
A Variable Depth Search Algorithm for the
Quadratic Assignment Problem

Elizabeth F. G. Goldbarg and Marco C. Goldbarg

Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil,
Departamento de Informática e Matemática Aplicada

beth@dimap.ufrn.br, gold@dimap.ufrn.br

Abstract. The Quadratic Assignment Problem arises in many real world
applications and is known to be NP-hard. Several heuristics have been
proposed for handling near optimum solutions to its instances. Most of
those heuristics rely on neighborhood based search strategies, the most
popular of them being those which exchange k elements of a solution.
However, a drawback for those approaches is that, for growing values of
k, the computational effort to explore such neighborhoods rises rapidly.
Variable depth neighborhoods can be interesting alternatives for these
problems. In this paper, a stochastic variable depth search strategy is
presented. The proposal is implemented under an iterated local search
framework and compared with related approaches presented previously
in the literature. Computational experiments show that the proposed
algorithm presents consistently better performance than their counter-
parts, showing that the proposed strategy is an attractive alternative to
be embedded in algorithms based on metaheuristics.

1 Introduction

The Quadratic Assignment Problem (QAP) has been introduced by Koopmans
and Beckman [7] in the context of facility-location problems. Given square ma-
trices of order n, F = (fij) and D = (dij), the problem consists in finding a
permutation ρ of the set N = {1, ..., n} that minimizes the cost c(ρ) given in
equation 1.

c(ρ) =
∑

i,j

fρ(i)ρ(j)dij (1)

In the location theory, the elements fij of matrix F represent the flow of
materials between facilities i and j and the elements dij of matrix D represent
the distance from location i to location j. If matrices F and D are symmetric
then the QAP is said to be symmetric, otherwise it is asymmetric. In terms of
Graph Theory, the QAP can be thought as an assignment between the vertices of
two undirected complete graphs of order n, whose weighted adjacency matrices
correspond to F and D. The assignment of vertices yields an assignment of
edges of the correspondent graphs. The cost of the assignment of edge ef to



edge ed with weights w(ef ) and w(ed), respectively, is given by w(ef ) × w(ed).
The objective is to find an assignment of vertices which minimizes the cost of
the assignment of edges given by the sum of the costs of each edge assignment.

The importance of QAP is due to three main factors: its practical application,
several NP-hard combinatorial optimization problems can be modeled as QAPs,
and it is a strong NP-hard problem. A review of the QAP is presented by Loiola
et al. [10]. Several heuristic algorithms were proposed for this problem. The most
successful ones are based on metaheuristic techniques. Many of those approaches
are local search extensions [3] [8] [13], or hybrid techniques that embed local
search procedures [4].

In local search algorithms, exchange neighborhoods are very popular for prob-
lems that can be represented as permutations of n elements, such as the QAP.
The 2-exchange neighborhood structure is used in the most successful heuris-
tics proposed for the investigated problem. Given a solution ρ, its neighborhood,
ℵ(ρ), according to the 2-exchange structure, is defined by the set of permutations
which can be obtained by exchanging two elements of ρ. Extensions of the 2-
exchange neighborhood, k-exchange neighborhoods, are investigated by Ahuja et
al. [1] for the QAP. In their paper, they develop a very large-scale neighborhood
(VLSN) structure, presenting algorithms that examine all exchanges of nodes
for increasing values of k, where the maximum value is a parameter. A generic
search procedure to enumerate and evaluate neighbors is developed and several
specific implementations of the generic procedure are proposed. They compare
their proposal with the 2-exchange neighborhood on benchmark symmetric and
asymmetric QAP instances.

In general, as the number k of exchanging elements grows, the computational
effort rises rapidly and, usually, the improvement in the quality of solutions does
not compensate a greater effort. An effective alternative for the fixed size neigh-
borhood structures, called variable-depth neighborhood, was presented by Lin and
Kernighan [9]. The implementation of a variable depth search algorithm depends
on a number of decisions. Depending on the strategies adopted by programmers
concerning those decisions, the distinct implementations may result on algo-
rithms with wide varying behaviors. Applications of variable-depth search were
proposed for the generalized assignment problem [14] and for the bi-partitioning
of signal flow graphs [6]. A variable-depth neighborhood for the QAP is sketched
in the paper of Glover and Rego [5]. Their method builds sequences of facilities
exchanges until no promising permutations are likely to exist or until a maximum
of n moves.

The main feature of the variable-depth search is to perform subsequences of
local search moves such that large portions of the space of solutions are explored
in reasonable processing times. Usually, the search is based on simple neigh-
borhood structures. A sequence of solutions is obtained with the application of
simple local search neighborhoods of size s, where s varies during the search.
In most cases, the effectiveness of variable-depth searches is highly dependent
on the choices of the exchanged elements at each iteration step. Usually, the
variable-depth searches use deterministic criteria to make decisions at each iter-



ation step, choosing elements to be exchanged that allows the best improvement
of the current solution. In general, the solutions produced by those algorithms
are local optima regarding the basic neighborhood structure they use. Although
this strategy to make decisions guarantees that output solutions are local optima,
the algorithm may get stuck on these solutions.

In this paper, we propose a variable-depth neighborhood that includes ran-
dom decisions concerning the elements to be exchanged. Although in the basic
form of the proposed search algorithm, the output solution is not guaranteed to
be a local optimum, this strategy allows sampling different regions of the space
of solutions and prevents the algorithm to get stuck on local optima. Another
feature of the algorithm proposed in this paper is that, unlike other algorithms
that are based solely on the exchange of vertices, the neighborhood used for the
QAP is based also on the exchange of edges.

Section 2 describes the variable depth search strategy and presents the pro-
posed approach. Section 3 gives a brief introduction of iterated local search
algorithms, presents an ILS algorithm proposed previously for the QAP [12],
once the results of that algorithm are compared with the ones obtained by the
algorithm presented here, and presents the ILS version of the algorithm proposed
here. Computational experiments are reported in section 4, where a comparison
with the results of a multi-start algorithm that implements a generalization of
the 2-exchange neighborhood, named Very Large Scale Neighborhood, proposed
by Ahuja et al. [1], is also presented. Finally, some conclusions are drawn in
section 5.

2 Variable-depth local search

Instead of testing all moves of neighborhood structures where a fixed value k
of elements are exchanged, the variable-depth search, VDS, performs sequences
of moves, such that each move is likely to lead to a better solution. At each
iteration step of a VDS, the algorithm examines, for growing values of k, whether
exchanging k elements may result in a better neighbor solution. A gain function
is computed and if it is likely that the previous solution can be improved, then
the algorithm tests if k can be extended to k + 1. In the VDS basic form, if it
appears that no more gain can be made, the algorithm performs the exchange of
the k elements. The general framework of the variable-depth search as proposed
by Lin and Kernighan [9] is presented in algorithm LK. The algorithm has a
main loop where an initial solution is generated to be the starting solution of
the VDS implemented in the inner loop.

In principle, each neighbor chosen at each VDS iteration, is a minimum cost
neighbor of the previous solution. Once this strategy favors cycling, lists of pro-
hibited moves are maintained such that previous movements are not undone. In
algorithm LK those lists are denoted by Lout and Lin. These lists store, respec-
tively, the elements that leave the solution and the elements that are added to
it. Similar to other local search algorithms, an initial solution, ρ0, is generated
at random. The current best solution is stored in ρbest that, initially, is set to



ρ0. The variable gain stores the result of the gain function. The variable bestsol

maintains the best value achieved by the gain function during the iterations of
the inner loop. Whenever bestsol is updated, variable k receives the number of
the current iteration. The value of k indicates the length of the best sequence
of exchanges the algorithm has to perform after the inner loop is executed. The
choice of the element xi (that is withdrawn) and the element yi (that is added
to the current solution), aims at maximizing the improvement of the current
solution when the sequence of k moves, where elements x1, ..., xk are replaced
by y1, ..., yk, is performed. Variable ρ1 stores the neighbor solutions found dur-
ing the VDS iterations. The inner loop stops if certain conditions established a
priori for the gain function are met. The inner loop also finishes if no elements
exist to be exchanged due to the restrictions imposed by the lists of prohibited
elements.

Pseudo-code of LK

ρ0 ← random_solution(); ρbest ← ρ0

repeat

i ← 1; gain ← bestsol ← 0; k ← 0

Lin ← Lout ← {}
ρ1 ← ρ0

repeat

xi ← element_out(ρ1); Lout ← Lout ∪ {xi}
yi ← element_in(ρ1) ; Lin ← Lin ∪ {yi}
ρ2 ← exchange(ρ1, xi, yi)

∆ ← c(ρ1)− c(ρ2)

gain ← gain + ∆

if (gain is better than bestsol)

bestsol ← gain; k ← i

ρ1 ← ρ2; i ← i + 1

until(gain meets condition)

ρ1 ← exchange_sequence(k, ρ0)

if (ρ1 is better than ρbest)

ρbest ← ρ1

ρ0 ← update_initial_solution()

until(stopping_criterion is met)

Besides usual decisions that have to be made for ordinary local search al-
gorithms, in implementing a variable-depth search one has far more choices to
make. Some of those choices concern: the criterion to choose xi and yi, the gain
function, the criterion that points out whether an improvement is likely to occur
or not, the partial move to be extended (the one that produces the best value of
the objective function or the one with the best value of the gain function) and
the existence of a bound on the search depth, among others.

Each parcel of equation 1 corresponds to the cost of an assignment of two
edges of two complete undirected graphs of order n. Once the assignment of



vertices always leads to an assignment of edges, the algorithms proposed to
tackle the QAP presented in the literature, usually focus on vertices as the
main elements to guide the search. In this paper, exchanges of edges are used
to guide vertices exchanges. This is due to the fact that the edges are the main
elements for the cost computation. Once an assignment of edges may not lead
to an assignment of vertices, it is necessary to guarantee that feasible solutions
are generated in order to conduct a search in the space of solutions.

Given a solution, ρ, let edge ef of the flow graph with terminal vertices ρ(i)
and ρ(j) be assigned to edge ed of the distance graph with terminal vertices i
and j. The assignment of edges is represented by (ef , ed). The assignment of
ef to a new edge e′d implies in freeing the edge e′f , previously assigned to e′d.
Therefore, the basic idea consists in, iteratively, canceling an edge assignment
and re-assign the freed flow edge to other distance edge. The list of prohibited
moves stores the pair of edges of the undone assignment (ef , ed).

There are several possibilities for the new assignment and, in this paper, one
of these possibilities is examined. In this alternative, the assignment of the ter-
minal vertices of edge ef are undone. The freed edge ef has to be assigned to a
new edge e′d. The latter edge is selected randomly among those edges that are
not prohibited to be assigned to ef . The algorithm checks the possible assign-
ments of vertices between the two edges and chooses the one which induces the
best solution.

Pseudo-code of VDS QAP

ρ0 ← random_solution();

(ef ,ed)←edge_assignment(ρ0)

LProhib ← {(ef , ed)}; i ← 1

ρ1 ← ρ0

repeat

e′d ←new_edge(ρ1, ef)

ρ2 ← exchange(ρ1, ef , e′f)
∆ ← c(ρ1)− c(ρ2)

gain ← gain + ∆

if (gain is better than bestsol)

bestsol ← gain; k ← i

LProhib ←update_list(LProhib, (e
′
f , e′d))

ef ← e′f
ρ1 ← ρ2; i ← i + 1

until (condition is met)

ρ1 ← exchange_sequence(k, ρ0)

The general framework of a variable-depth search based on edge assignments
for the QAP is presented in algorithm VDS QAP. After the initial solution,
ρ0, is generated, the first assignment of edges to be undone is chosen in proce-
dure edge assignment(). The list of prohibited moves, LProhib, is initialized with
(ef , ed). In this work, a limited size list with sizelist elements is used. Inside



the loop a new distance edge, e′d, is chosen to be assigned to ef in procedure
new edge(). Once edge e′d is selected, a new edge e′f that is set free is deter-
mined. Clearly, the edge assignments depend on the terminal vertices of the
correspondent edges. The basic movement of exchanging edges ef and e′f in the
current solution is done, giving rise to a new solution, ρ2. The list of prohib-
ited assignments is updated with (e′f , e′d). In procedure update list(), if there are
less elements than sizelist in LProhib, then the new element is added to this
list. Otherwise, the new element replaces the “oldest” element of LProhib that is
implemented as a circular queue.

3 Iterated Local Search

Iterated local search, ILS, is an effective way of using repeated local search
iterations with the output of the previous iteration being used to re-start the
search [11]. In ILS algorithms, an initial solution ρ0 is generated and a local
search is applied to it. Then, the local optima obtained from ρ0 is disturbed
generating solution ρ1. The latter solution is submitted to a local search resulting
on solution ρ2. The process is re-started from solution ρ0 or ρ2, depending on an
acceptance criterion. The algorithm iterates until a stopping criterion is satisfied.
In addition to the decisions that have to be made in local search algorithms, at
least, two new decisions have to be made in an ILS algorithm: the method to
disturb solutions and the criteria to choose from which solution the process is
re-started (acceptance criterion).

Four versions of an iterated local search based on the 2-exchange neighbor-
hood are presented by Stützle [12] for the QAP. The major difference between
them regards the acceptance criterion. The version that obtains the overall best
solutions when compared to the other three versions is called LSMC. It is used in
our computational experiments for the comparison with the proposed approach.
In LSMC a simulated annealing based acceptance criterion is used. A solution
ρ2 is accepted with a probability p that depends on a temperature and on the
difference between the costs of the initial solution ρ0 and ρ2. The implementation
of LSMC follows the directions given in [12] and are described in the following.
Procedure local search() uses the first pivoting rule and “don’t look bits”. The
perturbation exchanges k elements chosen at random. The input parameters of
procedure disturb() are the current solution and k, the number of elements that
will be exchanged. During the iterations, the value of k varies between kmin and
kmax in a variable neighborhood search fashion. That is, if after the perturbation
and the subsequent local search no better solution is found, k is increased by one.
The values of kmin and kmax are, respectively, 3 and max{0.9n,50}. In procedure
acceptance criterion(), if c(ρ2) < c(ρ0), then ρ2 is accepted with probability p

equals 1. Otherwise, the value of p is given by p = e
c(ρ0)−c(ρ2)

T , where T is the
temperature. The temperature begins with value Tinit and is lowered during the
iterations. The value of Tinit is set to 0.025c(ρ0) after ρ0 is locally optimized.
The temperature is lowered every 10 iterations according to a geometric cooling
scheme where Ti+1 = 0.9Ti.



In the iterated local search version of the VDS proposed here, called It-VDS,
the VDS QAP procedure replaces the local search step of the ILS algorithm. The
perturbation procedure exchanges k random elements of the current solution,
however, unlike the LSMC, k has a fixed value. Distinct values were investigated
for k in preliminary experiments and the value of 0.5n was adopted. In the
acceptance criterion procedure of the proposed algorithm, the current solution
is always replaced by the solution generated in the variable-depth search step.
Once there is no guarantee that the local optima generated by the proposed
neighborhood are also local optima regarding the 2-exchange neighborhood, a
2-exchange local search step is included in the main loop of this ILS algorithm.

4 Computational Experiments

The platform used to implement the iterated local search algorithms is a Pentium
IV, 3.0 GHz, 1 Gb RAM, running Linux. The results of the It-VDS are compared
with the LSMC, and with the results published by Ahuja et al. [1] concerning
the very large scale neighborhood algorithms, named VLSN1 and VLSN2.

Two versions of the LSMC were implemented in this work to check whether
the “don’t look bits” update in the procedure that disturbs the current solution
improve the results obtained by the algorithm. The first version follows the
reference work and only the “don’t look bits” of exchanged elements are reset
to 0. In the second version all “don’t look bits” are reset to 0 after the solution
is disturbed. The best result obtained with one of these two versions is reported
for each instance. The results of VLSN1 and VLSN2 were reported by Ahuja et
al. [1] who used an IBM RS6000 platform (333 MHz). The stopping criterion
they used was 1 hour for problem sizes n ≤ 40 and 2 hours for problem sizes
greater than 40.

The results for 33 asymmetric instances, table 1, and for 48 symmetric in-
stances, table 2, refer to 25 independent executions of each iterated local search
algorithm and each instance. The columns of these tables show the name of the
instance, the best solution used to compare the algorithms, BKS, the average
percent deviation from the solution reported in column BKS and the percentage
of best solutions found by the algorithms. Columns Tav show the average process-
ing time in seconds of the LSMC and It-VDS algorithms and column Tmax shows
the maximum processing time in seconds given for each iterated local search al-
gorithm. Comparing the iterated local search approaches where the 2-exchange
(LSMC), and the proposed random variable depth neighborhood (It-VDS) were
used, the tables show that except for instance Esc128, the proposed algorithm
was able to find the best average results of all instances. The non-parametric
statistic test, named U-test [2], was applied to verify the hypothesis of equality
of the average solutions presented by the LSMC and the It-VDS. With a level
of significance of 0.01, the test showed that the null hypothesis could not be
rejected only for instances Esc128, Lipa40a-90a, and Lipa90b.

The algorithm VLSN1 obtains one average result better than the It-VDS for
instance Bur26d. For the remaining 80 instances, the proposed approach obtains



Table 1. Results for asymmetric instances

Instance BKS VLSN1 VLSN2 LSMC It-VDS Tmax(s)
Av %best Av %best Av %best Tav(s) Av %best Tav(s)

bur26a 5426670 0.24 1.11 0.32 0.32 2.18 0.00 4.04 0.08 0.00 9.92 15
bur26b 3817852 0.30 0.58 0.41 0.29 2.32 0.00 5.88 0.03 0.00 9.38 15
bur26c 5426795 0.26 1.05 0.41 0.31 2.53 0.00 4.96 0.06 0.00 6.83 15
bur26d 3821225 0.29 0.54 0.47 0.28 3.35 0.00 5.77 0.30 0.00 9.58 15
bur26e 5386879 0.20 2.65 0.37 0.39 2.31 0.00 5.50 0.04 0.00 8.13 15
bur26f 3782044 0.24 3.07 0.46 0.66 3.18 0.00 5.50 0.03 0.00 9.50 15
bur26g 10117172 0.25 2.44 0.36 0.47 2.70 0.00 7.42 0.06 0.00 8.29 15
bur26h 7098658 0.35 4.50 0.46 0.95 3.33 0.00 5.96 0.04 0.00 9.67 15
lipa20a 3683 2.52 1.37 2.80 0.50 1.93 12.00 0.38 0.82 64.00 0.38 3
lipa30a 13178 1.83 0.24 2.02 0.03 1.77 0.00 1.79 0.25 88.00 1.08 4
lipa40a 31538 1.36 0.01 1.51 0.00 1.23 0.00 17.92 0.71 36.00 15.67 25
lipa50a 62093 1.17 0.00 1.30 0.00 1.14 0.00 34.25 0.99 4.00 41.38 50
lipa60a 107218 0.99 0.00 1.10 0.00 0.99 0.00 70.08 0.92 0.00 61.42 89
lipa70a 169755 0.86 0.00 0.95 0.00 0.88 0.00 130.79 0.80 0.00 108.29 150
lipa80a 253195 0.75 0.00 0.83 0.00 0.77 0.00 193.50 0.73 0.00 153.04 225
lipa90a 360630 0.69 0.00 0.77 0.00 0.73 0.00 262.13 0.67 0.00 205.44 300
lipa20b 27076 12.66 12.94 14.80 4.96 9.67 32.00 0.38 3.26 84.00 0.29 3
lipa30b 151426 14.96 7.34 15.94 4.03 14.05 12.00 1.96 0.00 100.00 0.25 4
lipa40b 476581 16.90 5.80 18.23 2.03 17.20 4.00 3.58 0.00 100.00 1.92 5
lipa50b 1210244 17.52 2.33 18.40 0.70 18.90 0.00 8.17 5.87 68.00 6.54 10
lipa60b 2520135 19.22 0.42 19.71 0.22 20.66 0.00 14.83 15.16 20.00 11.54 17
lipa70b 4603200 19.94 0.53 20.37 0.17 21.07 0.00 26.67 15.77 16.00 19.29 30
lipa80b 7763962 20.92 0.08 21.23 0.06 21.74 0.00 39.13 19.19 12.00 33.12 45
tai20b 122455319 14.22 6.30 15.13 0.88 0.79 28.00 0.38 0.00 100.00 0.17 3
tai25b 344355646 12.10 0.59 15.53 0.08 4.66 0.00 3.92 0.00 100.00 1.21 15
tai30b 637117113 9.06 0.13 12.65 0.00 2.60 0.00 11.04 0.00 100.00 6.83 25
tai35b 283315445 6.47 0.03 8.12 0.01 4.86 0.00 20.63 0.08 60.00 10.92 39
tai40b 637250948 8.29 0.24 10.18 0.01 6.26 0.00 32.83 0.00 100.00 18.92 59
tai50b 458821517 5.73 0.00 7.10 0.00 4.15 0.00 91.58 0.21 28.00 89.21 116
tai60b 608215054 6.16 0.00 7.75 0.00 4.80 0.00 177.71 0.48 4.00 160.88 211
tai80b 818415043 5.27 0.00 6.01 0.00 3.84 0.00 457.77 0.71 0.00 440.67 500
tai100b 1185996137 4.43 0.00 5.20 0.00 2.05 0.00 570.08 0.35 0.00 783.04 1000
tai150b 498896643 3.10 0.00 3.44 0.00 3.30 0.00 992.00 1.52 0.00 900.44 1000

better average values than the VLSN versions. From the 33 asymmetric instances
the two VLSN versions outperform the It-VDS regarding the best values for
percentage of best solutions found for the 8 instances of class Bur. The It-VDS
obtains the best percentages of 43 instances. If a factor of 10 is used to multiply
the processing times of algorithm It-VDS in order to have an approximation
between the processing times of the two platforms, then it is possible to observe
by the values reported in tables 1 and 2, that the processing times produced by
the proposed algorithm are smaller than the VLSN versions, except for instances
Tai100a, Tai100b and Tai150b.

5 Conclusion

This paper presented a new proposal in variable depth search for the QAP where
both edges and vertices are considered to build the neighborhood of the local
search algorithm. The results were compared to results published previously for
the QAP, concerning related approaches.



Table 2. Results for symmetric instances

Instance BKS VLSN1 VLSN2 LSMC It-VDS Tmax(s)
Av %best Av %best Av %best Tav(s) Av %best Tav(s)

Chr20a 2192 33.83 0.02 43.11 0.00 14.48 0.00 0.92 2.83 16.00 1.04 3
Chr20b 2298 27.59 0.00 33.18 0.00 11.22 0.00 1.25 5.36 0.00 1.33 3
Chr20c 14142 63.75 0.20 68.17 0.23 18.14 0.00 0.67 1.49 76.00 0.33 3
Chr22a 6156 10.03 0.02 12.73 0.00 6.46 0.00 0.96 1.17 20.00 1.83 4
Chr22b 6194 9.55 0.00 11.86 0.00 5.95 0.00 1.58 1.60 20.00 2.13 4
Chr25a 3796 44.08 0.00 52.94 0.00 19.01 0.00 3.42 4.55 28.00 3.45 6
Esc128 64 5.61 33.89 13.09 8.26 0.91 28.00 3.38 1.82 60.00 12.08 20
Had20 6922 0.84 6.76 1.17 2.29 0.36 36.00 0.29 0 100.00 0.08 3
Kra30a 88900 5.99 0.20 7.70 0.02 4.73 0.00 3.50 0.60 56.00 4.46 10
Kra30b 91420 4.13 0.04 5.76 0.00 2.64 0.00 3.75 0.15 56.00 4.33 10
Nug20 2570 3.04 0.67 3.97 0.26 2.02 4.00 0.42 0 100.00 0.33 3
Nug21 2438 3.14 0.29 4.35 0.14 1.90 0.00 0.38 0.02 80.00 0.67 3
Nug22 3596 2.71 1.37 3.59 0.53 1.53 4.00 0.67 0 100.00 0.25 4
Nug24 3488 3.31 0.70 4.45 0.26 1.81 4.00 1.21 0.01 96.00 0.71 5
Nug25 3744 2.64 0.42 3.80 0.06 1.66 0.00 2.20 0.02 80.00 1.54 6
Nug27 5234 3.27 0.40 4.16 0.11 2.06 0.00 1.92 0 100.00 1.63 7
Nug28 5166 3.30 0.19 4.32 0.02 2.20 0.00 2.08 0.23 52.00 2.83 8
Nug30 6124 3.06 0.03 4.10 0.01 1.96 0.00 4.70 0.13 40.00 6.42 10
Rou20 725522 3.34 0.02 4.36 0.01 2.28 0.00 0.50 0.20 16.00 0.75 3
Scr20 110030 6.22 0.21 6.52 0.18 2.67 0.00 0.83 0.01 96.00 0.83 3
Sko42 15812 2.73 0.01 3.48 0.00 2.24 0.00 23.54 0.27 4.00 25.04 30
Sko49 23386 2.44 0.00 3.03 0.00 2.18 0.00 36.54 0.40 0.00 35.00 45
Sko56 34458 2.39 0.00 2.92 0.00 2.13 0.00 63.67 0.42 0.00 55.67 71
Sko64 48498 2.20 0.00 2.68 0.00 2.17 0.00 94.04 0.49 0.00 87.58 103
Sko72 66256 2.21 0.00 2.64 0.00 2.02 0.00 140.75 0.51 0.00 122.71 152
Sko81 90998 1.91 0.00 2.26 0.00 2.14 0.00 203.63 0.44 0.00 176.00 219
Sko90 115534 1.89 0.00 2.22 0.00 2.18 0.00 283.12 0.55 0.00 239.63 300

Sko100a 152002 1.74 0.00 2.07 0.00 1.89 0.00 389.33 0.46 0.00 332.50 415
Sko100b 153890 1.71 0.00 2.02 0.00 2.34 0.00 399.88 0.56 0.00 292.33 415
Sko100c 147862 1.96 0.00 2.29 0.00 2.61 0.00 403.46 0.46 0.00 312.67 415
Sko100d 149576 1.74 0.00 2.07 0.00 2.41 0.00 398.71 0.64 0.00 331.67 415
Sko100e 149150 1.94 0.00 2.30 0.00 2.65 0.00 393.42 0.57 0.00 389.67 415
Sko100f 149036 1.71 0.00 2.02 0.00 2.32 0.00 393.96 0.61 0.00 312.22 415
Ste36a 9526 9.07 0.01 12.02 0.00 6.51 0.00 11.92 0.52 20.00 13.04 18
Ste36b 15852 15.95 0.18 21.46 0.01 7.70 4.00 11.88 0.01 96.00 8.46 18
Ste36c 8239.11 7.24 0.00 9.46 0.00 6.12 0.00 13.25 0.28 36.00 14.08 18
Tai20a 703482 4.37 0.02 5.11 0.01 3.38 0.00 0.29 0.60 12.00 1.25 3
Tai25a 1167256 4.08 0.00 4.76 0.00 3.26 0.00 1.88 0.96 0.00 0.97 6
Tai30a 1818146 3.84 0.00 4.47 0.00 3.02 0.00 4.08 1.55 0.00 6.42 10
Tai35a 2422002 3.72 0.00 4.47 0.00 3.50 0.00 9.17 1.73 0.00 19.04 20
Tai40a 3139370 3.68 0.00 4.56 0.00 3.51 0.00 15.50 2.54 0.00 17.29 25
Tai50a 4941410 3.71 0.00 4.46 0.00 3.97 0.00 39.00 3.00 0.00 32.17 50
Tai60a 7208572 3.54 0.00 4.20 0.00 3.83 0.00 69.83 3.06 0.00 62.42 89
Tai80a 13557864 2.78 0.00 3.22 0.00 3.14 0.00 197.54 2.54 0.00 128.92 223
Tai100a 21125314 2.49 0.00 3.03 0.00 2.80 0.00 878.08 2.37 0.00 622.54 1000
Tho30 149936 3.72 0.03 4.60 0.01 3.34 0.00 5.92 0.20 36.00 5.62 10
Tho40 240516 3.70 0.00 4.46 0.00 2.97 0.00 18.63 0.45 0.00 19.58 25
Wil50 48816 1.37 0.00 1.65 0.00 1.07 0.00 91.50 2.09 0.00 73.96 120

The results show that this approach gets results consistently better than those
obtained by the compared algorithms being, therefore, an attractive alternative
to be implemented as part of metaheuristic algorithms, such as procedures of
intensification of evolutionary algorithms.



Acknowledgment

This research was partially supported by CNPq and the ANP, Brazilian National
Oil Agency, PRH-22 project.

References

1. Ahuja,R.K., Jha, K.C., Orlin, J.B., Sharma,D.: Very large-scale neighborhood search
for the quadratic assignment problem. Informs Journal on Computing 19(4) (2007)
646–657

2. Conover, W.J.: Practical Nonparametric Statistics, John Wiley & Sons (2001)
3. Drezner, Z.: The extended concentric tabu for the quadratic assignment problem.

European Journal of Operational Research 160(2) (2005) 416-422
4. Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution

of the quadratic assignment problem. Computers & Operations Research 35(3)
(2008) 717-736

5. Glover, F., Rego, C.: Ejection chain and filter-and-fan methods in combinatorial
optimization. 4OR: A Quarterly Journal of Operations Research 4(4) (2006) 263–
296

6. de Kock, E.A., Aarts, E.H.L., Essink, G., Jansen, R.E.J., Korst, J.H.M.: A variable-
depth search for the recursive bipartitioning of signal flow graphs. OR Spectrum
17(2-3) (1995) 159–172

7. Koopmans, T.C., Beckmann,M.J.: Assignment problems and the location of eco-
nomic activities. Econometrica 25 (1957) 53–76

8. Li, Y., Pardalos, P.M., Resende, M.G.C.: A greedy randomized adaptive search pro-
cedure for the quadratic assignment problem. In: Quadratic Assignment and Re-
lated Problems, Pardalos, P.M., Wolkowicz, H. (Eds.), DIMACS Series on Discrete
Mathematics and Theoretical Computer Science 16 (1994) 237–261

9. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman
problem. Operations Research 21 (1973) 498–516

10. Loiola, E.M., Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.M.:
A survey for the quadratic assignment problem. European Journal of Operational
Research 176(2) (2007) 657–690

11. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Handbook
of Metaheuristics, Glover, F., Kochenberger, G.(Eds.),International Series in Op-
erations Research & Management Science 57, Kluwer Academic Publishers (2002)
321–353

12. Stützle, T.: Iterated local search for the quadratic assignment problem. European
Journal of Operational Research 174 (2006) 1519-1539

13. Taillard, E.D.: Robust tabu search for the quadratic assingnment problem. Parallel
Computing 17 (1991) 443–455

14. Yagiura,M., Yamaguchi, T., Ibaraki, T.: A variable depth search algorithm with
branching search for the generalized assignment problem. Optimization Methods
and Software 10(2) (1998) 419–441

This article was processed using the LATEX macro package with LLNCS style


