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Abstract. This paper addressed the impact observed on performance when 

traditional cache servers are used in Web environments with differentiated 

services on the network level. It was introduced a cache server, supporting 

service differentiation, where several environment arrangements are tested 

allowing accounting the gains realized with the different configurations. The 

system is modeled and tested through an event-oriented simulation. The results 

show that the introduction of QoS is needed on different levels of the web 

structure, such as network and application levels, and that disconnected QoS 

solutions may not generate the expected results.  
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1. Introduction 

The Internet best-effort [1] service model has presented signs of strangulation due to 

the Internet growth in recent years. According to the best effort model, the whole 

traffic is treated in a uniform manner, without any kind of differentiation or priority. 

This trend also reflects on critical web services projects, whose servers mostly deal 

with applications of customers according to the philosophy that, the first to come will 

be the first to be served. 

The introduction of Quality of Service - QoS - on the Internet is a need and a 

requirement for companies offering services for the Web [2]. QoS is needed on the 

different levels of the Web structure, such as network and application levels. 

Disconnected solutions of QoS may not generate the expected effects, because all 

network elements must provide a differentiated control to avoid congestion points, 

which may degrade the whole system performance.  

This paper evaluates the use of a modified cache server to support environments 

with service differentiation at the network level, named Cache with DiFferentiation of 

services (CDF). This cache server analyzes the type of service requested by clients 

and, if necessary, makes a request to the Web Server for the same type of service.  



Three scenarios are analyzed: the first one with no cache, the second one with a 

traditional cache and the last one with the CDF.  

In this paper, considers four classes of users that have different service priorities in 

order to evaluate the differentiation mechanisms during the execution of user 

requests. A discrete event simulation, built by using the OPNET Modeler 

environment [3] to measure the results obtained with the Web model proposed has 

been chosen. 

The remaining parts of this paper are organized as follows. Section 2 provides a 

brief overview of quality of service concepts; section 3 discusses the use of web cache 

servers and in section 4 it is introduced the CDF server model. Section 5 presents the 

Web environment model proposed in this work. Section 6 shows the simulation 

results and finally, in section 7 the main conclusions of this study are presented. 

2. Related Work 

Quality of Service (QoS) can be defined as the ability to provide to a network 

element (application, client, server or router) some level of assurance that its traffic 

and service requirements will be fulfilled [4]. Providing QoS is not a trivial task in 

small and proprietary systems and it is still more difficult in a global system as 

Internet. To enable QoS, the cooperation of all network layers from top-to-bottom is 

required, as well as every network element from end-to-end. Any QoS assurances are 

only as good as the weakest link in the “chain” between sender and receiver [4]. It is 

important to emphasize that the use of QoS does not increase bandwidth, because the 

network cannot provide what it does not have. QoS only manages the existing 

bandwidth according to application demands and network management settings. A 

network able to provide QoS will continue supporting the best-effort traffic, however 

part of the bandwidth will be reserved for applications of higher priority. 

In this work a computer networking architecture with Differentiation of Services - 

DiffServ [5] is used. The DiffServ approach is based on the idea of flow aggregation 

in a few classes of services. The DiffServ network provides local differentiation of 

service for large flows of traffic. The marking of packages as final hosts and edge 

router is done at network ingress points. In this way, one of the basic principles of 

Internet project that still holds is to put the complexity at the network border. A router 

without DiffServ capacity will dispatch the package maintaining the previous 

marking. 

Since the beginning of web, information traffic is growing every day and the 

Internet overload can be noticed by the high amount of time spent during the 

information recovery, as well as in the degradation of the system performance due to 

redundant traffic. To improve the system performance, different techniques have been 

used, such as the adoption of cache servers. The main objective of the caches in the 

Web is the storing of frequently used documents for future use, so that data recovery 

from the original server is not necessary when such documents are requested. The 

cache server reduces data access time, leaving data as close as possible to customers. 

The use of web cache servers is one of the most popular methods to try to achieve 

good environment performance. However, in general, the hit rate of a simple cache 

server is not greater than 40% [6].  



There are many benefits that justify the use of cache servers in the Web, namely, 

traffic reduction, server load reduction and latency decrease. Despite the fact that 

cache server has many advantages, it introduces a new set of problems, which are 

often difficult to be solved, such as: 

Document is not consistent: documents in cache may not be updated and it is not 

easy to predict the validity time for a document. 

Required document is not found in cache: when there are many failures, the 

document recovery time increases due to the additional time to verify if it is in the 

cache. To avoid this problem, the hit rate must be maximized and the failure cost must 

be minimized during the project of cache systems. 

Dynamic content storage: Traditional cache servers store only static content. To 

solve this problem, some researchers have been conducted to define new 

methodologies to allow dynamic content storage in cache servers [7]. 

The web cache can be implemented in three ways: cache client, cache server and 

cache proxy. In this work, a transparent proxy cache server is used. Such an 

implementation uses network components to redirect the server requests, normally 

from layer 4 and 5 switches [6]. This technique is sad to be transparent, because 

clients (web browsers) do not need to define explicit configurations from the access 

point to the cache server. Layer 5 switches (L5) allow the client requests redirection 

by using information in TCP packets and/or in HTTP requests headlines [6]. 

3. Proposed Model  

Traditional cache servers dispatch all client requests in the same way, disregarding 

existing requests with higher priority. This fact may influence the inclusion of 

mechanisms in the system to improve performance, such as the use of services 

differentiation in the network level. Some research efforts have been developed to 

provide better cache servers integration in environments that support service 

differentiation [8] [9] [12] [13]. All web server requests that have best-effort service 

type (standard class) are treated in the same way, without considering if the initial 

request has higher priority. To solve this problem, a cache server named CDF (with 

differentiation support) was implemented. Every requests from the CDF cache server 

to a Web Server is performed with the same priority that was originally requested by 

the client. 

3.1. Cache with Differentiation of Service (CDF) 

The CDF cache was implemented by means of the OPNET Modeler, based on a 

traditional cache server with some modifications in the programming of the Finite 

State Machines (FSM) for the application element of a cache server. The FSM 

includes a classifier to check the client requests priority and to send the request to a 

web server keeping this priority. The classifier only runs if the user request is not 

stored in the CDF cache. To evaluate the CDF cache server performance with service 



differentiation in Web environments, it was considered three scenarios and the 

following characteristics described in Table 1. 

Table 1.  - Scenarios with service differentiation 

Scenarios 

CS With no cache server 

CC With traditional cache server 

CDF With cache server modified to support service differentiation 

 

A new general model was specified (base scenario) to be used as a starting point to 

all other models used in the simulation. The base scenario is composed as described in 

Table 2. 

Table 2. – Base Scenario 

LAN 

N. Clients  400 (100 clients p/ category – Standard, Bronze, Silver and 

Gold  ) 

Client-Side switch 

(SC) (Layer 5) 

Responsible for interconnecting the LAN, the cache server 

and the client-side router (RC); 

Client-Side switch 

(SC) (Layer 5) 

Responsible for interconnecting the LAN, the cache server 

and the client-side router (RC); 

Client-Side router 

(RC) 

Responsible for interconnecting the client-side switch (SC) 

with the server-side router (RS); 

Server-Side router 

(RS) 

Responsible for interconnecting the server-side switch (SS) 

with the client-side router (RC); 

Server-Side switch 

(SS) 

Responsible for interconnecting the Web server with the RS 

router; 

Web Server Mono-processed 

 

The connection between the client components (LAN, SC and RC) and the 

connection of the server components (SS and Web server) is made by 100BaseT 

links. The connection between the routers RS and RC is made through PPP DS1 links 

in two channels of 1024 Kbps. The scenarios use the priority queuing (PQ) policies 

which have the following priority order: Gold Class User > Silver Class User > 

Bronze Class User > Standard Class User.  

Both traditional cache server and the cache supporting service differentiation have 

an average hit rate of 30% [6]. All scenarios were simulated with four different 

configurations for the link used between RS and RC routers, aiming at studying the 

environment performance in network overload situations. Other traffic scenarios were 

created in the network in order to overload the communication link, by adding traffic 

of 616Kb/s (40%) and 1232Kb/s (80%). 

The equipments features considered in the several scenarios defined in this work 

are very close to the reality and the models used in the OPNET were evaluated and 

validated by the companies that produce those equipments. 



3.2. Workload Generation  

There are several studies of workload characterization in the web. In this study 

were considered static and dynamic workloads. The workloads used are based on the 

analysis of log files from the CISC (The Computation Center of São Carlos) Apache 

Server, carried out by Silva [10]. The static workload is described in Table 3 and the 

dynamic one in Table 4. 

 

Table 3.  – Static requests characteristics by class of user 

User Class of Service  HTTP Request Configuration (Objects per page) 

Standard  BE 

Bronze AF1x, AF2x 

Silver AF3x, AF4x 

Gold EF 

 

1 HTML object size. bytes = lognormal (8.55,1.42) 

2 IMAGE objects size bytes= lognormal (8.25,1.62) 

 

Table 4.  – Dynamic requests characteristics by class of user 

User Class of Service  HTTP Request Configuration (Objects per page) 

Standard  BE 

Bronze AF1x, AF2x 

Silver AF3x, AF4x 

Gold EF 

 

1 DYNAMIC object size. bytes = lognormal 

(8.55,1.42) 

2 IMAGE object size bytes= lognormal (8.25,1.62) 

 

As shown in Tables 3 and 4, the difference between static and dynamic requests 

lies in the fact that there is one object HTML in the static context and one DYNAMIC 

object in the dynamic context. The other objects are identical in both contexts. In 

addition, the DYNAMIC and HTML objects have the same size and the difference is 

that the DYNAMIC object is the result of a query performed on the server. This query 

requires internal processing and is executed by using calls to a database. The average 

response time for executing and returning the dynamic object is described by a 

uniform distribution of 0.75 to 0.81 seconds. The processing time for the dynamic 

object is based on studies conducted by IBM to obtain the processing time for a part 

of an e-commerce transaction using DB2 database [11]. 

4. Results 

To evaluate the results obtained from the proposed model, a discrete event 

simulation was built by using the OPNET Modeler environment [4]. This 

environment is used to model and simulate computer systems, designing 

communication networks, devices, protocols and applications with flexibility and 

scalability. For each scenario fifteen simulations were performed. Each simulation 

took 600 seconds and collected data corresponding to a period from 90 to 600 

seconds. The obtained outcomes show the average of the simulation results, with a 



confidence interval of 95%. All simulations were conducted with the static workload 

and then with the dynamic workload. After each simulation, the average HTTP 

response time was examined, as well as the link usage between the routers and the 

total number of downloads and canceled requests. The results for static and dynamic 

workload are presented in the next two sections. 

4.1. Results for Static Requests  

About 20.400 requests were executed and 99,90% obtained success and only 

0,10% of the requests were canceled. This value had small variations in different 

scenarios, however, all variations occurred within the estipulated confidence interval. 

To study the average of HTTP response time the average time of general response to 

all requests and the average time for each class of user (standard, bronze, silver and 

gold) were analyzed. Figure 1 shows the average time for general HTTP responses. 

As illustrated in Figure 1, the scenarios using cache server CC and CDF have a 

lower general HTTP response time than in the CS scenario. In scenarios CC and CDF 

it is possible to notice that the use of cache server reduces HTTP response time, with 

respect to CS scenario, in approximately 24% in all congestion levels. 
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Fig. 1.. - Average HTTP response time 

Figures 2 and 3 illustrate, respectively, the HTTP response time by class of users 

in environments with 40% and 80% of congestion. Figures 3 and 4 show that CC 

environment presents the same response time for all classes of users. This is because 

every requisition transmitted from the traditional cache server to the web server is of 

the best-effort type (standard). Comparing the performance of scenarios with cache 

server CDF and CC, it can be verified that gold and silver user classes are, on the 

average, respectively 4.12% and 1.95% faster than the CDF scenario. However, the 

bronze and standard classes are 1.15% and 4.72% slower 
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Fig. 2. - HTTP Response time by users classes in environments with 40% of congestion 
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Fig. 3. - HTTP Response time by users classes in environments with 80% of congestion 

4.2. Results for Dynamic Requests  

The second experiment was conducted with dynamic workload in the same 

scenarios from the previous experiment. On the average, 20,400 requests were 

performed, in which 92.22% of them have succeeded and only 7.78% of the requests 

were canceled. To obtain the average HTTP response time for requests, the average 

time to all requests and also the average time for each class of user (standard, bronze, 

silver and gold) was examined. Figure 4 shows the average HTTP general response 

time. 

Figure 4 shows that scenarios using cache server CC and CDF present an HTTP 

general response time slightly lower than CS scenario. The difference between the 

scenarios is small and this situation is explained because the dynamic request 

component has the same response time for any user, since there is no differentiation 

of service in the request execution on the server. Figures 5 and 6 illustrate, 



respectively, the HTTP response time in environments with 40% and 80% of network 

overload  
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Fig. 4. - Average response time HTTP 

As illustrated in Figures 5 and 6, the CC environment also shows the same 

response time for all classes of users, as in the previous experiment. The CS scenario, 

which has no cache server, has an HTTP response time very similar to scenarios with 

cache server. This fact is due to the presence of a dynamic component, that is not 

stored in the cache and always has to be recovered in the web server. Still, the 

scenarios with cache server have, on the average, a small improvement in 

performance, because in an HTTP request there are still two other static objects that 

can be recovered faster than the cache server.  
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Fig. 5.  - HTTP Response time by class of users in environments 40% of congestion 
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Fig. 6.. – HTTP Response time by class of users in environments 80% of congestion 

5. Conclusion 

The introduction of QoS on the Internet is a necessity for many applications and 

services offered by the Web. QoS is required at different levels of the web structure, 

and disconnected solutions cannot generate the desired effect, since all network 

elements must allow a differentiated control, where no bottlenecks could obstruct the 

system. It has been proved that the use of cache servers without service differentiation 

support in an environment with service differentiation, as CC scenario, leads to 

unsatisfactory results, eliminating any effort to prioritize classes of users, because all 

requests from the cache server to the Web server are made in the same class of 

standard user. The use of cache servers decreased in approximately 24% the HTTP 

response time in the experiment with static workload. In the experiment with dynamic 

workload, the cache server did not have significant influence on the general HTTP 

response time, because the dynamic object is always executed in the web server and it 

takes a longer time to be finished. The time that is saved with the static requests that 

are in the cache is too low compared with the time lost in the web server.  

The use of Cache with Differentiation of services (CDF) decreased the HTTP 

response time to user classes with higher priority. Comparing the performance of 

scenarios with cache server, CDF, and scenario with traditional cache, CC, it can be 

verified that gold and silver user classes are, on the average, faster in the CDF 

scenario. In contrast, the bronze and standard classes are slower.  The scenario with 

traditional cache (CC), in the experiment with static workload and hit rate cache at 

30%, presents an HTTP response time lower than the one in the scenario without 

cache (CS). However, experiments have shown that if the cache hit rate is lower than 

15%, then HTTP response time for classes with higher priority (silver and gold) are 

greater in scenario with traditional cache (CC), in comparison with the scenario 

without cache (CS). However, in experiments with a static workload, the use of 



service differentiation gives good results when there is a need to treat classes of users 

differently. The HTTP response time for users with higher priority is lower, but the 

standard client service execution is disturbed. To summarize, considering the 

experiments with dynamic workload, there are not significant difference between the 

classes of users. This fact is justified since the differentiation of service is only used at 

network level and in the cache server. The system bottleneck is the Web server that 

handles the requests from clients according to the philosophy that the first to arrive 

will be the first to be processed, without using any classification for the users priority.  
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