
Performance Evaluation of a Cache Server:

A Service Differentiation study in a DiffServ Network

Iran C. Abrão
1

, Marcos José Santana
2

, Regina H. C. Santana
2

, Júlio Cézar Estrella
2

1

Pontifícia Universidade Católica de Minas Gerais

Poços de Caldas, Minas Gerais, Brasil

 iran@pucpcaldas.br
2
Universidade de São Paulo – Instituto de Ciências Matemáticas e de Computação

São Carlos, São Paulo, Brasil

{mjs,rcs,jcesar}@icmc.usp.br

Abstract. This paper addressed the impact observed on performance when

traditional cache servers are used in Web environments with differentiated

services on the network level. It was introduced a cache server, supporting

service differentiation, where several environment arrangements are tested

allowing accounting the gains realized with the different configurations. The

system is modeled and tested through an event-oriented simulation. The results

show that the introduction of QoS is needed on different levels of the web

structure, such as network and application levels, and that disconnected QoS

solutions may not generate the expected results.

Keywords: Differentiation of Services, Quality of Service, Web Cache Server.

1. Introduction

The Internet best-effort [1] service model has presented signs of strangulation due to

the Internet growth in recent years. According to the best effort model, the whole

traffic is treated in a uniform manner, without any kind of differentiation or priority.

This trend also reflects on critical web services projects, whose servers mostly deal

with applications of customers according to the philosophy that, the first to come will

be the first to be served.

The introduction of Quality of Service - QoS - on the Internet is a need and a

requirement for companies offering services for the Web [2]. QoS is needed on the

different levels of the Web structure, such as network and application levels.

Disconnected solutions of QoS may not generate the expected effects, because all

network elements must provide a differentiated control to avoid congestion points,

which may degrade the whole system performance.

This paper evaluates the use of a modified cache server to support environments

with service differentiation at the network level, named Cache with DiFferentiation of

services (CDF). This cache server analyzes the type of service requested by clients

and, if necessary, makes a request to the Web Server for the same type of service.

Three scenarios are analyzed: the first one with no cache, the second one with a

traditional cache and the last one with the CDF.

In this paper, considers four classes of users that have different service priorities in

order to evaluate the differentiation mechanisms during the execution of user

requests. A discrete event simulation, built by using the OPNET Modeler

environment [3] to measure the results obtained with the Web model proposed has

been chosen.

The remaining parts of this paper are organized as follows. Section 2 provides a

brief overview of quality of service concepts; section 3 discusses the use of web cache

servers and in section 4 it is introduced the CDF server model. Section 5 presents the

Web environment model proposed in this work. Section 6 shows the simulation

results and finally, in section 7 the main conclusions of this study are presented.

2. Related Work

Quality of Service (QoS) can be defined as the ability to provide to a network

element (application, client, server or router) some level of assurance that its traffic

and service requirements will be fulfilled [4]. Providing QoS is not a trivial task in

small and proprietary systems and it is still more difficult in a global system as

Internet. To enable QoS, the cooperation of all network layers from top-to-bottom is

required, as well as every network element from end-to-end. Any QoS assurances are

only as good as the weakest link in the “chain” between sender and receiver [4]. It is

important to emphasize that the use of QoS does not increase bandwidth, because the

network cannot provide what it does not have. QoS only manages the existing

bandwidth according to application demands and network management settings. A

network able to provide QoS will continue supporting the best-effort traffic, however

part of the bandwidth will be reserved for applications of higher priority.

In this work a computer networking architecture with Differentiation of Services -

DiffServ [5] is used. The DiffServ approach is based on the idea of flow aggregation

in a few classes of services. The DiffServ network provides local differentiation of

service for large flows of traffic. The marking of packages as final hosts and edge

router is done at network ingress points. In this way, one of the basic principles of

Internet project that still holds is to put the complexity at the network border. A router

without DiffServ capacity will dispatch the package maintaining the previous

marking.

Since the beginning of web, information traffic is growing every day and the

Internet overload can be noticed by the high amount of time spent during the

information recovery, as well as in the degradation of the system performance due to

redundant traffic. To improve the system performance, different techniques have been

used, such as the adoption of cache servers. The main objective of the caches in the

Web is the storing of frequently used documents for future use, so that data recovery

from the original server is not necessary when such documents are requested. The

cache server reduces data access time, leaving data as close as possible to customers.

The use of web cache servers is one of the most popular methods to try to achieve

good environment performance. However, in general, the hit rate of a simple cache

server is not greater than 40% [6].

There are many benefits that justify the use of cache servers in the Web, namely,

traffic reduction, server load reduction and latency decrease. Despite the fact that

cache server has many advantages, it introduces a new set of problems, which are

often difficult to be solved, such as:

Document is not consistent: documents in cache may not be updated and it is not

easy to predict the validity time for a document.

Required document is not found in cache: when there are many failures, the

document recovery time increases due to the additional time to verify if it is in the

cache. To avoid this problem, the hit rate must be maximized and the failure cost must

be minimized during the project of cache systems.

Dynamic content storage: Traditional cache servers store only static content. To

solve this problem, some researchers have been conducted to define new

methodologies to allow dynamic content storage in cache servers [7].

The web cache can be implemented in three ways: cache client, cache server and

cache proxy. In this work, a transparent proxy cache server is used. Such an

implementation uses network components to redirect the server requests, normally

from layer 4 and 5 switches [6]. This technique is sad to be transparent, because

clients (web browsers) do not need to define explicit configurations from the access

point to the cache server. Layer 5 switches (L5) allow the client requests redirection

by using information in TCP packets and/or in HTTP requests headlines [6].

3. Proposed Model

Traditional cache servers dispatch all client requests in the same way, disregarding

existing requests with higher priority. This fact may influence the inclusion of

mechanisms in the system to improve performance, such as the use of services

differentiation in the network level. Some research efforts have been developed to

provide better cache servers integration in environments that support service

differentiation [8] [9] [12] [13]. All web server requests that have best-effort service

type (standard class) are treated in the same way, without considering if the initial

request has higher priority. To solve this problem, a cache server named CDF (with

differentiation support) was implemented. Every requests from the CDF cache server

to a Web Server is performed with the same priority that was originally requested by

the client.

3.1. Cache with Differentiation of Service (CDF)

The CDF cache was implemented by means of the OPNET Modeler, based on a

traditional cache server with some modifications in the programming of the Finite

State Machines (FSM) for the application element of a cache server. The FSM

includes a classifier to check the client requests priority and to send the request to a

web server keeping this priority. The classifier only runs if the user request is not

stored in the CDF cache. To evaluate the CDF cache server performance with service

differentiation in Web environments, it was considered three scenarios and the

following characteristics described in Table 1.

Table 1. - Scenarios with service differentiation

Scenarios

CS With no cache server

CC With traditional cache server

CDF With cache server modified to support service differentiation

A new general model was specified (base scenario) to be used as a starting point to

all other models used in the simulation. The base scenario is composed as described in

Table 2.

Table 2. – Base Scenario

LAN

N. Clients 400 (100 clients p/ category – Standard, Bronze, Silver and

Gold)

Client-Side switch

(SC) (Layer 5)

Responsible for interconnecting the LAN, the cache server

and the client-side router (RC);

Client-Side switch

(SC) (Layer 5)

Responsible for interconnecting the LAN, the cache server

and the client-side router (RC);

Client-Side router

(RC)

Responsible for interconnecting the client-side switch (SC)

with the server-side router (RS);

Server-Side router

(RS)

Responsible for interconnecting the server-side switch (SS)

with the client-side router (RC);

Server-Side switch

(SS)

Responsible for interconnecting the Web server with the RS

router;

Web Server Mono-processed

The connection between the client components (LAN, SC and RC) and the

connection of the server components (SS and Web server) is made by 100BaseT

links. The connection between the routers RS and RC is made through PPP DS1 links

in two channels of 1024 Kbps. The scenarios use the priority queuing (PQ) policies

which have the following priority order: Gold Class User > Silver Class User >

Bronze Class User > Standard Class User.

Both traditional cache server and the cache supporting service differentiation have

an average hit rate of 30% [6]. All scenarios were simulated with four different

configurations for the link used between RS and RC routers, aiming at studying the

environment performance in network overload situations. Other traffic scenarios were

created in the network in order to overload the communication link, by adding traffic

of 616Kb/s (40%) and 1232Kb/s (80%).

The equipments features considered in the several scenarios defined in this work

are very close to the reality and the models used in the OPNET were evaluated and

validated by the companies that produce those equipments.

3.2. Workload Generation

There are several studies of workload characterization in the web. In this study

were considered static and dynamic workloads. The workloads used are based on the

analysis of log files from the CISC (The Computation Center of São Carlos) Apache

Server, carried out by Silva [10]. The static workload is described in Table 3 and the

dynamic one in Table 4.

Table 3. – Static requests characteristics by class of user

User Class of Service HTTP Request Configuration (Objects per page)

Standard BE

Bronze AF1x, AF2x

Silver AF3x, AF4x

Gold EF

1 HTML object size. bytes = lognormal (8.55,1.42)

2 IMAGE objects size bytes= lognormal (8.25,1.62)

Table 4. – Dynamic requests characteristics by class of user

User Class of Service HTTP Request Configuration (Objects per page)

Standard BE

Bronze AF1x, AF2x

Silver AF3x, AF4x

Gold EF

1 DYNAMIC object size. bytes = lognormal

(8.55,1.42)

2 IMAGE object size bytes= lognormal (8.25,1.62)

As shown in Tables 3 and 4, the difference between static and dynamic requests

lies in the fact that there is one object HTML in the static context and one DYNAMIC

object in the dynamic context. The other objects are identical in both contexts. In

addition, the DYNAMIC and HTML objects have the same size and the difference is

that the DYNAMIC object is the result of a query performed on the server. This query

requires internal processing and is executed by using calls to a database. The average

response time for executing and returning the dynamic object is described by a

uniform distribution of 0.75 to 0.81 seconds. The processing time for the dynamic

object is based on studies conducted by IBM to obtain the processing time for a part

of an e-commerce transaction using DB2 database [11].

4. Results

To evaluate the results obtained from the proposed model, a discrete event

simulation was built by using the OPNET Modeler environment [4]. This

environment is used to model and simulate computer systems, designing

communication networks, devices, protocols and applications with flexibility and

scalability. For each scenario fifteen simulations were performed. Each simulation

took 600 seconds and collected data corresponding to a period from 90 to 600

seconds. The obtained outcomes show the average of the simulation results, with a

confidence interval of 95%. All simulations were conducted with the static workload

and then with the dynamic workload. After each simulation, the average HTTP

response time was examined, as well as the link usage between the routers and the

total number of downloads and canceled requests. The results for static and dynamic

workload are presented in the next two sections.

4.1. Results for Static Requests

About 20.400 requests were executed and 99,90% obtained success and only

0,10% of the requests were canceled. This value had small variations in different

scenarios, however, all variations occurred within the estipulated confidence interval.

To study the average of HTTP response time the average time of general response to

all requests and the average time for each class of user (standard, bronze, silver and

gold) were analyzed. Figure 1 shows the average time for general HTTP responses.

As illustrated in Figure 1, the scenarios using cache server CC and CDF have a

lower general HTTP response time than in the CS scenario. In scenarios CC and CDF

it is possible to notice that the use of cache server reduces HTTP response time, with

respect to CS scenario, in approximately 24% in all congestion levels.

0% 40% 60% 80%

% Network Congestion

tim
e
 in

 m
ill

is
e
co

n
d
s

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

HTTP Response Time - Static Requests

CS

CC

CDF

Fig. 1.. - Average HTTP response time

Figures 2 and 3 illustrate, respectively, the HTTP response time by class of users

in environments with 40% and 80% of congestion. Figures 3 and 4 show that CC

environment presents the same response time for all classes of users. This is because

every requisition transmitted from the traditional cache server to the web server is of

the best-effort type (standard). Comparing the performance of scenarios with cache

server CDF and CC, it can be verified that gold and silver user classes are, on the

average, respectively 4.12% and 1.95% faster than the CDF scenario. However, the

bronze and standard classes are 1.15% and 4.72% slower

Default Bronze Silver Gold

Class of Users

tim
e

 in
 m

ill
is

e
c

o
n

d
s

10

11

12

13

14

15

16

HTTP Response Time for Class of Users

 40% of network congestion

CS

CC

CDF

Fig. 2. - HTTP Response time by users classes in environments with 40% of congestion

Default Bronze Silver Gold

Class of Users

tim
e

 in
 m

ill
is

e
c

o
n

d
s

10

11

12

13

14

15

16

HTTP Response Time for Class of Users

 80% of network congestion

CS

CC

CDF

Fig. 3. - HTTP Response time by users classes in environments with 80% of congestion

4.2. Results for Dynamic Requests

The second experiment was conducted with dynamic workload in the same

scenarios from the previous experiment. On the average, 20,400 requests were

performed, in which 92.22% of them have succeeded and only 7.78% of the requests

were canceled. To obtain the average HTTP response time for requests, the average

time to all requests and also the average time for each class of user (standard, bronze,

silver and gold) was examined. Figure 4 shows the average HTTP general response

time.

Figure 4 shows that scenarios using cache server CC and CDF present an HTTP

general response time slightly lower than CS scenario. The difference between the

scenarios is small and this situation is explained because the dynamic request

component has the same response time for any user, since there is no differentiation

of service in the request execution on the server. Figures 5 and 6 illustrate,

respectively, the HTTP response time in environments with 40% and 80% of network

overload

0% 40% 60% 80%

% Net congestion

tim
e
 in

 s
e
co

n
d

s

0.7830

0.7840

0.7850

0.7860

0.7870

0.7880

0.7890

0.7900

0.7910

0.7920

HTTP Response Time - Dynamic Requests

CS

CC

CDF

Fig. 4. - Average response time HTTP

As illustrated in Figures 5 and 6, the CC environment also shows the same

response time for all classes of users, as in the previous experiment. The CS scenario,

which has no cache server, has an HTTP response time very similar to scenarios with

cache server. This fact is due to the presence of a dynamic component, that is not

stored in the cache and always has to be recovered in the web server. Still, the

scenarios with cache server have, on the average, a small improvement in

performance, because in an HTTP request there are still two other static objects that

can be recovered faster than the cache server.

Default Bronze Silver Gold

Class of Users

tim
e

 in
 s

e
c

o
n

d
s

0.780

0.785

0.790

0.795

HTTP Response Time for Class of Users

 40% of network congestion

CS

CC

CDF

Fig. 5. - HTTP Response time by class of users in environments 40% of congestion

Default Bronze Silver Gold

Class of Users

tim
e

 in
 s

e
c

o
n

d
s

0.775

0.780

0.785

0.790

0.795

0.800

HTTP Response Time for Class of Users

 80% of network congestion

CS

CC

CDF

Fig. 6.. – HTTP Response time by class of users in environments 80% of congestion

5. Conclusion

The introduction of QoS on the Internet is a necessity for many applications and

services offered by the Web. QoS is required at different levels of the web structure,

and disconnected solutions cannot generate the desired effect, since all network

elements must allow a differentiated control, where no bottlenecks could obstruct the

system. It has been proved that the use of cache servers without service differentiation

support in an environment with service differentiation, as CC scenario, leads to

unsatisfactory results, eliminating any effort to prioritize classes of users, because all

requests from the cache server to the Web server are made in the same class of

standard user. The use of cache servers decreased in approximately 24% the HTTP

response time in the experiment with static workload. In the experiment with dynamic

workload, the cache server did not have significant influence on the general HTTP

response time, because the dynamic object is always executed in the web server and it

takes a longer time to be finished. The time that is saved with the static requests that

are in the cache is too low compared with the time lost in the web server.

The use of Cache with Differentiation of services (CDF) decreased the HTTP

response time to user classes with higher priority. Comparing the performance of

scenarios with cache server, CDF, and scenario with traditional cache, CC, it can be

verified that gold and silver user classes are, on the average, faster in the CDF

scenario. In contrast, the bronze and standard classes are slower. The scenario with

traditional cache (CC), in the experiment with static workload and hit rate cache at

30%, presents an HTTP response time lower than the one in the scenario without

cache (CS). However, experiments have shown that if the cache hit rate is lower than

15%, then HTTP response time for classes with higher priority (silver and gold) are

greater in scenario with traditional cache (CC), in comparison with the scenario

without cache (CS). However, in experiments with a static workload, the use of

service differentiation gives good results when there is a need to treat classes of users

differently. The HTTP response time for users with higher priority is lower, but the

standard client service execution is disturbed. To summarize, considering the

experiments with dynamic workload, there are not significant difference between the

classes of users. This fact is justified since the differentiation of service is only used at

network level and in the cache server. The system bottleneck is the Web server that

handles the requests from clients according to the philosophy that the first to arrive

will be the first to be processed, without using any classification for the users priority.

Acknowledgments. The authors would like to thank the financial support that the agencies CAPES,

CNPq and FAPESP have provided to the projects of the Laboratory of Distributed Systems and Concurrent

Programming (LaSDPC) from the ICMC-USP. Authors are also grateful to PUC Minas for the support

from the Lecturers Enhancement Permanent Program (PPCD-APCH).

6. References

1 Gevros, P. Crowcroft, J. Kirstein, P. Bhatti, S, Congestion Control Mechanisms and the Best

Effort Service Model. IEEE Network, Vol: 15, May 2001.

2 El-Gendy, M.A.; Bose, A.; Shin, K.G.; Evolution of the Internet QoS and support for soft

real-time applications; Proceedings of the IEEE Vol 91, July 2003

3 OPNET Modeler – Accelerating Network R&D- from HTTP://www.opnet.com, May 2009.

4 Stardust; White Paper: The need for QoS.; 1999. doi=10.1.1.41.3374

5 Blake, S., Black, D. L., Carlson, M., Davies, E., Wang, Z. And Weiss, W., An Architecture

for Differentiated Services. Internet RFC 2475; december 1998.

6 Zou, Q.; Martin, P. and Hassanein, H. 2003. Transparent distributed Web caching with

minimum expected response time. In Proc. of the IEEE International Performance,

Computing, and Communications, 2003.

7 Chen, W.; Martin P.; Hassanein, H. Differentiated Caching of Dynamic Content using

Effective Page Classification. IEEE International Conference on Performance, Computing,

and Communications, 2004

8 Wu-Hsiao Hsu, Ming-Chih Tung, Li-Yuan Wu, An integrated end-to-end QoS anycast

routing on DiffServ networks, Computer Communications. Vol 30, Issue 6, 26 March 2007,

Pages 1406-1418.

9 Zhou, J; Martin, P; Hassanein, H. QoS differentiation in switching-based Web caching. In

IEEE Int. Conf. on Performance, Computing, and Communications, 2004

10 Silva, L. H. C.; Caracterização de carga de trabalho para testes de modelos de servidores

Web; Master Thesis – ICMC – University of São Paulo – USP; September 2006.

11 P Martin, W Powley, HY Li, K Romanufa; Managing database server performance to meet

QoS requirements in electronic commerce systems. International Journal on Digital

Libraries Springer Berlin / Heidelberg, Vol 3, number 4. May 2002.

12 Wang, Q., Chen, J., Zhang, W., Yang, M., and Zang, B. 2007. Optimizing software cache

performance of packet processing applications. SIGPLAN Not. 42, 7 (Jul. 2007), 227-236.

13 Ying L.; Abdelzaher T.F.; Saxena A. "Design, Implementation, and Evaluation of

Differentiated Caching Services," IEEE Transactions on Parallel and Distributed Systems,

vol. 15, no. 5, pp. 440-452, May, 2004.

