With this, both improvements an normally oexist and sub-stantially derease the kernel overhead time.
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