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Abstract. This paper applies Bee clustering, a biologically-inspired clus-
tering algorithm to datasets of interest for bioinformatics. Bee clustering
can handle distributed data, a typical necessity in scenarios collaborative
work in genomics and proteomics where laboratories form networks and
the data is distributed. Experimental evaluation shows that our algo-
rithm inspired by the organization of bee colonies is able to find results
that are comparable to those from centralized approaches.

1 Introduction

Clustering is widely used in bioinformatics to separate a data set into groups of
similar objects. Clustering techniques have proven to be helpful to understand
gene function, gene regulation, cellular processes, and subtypes of cells. Genes
with similar expression patterns can be clustered together with similar cellular
functions. This approach may further understanding of the functions of many
genes for which information has not been previously available [8].

The importance of clustering is also clear in application related to biology,
social sciences, computer science, medicine, and others. Consequently many clus-
tering methods have already been developed. However classical methods have
been usually developed in a centralized fashion, requiring that data be located
at a single place. This means that these algorithms cannot be applied in the
case of distributed data sets. Another drawback that can be seen in classical
clustering methods is that these algorithms need some hints about the target
clustering, such as number of clusters, the expected cluster size, or the minimum
density of clusters, among others.

In [10] we address this issue with the Bee clustering algorithm. In this work
we propose the application of Bee clustering algorithm to datasets of interest
for bioinformatics since it can handle distributed data, a typical necessity in
scenarios collaborative work in genomics and proteomics where laboratories form
networks and the data is distributed.

The simplest method for clustering, the k-means algorithm, needs to know
beforehand the number of groups in the data. Each centroid defines a data group
and the remaining data is associated to the closest centroid.

Unfortunately, the performance of this algorithm strongly depends on the
information we have about the data regarding the possible number of groups,



which poses a problem in applications where this information is not known a
priori, or changes dynamically.

Another well-known method is an agglomerative hierarchical clustering al-
gorithm. The algorithm starts with the finest partitioning possible and, in each
iteration, merges the two least distant clusters. The distance between two clus-
ters is computed as the average dissimilarity between all possible pairs of data
elements within these two clusters. Hierarchical clustering methods are thought
to give higher quality solutions than partitioning methods. However, their run-
time scales quadratically and results depend heavily on the linkage metric used.
Also, the derivation of the appropriate termination criteria can be difficult, if
the correct number of clusters is not known.

Our algorithm, Bee clustering, relies on recruitment observed among honey
bees. In nature, bees travel far away from the hive to collect nectar. They return
to the hive with nectar and information about the nectar source to recruit other
bees to that food source. This recruitment is performed by dancing, during which
a bee communicates to other bees the directions, distance, and desirability of the
food source. The Bee clustering algorithm uses this behavior to create groups of
agents.

The rest of the paper is organized as follows. Section 2 presents clustering
approaches that are related to ours. In Section 3 the details of the Bee clustering
algorithm are given. Section 4 presents and discusses the results achieved, while
Section 5 presents the conclusions and outlines future works.

2 Related Work

Several approaches inspired by social insects exist that deal with the clustering
problem (see e.g. [7] for a brief review of the literature). Most of them are
inspired by two main behaviors observed in ant colonies: ant foraging behavior,
and corpse clustering.

Next, we explain these behaviors and give some examples of clustering al-
gorithms inspired by them that are related to the Bee clustering algorithm.
We start with ant colony optimization (ACO) based approaches, then present
others that are based on cemetery organization, and finally some algorithms for
distributed clustering.

ACO is related to ant foraging behavior i.e. ants depositing a chemical phero-
mone as they move from a food source to their nest, and foragers following such
pheromone trails. In the algorithm presented in [11] ants visit data objects one
by one and select clusters for data objects by considering pheromone informa-
tion. Ants use a pheromone matrix which guides other ants towards the optimal
clustering solution. After generating a population of R trial solutions, a local
search is performed to further improve the fitness of these solutions. The phero-
mone matrix is then updated according to the quality of solutions produced by
the agents.

It is easy to deduce that this and other ACO-based algorithms depend on a
global pheromone matrix that is a single point of failure.



Another class of clustering algorithms is inspired by the way real ants clean
their nests and organize dead bodies in their colonies. Here, in contrast to ACO,
no pheromones are used. Rather, the environment itself provides the stigmergic
component. Authors in [9] proposed a basic ant-based data clustering algorithm
that associates a position on a toroidal grid with each of the data items to be
clustered. The positions of these items, as well as those of the agents moving
them around, are initialized randomly. These agents have a sorting behavior
based on local rules. The number of moves an agent can perform is defined a
priori. The agents try to pick up or drop objects on the two-dimensional board
according to a local measure of similarity.

The approach proposed in [13] is based on a hypergraph to combine clustering
produced by three colonies. Each ant colony projects randomly data objects onto
a plane and the clustering process is done by ants picking up or dropping down
objects with different probabilities. The same authors have also developed an
extended version where they have added a centralized element to compute the
clustering: a queen ant agent. This agent receives the results produced by all
colonies, calculates a new similarity matrix, and broadcasts to all other colonies.
Each colony re-clusters the data using the new information received.

The main problem of these approaches regards the nature of the algorithms’
output. They do not generate an explicit partitioning, but a spatial distribution
of the data elements. While this may contain clusters that are obvious to a human
observer, an evaluation of the clustering performance requires the retrieval of
these clusters, and it is not trivial to do this without human interaction.

Apart from techniques inspired by ant foraging and corpse clustering, a num-
ber of other swarm-intelligence-based behaviors have been used for clustering.

A probabilistic ant-based clustering algorithm (PACE) for distributed data-
bases was proposed that uses chemical recognition, a behavior in which an ant
identifies another group of ants from the same colony using a distinctive odor
that is unique to each colony. This is used to identify and form a group of ants
that carry related data. Its main characteristic is the formation of numerous
zones in various distributed sites based on the user query to a distributed data-
base. An extended version is presented in [6] – the I-PACE – where the authors
propose the introduction of weights for individual or groups of data items in
each zone according to their relevance to the queries with the concept of familial
pheromone trail as part of an ant odor identification model to bias the move-
ments of different types of ants towards the members of their own family. The
aim is to reduce the convergence time and to improve the quality of clustering.

These approaches were developed in a distributed way; however they rely on
informations that need to be given a priori.

3 Bee clustering approach

3.1 Biological Inspiration of the Algorithm

The Bee clustering algorithm has been inspired by the study of honey bee co-
lonies and the behavior of forager bees. Honey bees collectively select the best



nectar source available using simple behavioral rules. In the process of foraging,
bees travel up to 10 km from the hive to collect nectar. They return with nectar
and information about the nectar source [4]. Bees have three possible behaviors:

1. to share the nectar source information by dancing, a behavior in which a bee
communicates the direction, distance, and desirability of the food source to
other bees, trying to recruit new bees to that food source;

2. to continue foraging without recruiting other bees;
3. to abandon the food source and go to the area inside the hive called the

dance floor to observe dancing bees and select another food source.

Based on these behaviors, colonies form groups of bees that forage the nectar
of best quality. The rate of dancing and abandonment are the basis of Camazine
and Sneyd’s mathematical model [5], which demonstrates how the properties of
the system emerge from the interactions among the agents (bees).

Define the following rates or probabilities:

– PXA and PXB : probabilities of abandoning nectar sources A and B respec-
tively, per foraging trip;

– PDA and PDB : probabilities of dancing to recruit for sources A and B
respectively, where PD = 1− PX;

– PFA and PFB : probabilities of following a bee dancing for sources A and B
respectively. PFA is computed as PFA = DAdA

DAdA+DBdB
, where dA and dB are

the proportions of time that the foragers actually dance for source A and B,
and DA and DB are the number of bees in the source A and B respectively.
There is a similar equation to compute PFB .

3.2 Basics of the Clustering Algorithm

In the Bee clustering algorithm this mathematical model is one of the basis to
form groups of agents with similar features. Each bee agent represents an object
that needs to be grouped. Thus, the attributes of this object constitute the set
of agent’s features. Agents have only a limited knowledge: they only know about
the agents that are placed in their groups and they cannot remember their past
groups, i.e. they have no memory. Despite this, they are able to group together
to form clusters.

Figure 1 depicts the scheme of the clustering process. Each agent has a set
of possible states S = {v, w, d} that drive their actions. In state δ = d the
agent is dancing to recruit other agents to join its group. State δ = v means
that the agent is visiting the agent which is inviting it, and state δ = w means
that the agent is watching the dancers to randomly choose an agent to visit.
Random selections here are based on a uniform distribution because we assume
that agents have little or no knowledge about other agents as this would require
a high level of communication. At the beginning the state of all agents is v.

The main parameters used by the Bee clustering algorithm are: D (set of
agents); X (set of agents attributes); Pa (probability of abandoning an agent);
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Fig. 1. Scheme of the Bee Clustering Process.

Pv (probability of visiting an agent); Pd (probability of keeping dancing for a
group); U(C) (utility of group C); and maxSteps.

Algorithm starts by considering each agent belonging to an individual group.
Next, they visit other agents and decide whether or not they will change to the
group of the agent they are visiting. Notice that visits happen after the dancing
process. However at the beginning, when the state of all agents is δ = v, each
agent randomly chooses an agent j to visit.

During the clustering process agents need to make some decisions. Diamonds
in Figure 1 represent these agent’s decisions possibilities that are about wether
or not to abandon the agent that it is visiting; to change or not to the group
of the visited agent; to continue or not dancing to recruit other agents for their
groups; and to visit a dancer or not.

Let us assume that agent i is in state δi = v. This means that i needs to
decide if it will abandon the agent j it is visiting. To do this i calculates the
probability Pa according to Equation 1, where |X | represents the number of
attributes of i and j. If i abandons j, i changes its state to w indicating that the
next action is to observe other agents whose state is δ = d.

Pa =

√√√√ |X |∑
x=1

(ix − jx)2 (1)

When the state of agent i is δi = w, this means that i is observing those
agents in state d and will then randomly choose an agent j. Next, i decides
whether or not to accept the invitation of j. This is done with probability Pv



that is calculated as in Equation 2, where D(Cj) is the number of agents dancing
for Cj , and N is the number of agents inside Cj .

Pv =
D(Cj)
N

(2)

If the invitation is not accepted, i will choose another agent that is dan-
cing and decide whether or not to accept the invitation. When an invitation is
accepted, the state of i changes to δ = v and the clustering process restarts.

To ground the decisions about to change or not to the group of the visited
agent and to continue or not dancing to recruit other agents for their groups we
use not only the mathematical model of [5] but also a response threshold model
described in [3], and the computation of difference utilities (e.g. as in [12]), a
technique grounded on methods of statistical mechanics.

The response threshold model is used mainly to compute the probabilities
of continuing dancing. The difference utilities approach is used to let agents
compute the utility of a group with and without itself, so that an agent can
decide whether or not it changes groups. Next we present these two formalisms.

3.3 Decision about Changing Groups

Another issue is that agents must decide whether they change groups. This is an
essential decision for a good clustering result. Because we do the clustering in a
distributed way, no one is in charge of maximizing the global utility. Rather, each
agent is acting locally. This is a well-known issue: Tumer and Wolpert [12] for
instance have shown that there is no general approach to deal with the complex
question of collectives.

In [1] agents need to maximize a global utility computed over the difference
between the initial and the final clustering. For this to be done in a distributed
way, the computation of the global utility involves the agents broadcasting what
they believe the final clusterings are. Instead of maximizing the global utility
directly, an agent can compute the difference utility Di(z) = G(z) − G(z − i),
where G is the global utility, G(z) is the utility considering the actions of all
agents, and G(z− i) is the utility considering the actions of all agents but i. We
remark that in [1], agents do broadcasting (while our agents only know about
the cluster they belong) and that the authors use this technique to compute an
ensemble of clusters, i.e. this is a different problem where the goal is to create
a single clustering that best characterizes a set of clusterings, without using the
original data points that were used to generate the set of clusterings.

In our clustering algorithm we use the utility difference approach to help
agents to make a decision about whether or not to change groups. If the utility
of agent i’s group is better without i, then i decides to abandon its group and
changes to the group of the agent it is visiting. Otherwise it remains in its group.
To decide this, i calculates the utility of group Ci with its participation (U(Ci)
as defined in Equation 3) and without it, U − i.

In Equation 3 var(Ci) is the intracluster variance of Ci, which indicates how
close the agents are within the group Ci. The variance needs to be minimized



and it is calculated according to Equation 4, where N is the number of elements
inside the group Ci, d(i, ci) is the Euclidean distance from i to the centroid ci
of group Ci and the centroid ci is calculated according to ci = 1

N

∑
i∈C i.

U(Ci) = 1− var(Ci) (3)

var(Ci) =

√
1
N

∑
i∈C

d2(i, ci) (4)

Next, agent i compares both utilities U(Ci) and U − i. If the latter is higher
than U(Ci), indicating that the group utility of i is better without its participa-
tion, i changes to group Cj of agent j ; otherwise i remains in its group Ci. In
both cases i starts to dance to recruit other agents to join its group. Thus, the
state of i changes to δi = d.

3.4 Decision about Joining a Group

In the Bee clustering algorithm agents visit each other and form groups thanks
to invitations made by other agents that are dancing. The time that an agent
remains dancing is key. If it is too long, the model might not work because all
agents will be dancing at the same time; if agents dance for too short a period,
the algorithm converges to a clustering with a lot of small groups. To control
this time, agents use the response threshold model, which is inspired by division
of labor and task specialization among social insects. This model describes task
distribution using the stimulus produced by tasks that need to be performed as
well as an individual response threshold associated with each task. An insect
that perceives a task stimulus higher than its associated threshold has a higher
probability to perform this task.

In our algorithm agents use an associated stimulus and threshold to continue
dancing or not. These values are associated with the quality of the agent’s group.
If the group has a good quality, then the stimulus increases and the threshold
decreases. This way the agent has a tendency to continue dancing for its group.
If, in contrast, the group has low quality then the agent stimulus decreases and
the threshold increases, tending to stop dancing. This tendency can be put as a
probability and, according to the response threshold model, it is calculated as
in Equation 5, where Si and θi are the stimulus and threshold associated with a
given task. In the particular case of computing the probability of stop dancing,
we call this probability Pd.

Pd =
S2

i

S2
i + θ2i

(5)

The values of the threshold θi and of the stimulus Si are initialized with
S = 1 and θ = 1 and are updated each time step provided the state is δ = d.
This update depends on the utility of the group. If the utility U(Ci) at time t
is higher than the utility at t− 1, then Si = Si + α and θi = θi − α, increasing



the tendency to continue dancing. On the other hand if U(Ci) at time t is lower
than the utility at t−1, then Si = Si−α and θi = θi +α. Here α is a parameter
that must be set.

As mentioned, with probability Pd, i keeps dancing. Otherwise i stops the
dance and changes to state δi = v, indicating that it will visit agent j again.

4 Experiments and Results

We have performed experiments to investigate the quality of the Bee clustering
algorithm using public domain data set as well as some datasets related to bi-
oinformatics. In the present paper we focus on the latter. The dataset used are
Leukemia [14] and Yeast [2]. The Leukemia data set contains data on gene ex-
pression related to a subtype of leukemia. It is composed by 271 elements that
can be divided in 2 different substructures: one with 3 classes and another with
7 classes. Each element of the set has 327 attributes. The Yeast data set is com-
posed by 1484 data elements with 8 attributes. It contains 10 classes predicting
the cellular localization sites of proteins. The 10 clusters have the following sizes:
463, 429, 244, 163, 51, 44, 35, 30, 200, and 5.

For comparison we use the well-known k-means and an agglomerative hie-
rarchical clustering algorithm based on the linkage metric of average link.

The value of the parameters taken by our algorithm are: α = 0.02,maxSteps =
|D| ∗ µ, and µ = 6. These values were chosen after several tests with different
values for each parameter. |D| and |X | take the values of the size of the data set
and the number of attributes respectively. This way |D| and |X | differ for the
Leukemia and Yeast data sets.

To assess the performance of the clustering produced we use the Rand Index
that determines the degree of similarity between the correct classification, which
is known for the Leukemia and Yeast data sets, and the solution generated by
a clustering algorithm. It is defined according to Equation 6, where a, b, c, and
d are computed for all possible pairs of data points x and y and their respective
group assignments gZ(x), gZ(y), gV (x), and gV (y), where Z is the known correct
classification and V is the solution found. R is limited to the interval [0,1] and
should be maximized.

R =
a+ d

a+ b+ c+ d
, (6)

with:

a = {x, y|gZ(x) = gZ(y) ∧ gV (x) = gV (y)},
b = {x, y|gZ(x) = gZ(y) ∧ gV (x) 6= gV (y)},
c = {x, y|gZ(x) 6= gZ(y) ∧ gV (x) = gV (y)},
d = {x, y|gZ(x) 6= gZ(y) ∧ gV (x) 6= gV (y)}.

Table 1 shows the Rand Index for the clustering produced by the Bee cluste-
ring algorithm, in comparison to k-means and average link on the Leukemia and
Yeast data sets. Entries in this table show the average and standard deviation



over 60 repetitions for the the Rand Index, and the number of groups found by
each algorithm.

As seen, in the Yeast data set our approach outperforms the other algorithms
in terms of the Rand Index, and it comes close to the correct determination of
the number of groups. However, in our case, it is not necessary to give a priori
informations about the number of clusters as it happens with k-means.

In the Leukemia data set our approach found the structure of 3 classes (ave-
rage 3.1). Besides, for this case of 3 classes in terms of Rand Index, Bee clustering
has outperformed the others. For the another structure of 7 classes our approach
was not able to outperform the K-means and average link algorithms, although it
comes close. However, it must be noticed that our algorithm does the clustering
in a totally distributed way.

Table 1. Rand Index for k-means, Average link, and Bee clustering regarding the
Leukemia and Yeast data sets over 60 repetitions.

LEUKEMIA - 3 classes k-means Average link Bee clustering

Rand Index 0.31 (0.31) 0.32 (0) 0.49(0.02)
Number of identified groups 5.6 6 3.1

LEUKEMIA - 7 classes k-means Average link Bee clustering

Rand Index 0.75 (0.02) 0.64 (0) 0.51(0.09)
Number of identified groups 8.4 16 3.1

YEAST k-means Average link Bee clustering

Rand Index 0.7506(0.001) 0.7426(0) 0.8172 (0.05)
Number of identified groups 10 10 10.3

5 Conclusion and Future Work

This paper has shown the application of Bee clustering, a biologically-inspired
algorithm to solve the problem of clustering a set of data in a decentralized
fashion without any initial information. It uses a mathematical model that is
based on: recruitment among honey bees (to attract more agents to a group);
a threshold response model (to compute the probability of joining a group);
difference utilities (to compute the probability of changing groups).

Bee Clustering was compared with the well-known k-means and the average
link algorithms. Results were extremely encouraging, especially considering that
the algorithm is distributed, and therefore we plan to use it in other datasets, in-
cluding some that are related to experiments on microarrays, where the objective
is to find correlations among several genes that are expressed.

Besides, we intend to investigate the possibility of performing the clustering
process considering the optimization of multiple objectives. To address this, we
plan to let agents compute several utilities (each according to one objective) to
decide whether or not to change groups.
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