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Abstract. VisionDraughts is a good automatic draughts player which
uses Temporal Difference learning to adjust the weights of an artificial
Neural Network whose role is to help an alpha-beta algorithm combined
with transposition table and iterative deepening to choose the best move
corresponding to the current board states represented in the input of the
network. The output of the network (prediction) is a value that indicate
to witch extent the input state is favorable to the agent and it will be
used in the process of updating the weights. This work improves the
general performance of VisionDraughts by using the data stored in the
transposition table to order the tree-search generated by the alpha-beta
algorithm. As shown in this paper, this strategy will speed up the search
process and will substantially reduce the occurrence of endgame loops.

Key words: Draughts, Temporal Difference, Alpha-Beta Pruning, Trans-
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1 Introduction

The choice of Draughts as an application domain is due to the fact that it
presents significant similarities with several practical problems, such as interac-
tion problems issue of the dialogue human/machine and Urban vehicle traffic
control. To solve this kind of problem, an agent must be able to learn how to be-
have in an environment where the acquired knowledge is stored in an evaluation
function, it must choose a concise set of possible attributes that best characterize
the domain and to select the best action corresponding to a determined state
[6].

In this context, Caixeta and Julia implemented the draughts playing pro-
gram, VisionDraughts [7]. It uses an artificial neural network trained by the
method of temporal difference (TD) learning and self-play with cloning. To
choose a good move from the current state, it employs the alpha-beta prun-
ing algorithm with transposition table and iterative deepening [8].

In order to improve VisionDraughts, the goal, here, is to exhibit the impact
of partial ordering in tree-search. The thee-search is created during the search
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process for the best move. This tree-search ordering is only possible because the
player has a transposition table which keeps previously explored board states in
the memory. These boards states can be used in future board evaluations [7].

Despite its good performance, VisionDraughts frequently do not succeed in
final phases of a game, even being in advantageous situation compared to its op-
ponent (endgames loops) [8], [6], [2]. With partial ordering inserted in this player,
it was possible to notice that the incidence of end game loops was considerably
reduced.

2 State of Art

The first great experiment in automatic learning for draughts is devoted to
Samuel [1]. He uses features (NETFEATUREMAP mapping) to provide quali-
tative measures to better represent the properties of pieces on a board [1], [2].

Chinook is the world man-machine draughts champion and uses linear hand-
crafted evaluation functions (whose role is to estimate how much a board state
is favorable to it) [3], [4], [5]. It has access to a library of opening moves from
games played by grand masters and to an endgame database. To choose the
best action to be executed, Chinook uses a parallel iterative alpha-beta search
with transposition tables and the history heuristic [4]. The iterative deepening
[13] is used to acquire move-ordering information in the transposition table. The
human interference has been strongly significative for the high level of efficiency
of Chinook.

Mark Lynch’s Draughts player, NeuroDraughts, consists of a MLP (MultiLayer-
Perceptron) neural network whose weights are updated by TD(A) Reinforcement
Learning methods. The agent is trained by self-play. The Minimax algorithm is
used to choose the best action to be executed considering the current game
board-state [2]. NeuroDraughts adopts the NETFEATUREMAP mapping tech-
niques to represent the game board-states. The features are manually selected.
Mark Lynch developed his draughts player trying to use the minimum of human
intervention as possible.

In order to improve the NeuroDraughts abilities, Neto and Julia proposed
LS-Draughts [6]: an automatic draughts player which extends the architecture of
NeuroDraughts with a genetic algorithm that automatically generates, by means
a Genetic Algorithm, a concise set of feature which are essencial for representing
the game board states and to optimize the training of the neural network.

Still in order to improve NeuroDraughts, Caixeta and Julia proposed Vi-
sionDraughts [7], [8]. It is an automatic draughts player which replaces a very
efficient tree-search routine which uses alpha-beta pruning, transposition table
and iterative deepening for the minimax search module in NeuroDraughts. As
the present work extends this player, the next section summarizes the techniques
used in it.
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3 Theoretical Foundations

This section shows the principal techniques used in the implementation of Vi-
sionDraughts. Considering that the main contribution of this work is focused on
the ordering of the tree-search, the alpha-beta algorithm will be explained in the
next section together with the general architecture of the VisionDraughts.

3.1 MLP Neural Network

A Neural Network is a computational model based on biological neural networks
which consists of a network of basic units called neurons. These artificial neu-
rons, originally intended to simulate the operation of a single brain cell. The
same algorithm runs on each neuron, witch communicates with a subset of other
neurons of the same network [9], [10].
As said before, the agent correspond to MPL networks. A multilayer-perceptron

is a feedforward artificial neural network model that maps sets of input data onto
an appropriate output set. It has at least one hidden layer of neurons.

3.2 Reinforcement Learning and Temporal Difference Learning

The Reinforcement Learning paradigm has been of great interest for the learning
machine due to the fact that it does not require a ”coach” during the learning
process. This fact is particularly appropriate in complex areas where the collec-
tion of examples for learning is difficult or impossible [10].

Among the Reinforcement Learning methods, one can spot the learning meth-
ods of the temporal differences, TD()). This technique [11], has emerged as a
powerful reinforcement learning technique for incrementally tuning parameters.
The basic idea is: a learning agent receives an input state that is continuously
modified by means of the actions performed by the agent. Each current state
is evaluated based on the previous one. At the end of the process, it outputs a
signal and then receives a scalar reward from the environment indicating how
good or bad the output is (reinforcement). That is, the learner is rewarded for
performing well and, otherwise, it is punished.

4 VisionDraughts Player

VisionDraughts is the benchmark environment used to estimate the significant
contribution of partially ordering the nodes of the tree search during the process
of choosing the best move corresponding to the current board states. As said be-
fore, VisionDraughts taking advantage of search space properties with no explicit
domain-specific knowledge, substitute a very efficient tree search module for the
non-optimized search routine of NeuroDraughts [2]. The learning process and
the efficient tree-search module of VisionDraughts are described in subsection
below.
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4.1 Learning Process of VisionDraughts

Figure 1 shows the learning process of VisionDraughts, that is: the tree-Search
Routine selects, using an efficient search method (alpha-beta pruning and trans-
position table), the best move corresponding to the current board state. The TD
Learning module is responsible for training the player neural network. The Arti-
ficial Neural Network module corresponds to a three layer feedforward network
whose output layer is composed of a single neuron. The role of this network is to
evaluate to what extent the board state,represented by NET-FEATUREMAP
in the input layer, is favorable to the agent (it is quantified by a real number
comprised between 0 and 1, called prediction, which is available in the output
of the third layer neuron).

- 8-move )
@rrent :‘ T 9-perc ptio e J-IN
- Game — ﬂex\ PPing
G

' \\Buard/ A Sme Qc’dule/
\ ——— \\ 13-next \Board/ 0
__ 7-best 1-perception \ step 5t
~—aetion \‘. \\ 10 *fgireept ion
s, ‘

~

(33 : | Artificial Neural
| 3 yes/ng Efficient — s
'/ndgam\e\ = Tree Search|—_

Module
\ 2- pe/fect \_ /1 leaf %ﬁs /‘
\n_fy‘n\atlon” de] / \
6—1;3;3{_};_0 g /Mappm\'\ 12 ilgtlc 11 Best SKion
/ Values \Module weights prediction’
change

S-evaluatica ‘- s /
leaf nodes./ / \ / \ /

— ~—{TD learning e«

Artificial Neural
Network

Fig. 1. Learning process VisionDraughts

4.2 Efficient Tree-search module of VisionDraughts

The search process of VisionDraughts is much more efficient then the one of
NeuroDraugths: the alpha-beta algorithm combined with transposition table and
iterative deepening reduced from more then 95% the search time required by
NeuroDraughts. Next subsections resume the search process of VisionDraughts.

Adapting Alpha-Beta Pruning to the VisionDraughts: The first attempt
to integrate the alpha-beta algorithm and transposition table in VisionDraughts
failed.

Such attempt was based on classical alpha-beta version (hard-soft). This
version, the prediction associated to board states is connected to the search
range limit and not the real value of prediction associated with the state. When
this value is stored in a transposition table, it is stored the inconsistent value.
This fact is harmful when this state is re-visited and the recuperated value does
not correspond to the real value of prediction.
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To avoid this problem, a variant version of alpha-beta was adopted, the fail-
soft alpha-beta. In the fail-soft alpha-beta approach, if n is a maximizer node,
whenever besteval > beta, alpha-beta returns besteval. Similarly, if n is a
minimizer node, whenever besteval < alpha, alpha-beta returns besteval.
This version returning a bound on true minimax value is called fail-soft alpha-
beta because a fail high or fail low still returns useful information [10]. Then,
the returned value always represents one limit on the minimax value.

In spite of this, the fail-soft version is essential in the proposed learning
system in order to integrate with the transposition table. See the fail-soft version
in figure 2.

Iterative Deepening: The iterative Deepening combines the benefits of breadth-
first and Best-first search. It is complete when the branching factor is finite and
optimal if the cost of path is is proportional to the depth [13], [8].

VisionDraughts combines alpha-beta with iterative deepening to delimit the
depth of search in each iteration. Considering that the alpha-beta algorithm
does not keep a history of solutions previously obtained and that the iterative
deepening can be extremely repetitive during the search process [10], the use of
transposition table associated with them improves a lot the search method [7].
It allows to count on a deeper look-ahead during the process of choosing the
best move.

The utilization of Transposition Table, Alpha-Beta Pruning and Iter-
ative Deepening in the Search Module: The dynamics of Draughts allows
that a certain board state occurs several times during a game (transposition).
Whenever a transposition occurs for a board state S, it is not worthwhile to
recalculate the prediction for S each time it appears in the game. That is why
VisionDraughts uses a transposition table to store predictions that have already
been calculated (see routine module in figure 1). In order to check a board state
against stored information in memory, a hash value is assigned to each board
state [9].

There is a common technique for creating hash codes corresponding to board
games that uses a set of fixed-length random bit (number) patterns stored for
each possible state of each possible board square [17], [9]. The technique is called
zobrist hashing and the bit (number) pattern is called zobrist key.

Draughts has 32 squares and each square can be empty or have 1 of 2 different
pieces on it, each of 2 possible colors. Then, the zobrist key for draughts needs
to have 32 x 2 x 2 = 128 entries. In this case, the Tree-Search Routine module,
showed in the figure 1, makes use of the zobrist key.

The hash code assigned to a board state is the first field stored in a transpo-
sition table entry and is represented as following:

Ezxample of a transposition table entry

struct TranspTable{
int64  hash_value;
int score_type;
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int score_value;
int depth;
MOVE best_move;

}

Moreover, when a tree is expanded by the alpha-beta routine, the algorithm
output value, the search depth and the best move to be executed are stored
in the following fields, respectively: score_value, depth and best_mowve. The
depth field is responsible for assuring that the prediction for a board state is
sufficiently accurate.

Furthermore, the alpha-beta routine rarely outputs the exact minimax value
of a node (the board state represented by hash_value field), but the fail-soft
variant always outputs the lower bound or the upper bound on the true minimax
value (prediction). Then, it is important to store a flag that indicates what the
score-value field means. For example, if the score_value field contains the value
0.3 and the score_type field contains the FEzact flag, this means that the value
of the node is exactly 0.3. If the score type field contains the fail low flag, this
means that the value of the node is at most 0.3. Similarly, if the score type field
contains the fail high flag, this means that the value of the node is at least 0.3.
So, the score type, or ag, is also recorded in the score type field.

Iterative deepening is used in conjunction with TranspTable. The alpha-beta
routine is called repeatedly with increasing depth until either the established
time is over or the search reaches the maximum look-ahead previewed. In spite
of the fact that this method apparently waste time performing shallow searches
instead of just one deep search, actually it allows to improve the search efficiency,
once the former iterations are used to obtain a higher quality of move ordering
what allows more cutoffs [16].

5 Partial Ordering in all Tree-Search nodes

The transposition table is used in association with iterative deepening to obtain
partially ordered tree-searches. When the iterative deepening searches a deeper
level and revisits a state, the information of the transposition table referent to
an already evaluated state, can be used to order the tree-search. The data of
the table can be used provided that the depth of the current state is compatible
with the depth of the state stored in the table (equal or greater than depth).

The best move (bestmove) is the child of the state (found in the transposition
table) which got the best prediction during previously made evaluations. The
partial ordering of nodes consists in making the best move node occupy the first
position from left to right in the tree-search. Therefore, the best move from a
state at depth d, will be the first to be explored in depth (d +1) and in accordance
with Plaat [16], the best move for depth d is possibly the best movement to the
depth (d + 1).

Following is an explanation of the main lines of the algorithm of figure 2:

— Line 1: The alpha-beta algorithm receives a Draughts board n, a search
depth d and an output parameter, bestmowve, to store the best action to be
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executed. From the board, a search range is delimited by the parameters min
(lower limit of the search range) and maz (upper limit of the search range).
The result returned by the algorithm is the prediction associated to state n,
which corresponds to the evaluation of this state from the point of view of
the agent player;

Line 2: The alpha-beta algorithm is a recursive procedure and makes a left
to right depth-first search in the game tree. As a recursive procedure, this
requires a stop condition - the condition that interrupts the algorithm and
checks if the board n is a leaf;

Line 3:The output of the function that indicates the prediction given by the
neural network for the board state n is stored in besteval;

Line 4: When the the search algorithm calls the neural network on line 3
(evaluate(n)), to estimate the prediction associated to the leaf state n, this
recent calculated prediction is stored in a transposition table through the
store procedure. Since n is a leaf, the value of the prediction has scoretype
= hashFzact, so the prediction is equal to besteval;

Line 6:This line checks if the state of the board present at the root of the
game tree constructed by algorithm alpha-beta is a maz node;

Line 9: This line retrieves the bestmouve stored for the depth d-2 from the
transposition table and stores it in the variable found, if the board n is not
a leaf or root;

Line 10: This line checks if the value of the variable is different from zero,
that is, there was a bestmove associated with the board n for depth d-2 -
and if this value is valid (scoreType different from hINVALID);

Line 11: The procedure setChildrenOrden(n, bestmove) is called . After
its execution, the left branch of the search-tree will contain the best move
obtained for depth d-2;

Line 12: For each child of a maz node n, the transposition table should
be checked before calling the search routine recursively. Then the algorithm
calls the procedure retrieve with NodeType = parentlsMazNode. Another
very important detail in this line is the fact that the depth of search must
be equal to the depth -1, which corresponds to the depth of n;

Line 13:If the child of state n is stored in the transposition table and if the
method retrieve obtains success in the treatment of information, the value
of the prediction returned by retrieve, must be used instead of calling the
alpha-beta algorithm recursively;

Line 19: After detecting the occurrence of a beta pruning, the variable
besteval will contain the minimum acceptable value for the board represented
by a node n. Thus, the prediction in variable besteval should be stored in the
transposition table by the store method with hashAtLeast flag indicating that
the prediction associated with the state board n is at least equal besteval;
Line 22-37: These lines execute the same procedures of lines 6 to 21, but
considering the root node a min node;

Line 38: After the algorithm examines all children of the node, the vari-
able besteval will contain the exact value of the prediction for the board
represented by node n. Thus, the prediction on besteval must be stored in
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the transposition table with a hashEzact flag indicating that the prediction
associated with n is equal to besteval ;

1, fun alfaBeta(n:node depth:int,min:int, max:int,bestmove :move):float =

2 if leaf(n) or depth=0 then

3 besteval := evaluate(n)

4, store(n, besteval,bestmove,depth, hashExact)

5. return besteval

B if n is 3 max node

T besteval := min

B. if (!leaf(n) and !depth=0) then

9. found= retrieve(child,besteval ,bestmove,depth-2,parentIsMaxNode)
10. if (found != O AND scoreType!= hINVALID)

i1, setChildrenOrder(n,bestmove)

12. for each child of n

13. if revrieve(child, besteval bestmove,depth-1,parentIsMaxlode)
14, then v := besteval

i5. else v := alfabeta(child,depth-1,besteval ,max, bestmove)

16. if v > bestewval

17, beateval:= v

18. thebest = bestmove

19, if besteval >= max then

20. store{child,besteval ,bestmove,depth, hashAtleast)

21. return besteval

22, if n is a min node

23, besteval := max

24, if (!leaf(n) and !depth=0) then

25, found= retrieve(child,besteval bestmove,depth-2,parentIsMinliode)
26. if (found !'= O AND scereTypel= hINVALID)

27. zetChildrenlrder{n,bestmove)

28, for each child of n

29, if retrieve(child,besteval ,bestmove,depth-1,parentlisMinNode)
30. then v := besteval

31. else v := alfabera(child,depth-1,beateval ,max, bestmove)

32. if v < besteval

33. besteval:= v

34. thebest = bestmove

35, if besteval <= max then

36. store{child,besteval ,bestmove ,dapth,hashitMost)

37. return besteval

38. bestmove = thebest

36, store(n,besteval ,bestmove ,depth,hashExact)

40, return besteval

Fig. 2. Pseudo-code of algorithm fail-soft alpha-beta with transposition table,
databases of the end of game and ordering

Therefore, the search process tends to be faster since in each level of the
search-tree the best move occupies the least position. As a consequence, the
chances of pruning increases. This increase in the number of pruning means that
the best moves are really found in the left side of the search-tree, confirming
what was said in Plaat [16].
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6 Experimental Results

This section presents the improvement obtained in VisionDraughts by the inser-
tion of ordering in the tree-search. To illustrate the improvement, the ordering
VisionDraughts was compared to VisionDraughts without ordering and to LS-
Draughts[6]. The parameter taken into account for the comparison is the number
of wins, draws and losses obtained by each one in a tournament of 14 games.
All players were trained in a similar way, that is, by self-play with cloning, dur-
ing 10 tournaments of 200 games each one. Figure 1 shows the results of the
competition between them.

Improve VisionDraughts Improve VisionDraughts VisionDraughts
Resultin 14 X x x
games VisionDirauzht: LS-Dranghts L5 Drausht
‘Winning | Loss | Draw | Loops |[Winning | Loss | Draw | Loops [Winning | Loss | Draw | Loops
Ordinary 8 1 3 3 8 0 ] 2 3 1 10 7
Percentage 37% 7% | 36% | 21% 37% 0% [ 43% [ 15% 21% T% | T1% [ 50%

Table 1. Results of tournament: Improve VisionDraughts x VisionDraughts, Improve
VisionDraughts x LS-Draughts and VisionDraughts x LS-Draughts

In order to check the loops that occur in VisionDraughts, the improve Vision-
Draughts decreased the occurrence of this. Loop’s column in table 1 shows that
cases of loops between the proposed system and the VisionDraughts corresponds
to 21% at all the games. In the tournament between the proposed system and
the LS-Draughts, loops correspond to 15%. Already in tournament between the
VisionDraughts and LS-Draughts loops correspond to 50% at all the games.

All these results confirm the significant contribution of inserting ordering in
the tree-Search of automatic players.

7 Conclusions and Future Works

This paper presented how much an efficient search module based on alpha-beta
pruning, transposition table, iterative deepening and ordered tree-search can
improve the learning performance of intelligent automatic players.

The strategy of ordering the tree-search aimed to speed up the search process
for the best move, witch allows a deeper look ahead that optimizes the choice of
the move.

A competition was executed, where the proposed system played several games
against the original VisionDraughts and against LS-Draughts [6]. The results
of this competition (figure 1) confirm the high improvement obtained in the
learning process as well as in the performance of the player agent. As future
works, the authors intend to introduce the same efficient search module with
ordering tree-search in the LS-Draughts.
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