
How to Automatically Transform Performance
Model Output into Useful Results

Connie U. Smith1, Catalina M. Lladó2, and Ramon Puigjaner2

1 Performance Engineering Services, PO Box 2640, Santa Fe, New Mexico,
87504-2640 USA, www.spe-ed.com

2 Universitat de les Illes Balears. Departament de Ciències Matemàtiques i
Informàtica. Ctra de Valldemossa, Km. 7.6, 07071 Palma de Mallorca, Spain

cllado@uib.es, putxi@uib.es

Abstract. This paper presents a performance model interoperability
framework that brings together performance model interchange formats
and experiment specifications with the automatic generation of perfor-
mance analysis results for presentation and publication. We define the
Use Cases and requirements and survey output and results used in prac-
tice. We present the output specification, the issues in the output-to-
results transformation, the results specification schema extension, and
a prototype implementation. A proof of concept example demonstrates
the framework.

Key words: Performance modelling, Tool interoperability, Queueing
networks, Results

1 Introduction

The concept of performance model interoperability was first introduced in 1995
[18]. Methods and tools supporting model interchange formats have evolved
rapidly since 2004 with the introduction of XML as a viable mechanism for
supporting model interchange [16].

Performance model interchange formats (PMIF) provide a mechanism for au-
tomatically moving performance models among modeling tools. Use of the PMIF
does not require tools to know about the capabilities of other tools, internal data
formats, or even existence. It requires only that the importing and exporting
tools either support the PMIF or provide an interface that reads/writes model
specifications from/to a file. Interchange formats have also been defined for lay-
ered queueing networks (LQN), UML, Petri Nets and other types of models.

Fig. 1 shows the model interoperability framework for creating and evaluat-
ing performance models. The model interchange format specifying a performance
model is in the upper left. The formats may be created by translating design
models into performance models [2, 15]. They may be created by a tool that
provides a graphical user interface for specifying the model topology and pa-
rameters then creates model interchange files [13]. They may also be exported
by one modeling tool in order to compare results to other modeling tools.



2 Connie U. Smith, Catalina M. Lladó, and Ramon Puigjaner

Fig. 1. Model interoperability framework

Another interchange format, the Experiment Schema Extension (Ex-SE),
allows the user to define a set of model runs that vary parameters. The Ex-
SE provides a means of specifying performance studies and the output desired
from them that is independent of a given tool paradigm. Ex-SE was developed
for use with a performance model interchange schema (e.g., PMIF); however, it
may also be used in a stand-alone mode to specify studies for the tool in which
the model was created, and it may be used to specify measurement as well as
modeling studies. It was shown to work with QNM (Queueing Network Models)
and LQN (Layered Queueing Networks) [17] and with Petri net models [10]. An
experimental framework following this schema extension has also been developed
for the Petri net modeling tool, PIPE2 [11].

The experiment specification file is shown at the top-right of Fig. 1. These
two files (Model and Ex-SE files) are combined and used as input for one or more
performance modeling tools. Each tool generates the performance metric output,
such as response time, throughput, utilization, etc., specified for each experiment.
A performance analyst typically studies this output to form conclusions about
the results of the experiments, then prepares a presentation and/or report to
explain the results.

This paper streamlines this last step in the model interoperability frame-
work by defining a Results Schema Extension (Results-SE) that enables a user-
customized transformation from the output of an experiment into the desired
results.

Other work described in the next section has recognized the need for this last
step. Our work develops the concept and provides a concrete realization of it.

The contributions of this work are:

– A definition of the most frequent Use Cases for this model interoperability
framework

– A review of the typical types of output and results produced for queueing
network based performance models for these Use Cases



Performance Model Output into Useful Results 3

– Definition of a modeling-paradigm independent schema for specifying the
output of experiments and the transformation to results

– Implementation of a prototype demonstrating the feasibility of the approach
– Demonstration that the approach works.

The next section reviews some related work. Then we present the Use Cases
for this framework, the results of a survey of typical output and results for these
Use Cases, and an overview of our selected approach. Section 4 presents the
model transformation approach, the supporting schemas for the Use Cases, and
discusses the prototype implementation. Section 5 describes a proof of concept
experiment. The summary and conclusions are in section 6.

2 Related Work

Extensive work has been done on performance model interchange formats and on
the transformation of models into interchange formats. See [17] for an overview of
this work. The following work has addressed the framework for modeling studies,
output, and results.

Hillston [4] describes the IMSE Experimenter, a tool designed to facilitate
performance modeling studies within the Integrated Modeling Support Environ-
ment (IMSE). The IMSE Experimenter allows the user to specify how the values
of parameters in a model’s input specification vary during an experiment. The
experimental plan must include at least one analysis specification that describes
how experimental results are obtained from model outputs. Thus, outputs from
multiple runs can be used to obtain overall measures (e.g., mean, standard de-
viation). In IMSE, output is produced by each run, results are produced by the
experiment, and a Reporter tool creates and collates results and reports. There
is no documentation of the capabilities of the Reporter tool. Our approach is
not one reporter tool, but a framework for producing results. The IMSE work
also recognizes the need for output metrics, analysis, and results, but does not
elaborate on how that should work.

The Software Performance Experimenter (SPEX) is a tool for managing per-
formance studies using LQN models [5]. SPEX also has provisions for input,
output and control specifications. Input parameters may be specified using any
legal Perl expression. Observation indicators are used to indicate output metrics
of interest (e.g. utilization, throughput). These metrics may then be written to
the result file. This approach addresses the output of the experiments, but not
the analysis and results.

The results of an experiment enable us to determine whether a given system
meets its performance requirements. Another way of tackling the same problem
is to express performance-related queries in terms of requirements and measures.
This is done by Performance Trees [20], a graphical formalism for the specifi-
cation of performance requirement- and quantitative measure-based queries on
stochastic system models. We believe that our interoperability framework can
also integrate Performance Trees in the future.



4 Connie U. Smith, Catalina M. Lladó, and Ramon Puigjaner

3 Requirements for Producing Results

QNM may be used in a variety of fields from computer performance evalua-
tion to traffic management or any other field that is interested in the behavior
of queues and servers. This paper addresses computer performance evaluation;
other applications of QNM may require extensions to the analysis and results.

The most common reasons that performance analysts build and analyze QNM
models are to:

1. Monitor and report on operational system performance
2. Analyze capacity requirements for future workload volumes
3. Evaluate problematic systems, identify causes and study options
4. Compare model results to measurements
5. Conduct technical investigations to compare results from: multiple tools,

different solution algorithms, or even different types of solutions.

The next step is to determine the output metrics and results that are most
often desired for these Use Cases.

The Proceedings of the Computer Measurement Group are the main source
of papers written and presented by practitioners about the results of their per-
formance modeling studies [3]. We examined a sample of papers from the 25th
anniversary edition of the proceedings (1974 through 1999) for papers that had
the terms “performance model results.” We found three general types of results:
tables, graphs or charts as they are called in spreadsheet tools, and metric values
that are embedded in the text of the paper.

Some examples of common tables are:

– Response times on 3 servers and the overall sum
– Response times for 2 workloads from 2 different workload intensities
– Columns with number of processors, relative throughput (0-1) and instruc-

tions per second; Rows for scalability data with 4,8 and 12 processors.
– Measured Response time, CPU Utilization, Database Utilization, and Wait

time for multiple workloads, and another table with predicted values for the
same metrics

– Measured Transactions per hour, Response time, CPU Utilization for several
workloads; the same metrics for different transactions per hour, and another
table with predicted values for the same metrics

The “metrics embedded in the text” are usually conclusions of the modeling
experiments, and may or may not be supported by tables or charts. Some exam-
ples are: necessary number of processors, response time values, server response
time, and CPU utilization.

These samples represent practitioner and researcher studies published in the
CMG proceedings. Research results in other publications tend to be similar. The
primary difference is that research papers often compare results from multiple
solution algorithms and/or tools, and explore more ranges of values of input
parameters (looking for model sensitivity).



Performance Model Output into Useful Results 5

Our conclusion is that the primary results are tables and charts. Charts are
derived from tables, so they can be combined into one “result.” Since there are
many common combinations of both tables and charts, the specifications for
those should be streamlined.

The most common format for tables and charts is xls [1] as in spreadsheet
tools such as Excel and OpenOffice Calc, and imported by most presentation and
word processing packages. However, the most common document preparation
system for research publications is LaTex. Our approach transforms the output
metrics to tables and charts in xls and LaTex.

Additionally, we support two transformation modes: create a new table/chart
and update an existing one. The update mode is convenient because it is unlikely
that final results will be produced with one pass. It is also convenient when tables
involve output from multiple tools. More importantly, it is easier to define table
and chart formats by typing column and row headings or chart specifications
directly into the spreadsheet rather than specifying transformation commands
to create them.

This work does not address the metric values that are embedded in text.
They have no tedious formatting requirements, and they might be best suited
to the performance tree question/answer approach [20].

4 Model Transformation Approach

This section covers our approach to the framework steps for transforming the
output of the performance model solutions into the desired results. The first
section addresses the output. The next section explains the transformation by
first describing the key issues and decisions, the update specifications, the create
specifications, the approach for simplifying the generation of standard results,
and some implementation issues.

4.1 Output Specification

A survey of the output produced by widely available QNM tools [19, 14, 7, 9,
12, 6] indicates that all of the tools have a notion of “principal results” that
correspond to those in the earlier Output specification. Some simulation-based
tools can provide additional metrics such as minimum, maximum, and variance
of residence and response times, histograms of response times, and other metrics.

The Output Schema Extension is in Fig. 2. There is a solution ID for relating
the output to the experiment. The “ValueUsed” applies to Ranges or other
variables used in the experiment specification and reports the value used for
that particular solution.

The principal results are in the OutputWorkload (overall results by work-
load), OutputNode (overall results by Node), and OutputNodeWorkload (re-
sults by Workload for Nodes). OutputNode ones are shown in Fig. 2, for more
information see www.spe-ed.com/pmif/pmif-output.xml.



6 Connie U. Smith, Catalina M. Lladó, and Ramon Puigjaner

Fig. 2. Output Schema Extension

The output desired is specified in the Experiment specification. For each
solution, the user may specify: WriteVariable, WriteOutput, or a ToolCommand
that is passed to the tool unchanged. This allows users to print the custom
reports or other output particular to the tool, see [17] for details.

4.2 Output to Results Transformation

The next step is to provide for an automatic conversion of the output into the
table and chart results. We considered 2 options related to how those tables and
charts would be expressed:

1. To use a “standard” xsd schema for spreadsheets for the results specification
and transform the output into the xml format that follows such a schema.

2. To develop a transformation specification from output into the standard
elements of a spreadsheet: rows, columns, and charts and transform the
output into xls or LaTex format.

We explored the first option and discovered that some spreadsheet tools, such
as OpenOffice, do not yet support xml import and export. Additionally, the
“standard” schema does not include chart specifications. The transformation
would also need to be specified, so option 1 would require two schemas. The
second option allows us to create a user friendly specification of the tables and
charts using familiar notation, e.g., numeric rows and alphabetic columns. Java
tools support the creation of a spreadsheet in xls format.

Other issues and situations we considered and handled with our specification
are described below:

1. How to handle table values that are expressions of other metrics
2. How to handle tables with results that come from different tools

For the first issue we considered modifying the output specifications to specify
expression values to be written directly to the output. The other option is to
specify the expressions or functions to be calculated in the cell in spreadsheet
format [e.g., =SUM(A1:A3)]. Computing the values during output is preferable
for a translation to LaTex because it is a document preparation system and has
no ability to compute. On the other hand, there are some difficulties in doing
the calculation in the output.



Performance Model Output into Useful Results 7

For example, we tried a typical computation found in tables: displaying total
demand by calculating the product of visits and service time. The visits are
specified in the PMIF, so we can define a variable in the experiment for visits. The
service time is an OutputVariable, so we tried defining a new local variable with
the value equal to the product of these two variables. We discovered a problem:
that OutputVariables in the Experiment-SE are meant to be from the previous
solution. That is so the previous results can be used in an expression to determine
what experimental step should be done next. So the current Experiment-SE
combined with the Output-SE does not have the capability to produce this
particular result.

We could add a new ResultVariable that references results from this solution.
As stated earlier, we opted to separate the output from the results computation.
This is easily handled in a spreadsheet tool because it receives the results from
this solution, not the previous one.

This strategy has two consequences. The LaTex transformation becomes
more complicated because the translator will have to calculate and insert the
results into the appropriate table cell. The second consequence is that sometimes
the spreadsheet will have extra rows or columns to hold intermediate results used
in computations. This can be handled by hiding those rows or columns so they
do not appear in the result table.

The second issue is how to handle the output to results transformation when
the output comes from separate runs and thus separate output files, but they
should both be in the same table. There are two options for handling this sit-
uation: one is to concatenate the two output files and have different results
specifications that insert the results into the proper rows and columns. The sec-
ond option is to create the table with the output from the first tool, then update
that table for the output from additional tools. The Results-SE that we specify
handles both options.

Fig. 3 shows the Results-SE schema. All the results for an experiment go
into one file. The transform tool can create this file from scratch or update the
file, depending on the value of the Action attribute, defined on the schema. The
Output-SE has a collection of outputs for each OutputSolutionSpec (or Solve)
in the Experiment-SE. So the Results-SE specifies how to process each of those,
and specifies the file/s containing the output. It can specify one or more tables
(in xls different tables will go into different worksheets). WriteResult specifies
the type of output metric to use, the metric for that type (such as response time),
and information about where to place the values in the table (row, column, etc).
There is a placeholder for Chart specifications to be added in future work.

As an example, the OutputProcessing specifications for the case study of
section 5 is shown in Fig. 5:

The Transform prototype has been implemented in Java, using the Doc-
ument Object Model (DOM) to read and validate the xml files (Output and
ResultsSpec). We have also used the Apache POI APIs for manipulating MS
Excel and OpenOffice file formats using pure Java.



8 Connie U. Smith, Catalina M. Lladó, and Ramon Puigjaner

Fig. 3. Results-SE schema

5 Proof of Concept

The proof of concept uses a case study previously published and replicates it
with the model interoperabilty experimental framework. It is a technical paper
(Use Case) that compares a published solution to solutions derived automatically
from experiment specifications.

The example was published in Jain’s book [8] and subsequently used as an
example of the experimental framework in [17]. It shows how to manually create
a table, specify formats, enter the results from another source, then update the
remaining values with the output from the experiment. The demonstration seeks
to replicate the table in [17].

We run Qnap to produce the Output file of performance metrics specified in
the experiment in [17]. We manually create an xls file with the formatting and
Jain results taken from [8]. We then update the file using the results specification
(an excerpt is in Fig.4) to produce the table in Fig. 5.

<OutputProcessingSpec RowIncrement="3"FileToProcess="Jain574.xml">
<WriteSolutionID Format="5" Row="3" Col="1" />
<WriteLabel Value="Qnap" Row="5" Col="1" />
<WriteResult Type="OutputWorkload" Metric="ResponseTime" Row="5" Col="2"/>
<WriteResult Type="OutputNodeWorkload" Metric="ResidenceTime" Row="5" Col="3"

ColIncrement="1"/>
<WriteResult Type="OutputNode" Metric="Utilization" Row="5" Col="6" ColIncrement="1"/>

<OutputProcessingSpec>

Fig. 4. Excerpt of Results Specifications

6 Conclusions

This paper has tied together previous work on performance model interchange
formats and experiment specifications. It adds an output-to-results transforma-
tion to produce performance analysis results for presentation and publication.



Performance Model Output into Useful Results 9

Fig. 5. Xls file automatically produced for Jain’s case study

We began by defining the requirements for the experimental framework: we iden-
tified typical Use Cases, surveyed output and results found in practice for those
Use Cases, and gave an overview of our approach for satisfying those require-
ments. We then presented the output specification, the issues in the output-to-
results transformation, and rationale for decisions made. The results specification
schema was then presented followed by a description of our prototype imple-
mentation. Finally, we presented a proof of concept example to demonstrate the
generation of the performance results.

Our general purpose approach was demonstrated with PMIF, however it
also applies to other modeling paradigms, tools, and even measurement tools.
It supports the automation of model studies from the creation of the perfor-
mance model specification, the experiments to be conducted with the model,
the execution of models and transformation of output to tables and charts for
presentation and publication. It supports multiple Use Cases (tracking opera-
tional system performance, analyzing capacity requirements for future workload
volumes, evaluating problematic systems, comparing results to measurements,
and technical investigations of the model technology). It streamlines typical tasks
such as exploring output and identifying results for presentation. It is a standard
format that can be used by multiple tools.

Future work will develop additional templates for the most frequent results
and implement additional prototypes for updating tables and creating charts.
We will apply the framework to other tools, and extend it to apply to real time
systems. An interesting extension might include creating rules for specifying
threshold values and highlighting results in tables that exceed the threshold.
We also envision the integration of Performance Trees in the interoperability
framework by relating the queries to the output in order to produce results.

Acknowledgments. This work is partially funded by the TIN2006-02265 QUASI-
MODO project of the Ministerio de Educacion y Ciencia, Spain. Smith’s par-
ticipation is sponsored by US Air Force Contract FA8750-C-09-0086.



10 Connie U. Smith, Catalina M. Lladó, and Ramon Puigjaner

References

1. Microsoft office binary (doc, xls, ppt) file formats. www.microsoft.com/interop/

docs/OfficeBinaryFormats.mspx.
2. S. Balsamo and M. Marzolla. Performance evaluation of UML software architec-

tures with multiclass queueing network models. In Proc. of the Fifth International
Workshop of Software and Performance (WOSP), July 2005.

3. CMG. Computer Measurement Group. www.cmg.org.
4. J. Hillston. A tool to enhance model exploitation. Performance Evaluation,

22(1):59–74, 1995.
5. A. Hubbard. SPEX: The software performance experiment driver. Technical re-

port, Real-time and Distributed Systems Lab, Dept. of Systems and Computer
Engineering, Carleton University, Ottawa, 1997.

6. IBM. Best1 capacity planning tool. publib.boulder.ibm.com/iseries/v5r1/

ic2924/books/c4153411.pdf.
7. Mesquite Software Inc. www.mesquite.com.
8. R. Jain. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. John Wiley, 1991.
9. Metron Tecnologiy Limited. www.metron.co.uk.

10. M. Melià, C.M. Lladó, C.U. Smith, and R. Puigjaner. Experimentation and output
interchange for Petri net models. In Proc. of the Seventh International Workshop
on Software and Performance (WOSP), pages 133–138, June 2008.

11. Marc Melià, C.M. Lladó, C.U. Smith, and R. Puigjaner. An experimental frame-
work for PIPE2. In Proc. of the Fifth International Conference on Quantitative
Evaluation of Systems, pages 239–240, 2008.

12. Opnet. www.opnet.com.
13. SEAlab Software Quality Group. WEASEL, a web service for analyzing queueing

networks with multiple solvers. sealabtools.di.univaq.it/SeaLab/Weasel/.
14. Simulog. Modline 2.0 qnap2 9.3: Reference manual, 1996.
15. C. U. Smith, V. Cortellessa, A. Di Marco, C. M. Lladó, and L. G. Williams.

From uml models to software performance results: An SPE process based on XML
interchange formats. In Proc. of the Fifth International Workshop on Software and
Performance (WOSP), pages 87–98, July 2005.

16. C.U. Smith and C.M. Lladó. Performance model interchange format (PMIF 2.0):
XML definition and implementation. In Proc. of the First International Conference
on the Quantitative Evaluation of Systems, pages 38–47, September 2004.

17. C.U. Smith, C.M. Lladó, R. Puigjaner, and L.G. Williams. Interchange formats
for performance models: Experimentation and output. In Proc. of the Fourth
International Conference on the Quantitative Evaluation of Systems, pages 91–
100, September 2007.

18. C.U. Smith and L.G. Williams. Panel presentation: A performance model inter-
change format. In Proc. of the International Conference on Modeling Techniques
and Tools for Computer Performance Evaluation, 1995.

19. SPE-ED. LS Computer Technology Inc. Performance Engineering Services Divi-
sion. www.spe-ed.com.

20. T. Suto, J. T. Bradley, and W. J. Knottenbelt. Performance trees: A new ap-
proach to quantitative performance specification. In Proc. 14th Intl. Symp. on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS06). IEEE Computer Society, September 2006.


