
Key Developments in the Field of Software
Productivity Measurement

Gibeon Soares de Aquino Júnior1,2 and Silvio Romero de Lemos Meira1,2

1 C.E.S.A.R. - Recife Center for Advanced Studies and Systems, Recife, Brazil
2 Federal University of Pernambuco, Recife, Brazil

Abstract. The search for productivity improvement has been a growing
concern of organizations in recent time. To achieve this goal is neces-
sary, first, to know how to measure the productivity. The wide literature
about this subject confirms the interest about this topic. Several ques-
tions already reside and there are many myths about the productivity
measurement. This paper conduct an investigation about the productiv-
ity metrics and measurement studies published in literature, categorize
the productivity metrics indentified according to the type of measure
used and identify the main lessons learned about this matter. Based on
the literature review and on analyses of proposed metrics found, we pro-
pose some directions in order to evolve the state of the art on software
productivity measurement and, consequently, on the software produc-
tivity theme.

1 Introduction

The global environment requires that companies increasingly improve their lev-
els of quality and reduce their production costs. The main way to reduce pro-
duction costs, specifically in software development, is through the increasing of
productivity, in other words, develop further with a lower cost or effort. For this
reason, the search for improving productivity has been a constant concern in
organizations. However, to improve productivity it is necessary, first, to under-
stand how to measure it. DeMarco [1] emphasizes that the first step towards
improve and control is to measure, as his statement says: “You can’t control
what you can’t measure”. Therefore, this article in particular, will explore the
question: How to measure productivity?

Productivity is conceptually a simple measure , and in general can be defined
as the ratio between what is produced and what is consumed: productivity =
output/input. The concept of productivity is widely used in many areas of ex-
pertise, from agriculture to economics. Despite the idea of productivity being
very simple and popular in other areas, specifically in software development it
is a historically complex problem. According to Jones [2] the lack of precise and
non-ambiguous definition of productivity metric has been a source of problems
in software projects. This difficulty in measuring the productivity in software
development is not caused by the productivity itself, but by the intrinsic char-
acteristic that is the meaning of output in software projects context. Quantify
the results produced in a software project in terms of size, complexity or value
to the customer is a very complex problem [3].



However, Scacchi [4], reports on its study of productivity metrics that it is
evident that the studies on this matter is fundamentally inadequate and poten-
tially flawed. Moreover, depending on how and which indicators are measured
the conclusions about the productivity can be completely different.

The extensive literature on productivity and productivity measurement con-
firms the scientific interest on this subject. Many issues are still without answers
and there are still many myths about the problem of productivity. This article
investigates several studies published in literature on metrics and measurement
of productivity in software development projects in order to raise the main
lessons learned on this matter. In particular, the Section 2 describes the first
discussions and studies published in the literature about the productivity im-
provement and measurement. The Section 3 describes the studies about produc-
tivity measurement (a literature review) and categorizes them according to the
type of measurement used (Sections 3.1, 3.2, 3.3 and 3.4). Moreover, we inden-
tified some trends in the literature review (Section 3.5), analyzed some related
works (Section 4) and proposed some future directions in software productivity
measurement researches to improve the state of art in this matter (Section 5).

2 The Genesis

Despite the emphasis on productivity in nowadays, this problem is not new.
At the beginning of Software Engineering in 1968, NATO Conference, where
about 50 experts in computing, 11 countries gathered in Garmisch, Germany,
to discuss the problems of software development at the time [5], the concern with
productivity was already mentioned. Even during the discussions were cited sev-
eral factors affecting productivity, such as programming language, programmer
experience, culture and motivation, which are still well supported by studies in
the area.

Additionally, previous studies have demonstrated the importance of the
problem. The first empirical studies, based on statistical data analysis from
the U.S. Army software development projects, appeared in the mid-60 in the
SDC (System Development Corporation) [6, 7]. They had as goal the definition
of factors affecting the cost of software projects and, as result, improving the
process of estimation. Although these works have not had the direct purpose of
productivity analysis, they can be considered part of this scope since identified
several factors affecting productivity besides measuring the projects productiv-
ity.

Later, several studies on the same area in the SDC, have extended the pre-
vious work exploraring the problem with data from new projects and based on
the results of the practical application of previous results [8–10]. In particu-
lar, LaBolle [11] published a cost estimation model, resulting of an extensive
study done by the investigation of 169 finalized projects. This study have sta-
tistically analyzed various factors that had influence on the final development
effort, or more specifically, on the software projects productivity. Other more
specific studies on the problem have emerged over time too [12, 13]. Most of
them were part of a great search for better estimation methods, which allowed



a better reliability in predicting the costs of software projects and thus avoiding
the typical problem of this area, which became known as the Software Crisis [5].

Throughout the Software Engineering history, many studies have been con-
ducted related to the problem of productivity and as could be seen since 60’s this
matter was already discussed. Although there are several aspects of the problem
still open, there are, on the other hand, a large range of relevant results which
demonstrate the possibilities of exploitation of this issue. Therefore, this area
of research is very promising and relevant from the scientific viewpoint.

3 Productivity Measurement: A Survey

Measuring productivity of projects has been a major challenge for practitioners
and researchers in software development. Despite the difficulty of effectively
measuring the software projects productivity, much effort has been performed
in attempt to obtain ways to assess productivity, following the philosophy of
Gilbs’s law [14] who state that “Anything you need to quantify can be measured
in some way that is superior to not measuring it at all”.

Due to the large numbers of studies, using different metrics of productivity,
it is essential to group them with the aim of effectively investigate them. The
studies reviewed in this section shall be grouped according to the approach
of output measurement and will be described in more details in the following
sections.

3.1 Physical Size Based Metrics

This section considers the studies that used SLOC, variations or derivations
thereof. Examples of these SLOC variations are Delivery Source Instructions,
Executable Lines Of Code and Developed Statements. The derivations of SLOC
metrics are calculated from the source code, such as Non-Commented Source
Code and Effective Source Lines of Code.

Although SLOC being something quite basic it is widely used in studies of
productivity as the output measure in the evaluation of productivity. In studies
that follow we identify that different metrics are used for output measurement,
but all based on the counting physical lines of code. Different names are used
to represent the same concept, such as Delivery Source Lines, Machine Instruc-
tions, Delivery Source Instructions and Executable Lines Of Code. Another dif-
ficulty encountered when compiling these studies was that on most of these,
there is no precise specification of what is considered in the counting of these
metrics (e.g., comments, blank lines, statements, etc). And because this, further
analysis and comparison between them becomes more difficult.

Initial studies about this matter [15, 11, 9] used a metric conceptually equal
to SLOC: Man-Months per Machine Instructions. Aron [13], in his studies on
projects at IBM, widely used a metric of SLOC. Subsequently, Walston and
Felix [16] conducted a broader study in the IBM Federal Systems Division and
used DSL/MM as the productivity metric, where DSL (Delivery Line Source)
means only those lines of code delivered as part of the product.



At the end of the ’70s, Jones [2] states that productivity and quality metrics,
in terms of lines of code are paradoxical, since LOC per unit of effort tends to
emphasize more size and format of the programs than the efficiency and quality
of these. According to him, this metric tends to penalize high-level languages for
languages such as Assembly. For this reason the LOC is not a good indicator of
economic productivity, despite being frequently used. Boehm [3], for example,
showed that a well formatted program can be three times its original size.

Even recognizing the shortcomings of SLOC based metrics, in the 80s the
scientific community, as was the case of Lawrence [17], Bailey and Basili [18],
Boehm [19, 20] and Vosburgh et al. [21] continued to use it in their studies of
productivity and estimation. Grady and Caswell [22] and Card et al. [23] used
the metric of NCSS, based on SLOC, to evaluate the productivity of projects in
HP and Software Engineering Laboratory (SEL), respectively. Recently, studies
on productivity also used SLOC metric, such as MacCormack [24], Refer [25]
and Moses et al. [26].

3.2 Functional Size Based Metrics

This section considers the studies which use output measures based on number
of features perceived by the user. The most common examples of these types of
metrics that are FP (Function Points) [27] and UCP (Use-case Points).

Behrens [28] widely used metrics based on FP to measure the projects pro-
ductivity. Banker [29], Parkan et al. [30], Jones [31] and Moses et al. [26] also
used FP as output measure. On the other hand Symons [32] and Maxwell and
Forselius [33] criticizes the use of FP and suggest adjustments to the metric.

About UCP, it is not so popular as FP, but some studies reports a good
use of it. Arnold e Pedross [34], for example, used it as measure of output in
their study. We encountered several studies reporting it uses only for estimation
purpose [35, 36] and not for productivity assessment. Moreover, because it is
not so popular, there are some proposals which adapts FP measurement to be
used in environments where use cases, class diagrams and sequence diagrams
are used [37, 38].

FP became one of the most known and used metric to quantify the size of
software and consequently the productivity for information systems and real
time systems. Nowadays it is largely used in industry, with support of world
wide associations which maintains and evolve it, as IFPUG3 and NESMA4.

Although this, it is very criticized and questioned because several assump-
tions and definitions do not have a theoretical apparatus that validate it [39, 40,
31].

3.3 Design Based Metrics

At this group, studies that use metrics related to the design are present, they
use metrics as number of modules, classes or related things. These metrics have
a correlation with the SLOC, but are based on different aspects.
3 IFPUG: International Function Point Users Group – http://www.ifpug.org/
4 Netherlands Function Point Users Group – http://www.nesma.nl/



Chatman [41], for example, suggests using a new metric, called Change-
Point. Moser and Nierstrasz [42] used a new metric called System Meter. The
System Meter is an object oriented metric and is calculated as the sum of the
sizes of all objects in the system. Morasca and Russo [43] used three different
metrics to assess the size of productivity, they were: Function Points, LOC and
Number of Modules. The conclusion of the authors was that the first is useful
for the outside perspective (Customer) and the latter two for the internal (Team
and Organization).

3.4 Value Based Metrics

Studies at this group use a more modern vision to assess the productivity and
use output metrics based in added value, or use multidimensional models that
assess different aspects of what is produced in a software project.

Duncan [44] criticizes the use of SLOC based metrics as a productivity mea-
sure. He says the key process of software development is the transformation of
ideas into products. So to measure the real productivity of software develop-
ment, we need to measure how effectively and efficiently it can transform ideas
into software. For Anselmo and Ledgard [45], measure the amount of features
of software, using traditional techniques such as Function Point and Use case
point is insufficient, since such methods assess so simple the level of functionality
complexity.

According to Hastings and Sajeev [46] the metric of function point does not
adequately address the internal complexity of the system, which can result in a
disproportionate measure for each type of software. Based on this they proposed
a new measure, known as Vector Size Measure (VSM), which considers both
the complexity and functionality to calculate the size of software, i.e. the unit
of output.

Stensrud and Myrtveit [47] criticize the traditional productivity measure-
ment model based on the equation productivity = output/input, because ac-
cording to them a project of software has various measures output and therefore
a multidimensional model would be more appropriate to effectively evaluate
the project productivity. In this work they propose to use a metric called Data
Envelopment Analysis Variable Returns to Scale (DEA VRS), which considers
multiple variables of input and output.

Following the same idea of using a multidimensional approach to assess
productivity, Abran and Bunglione [48] define a three-dimensional model to
evaluate the software projects performance, called QEST (Quality factor +
Economic, Social and Technical dimensions). In this study they use geometric
concepts to define how to evaluate the performance, where the dimensions are
represented by the factors E, S and T and adjusted by a factor Q based on
qualitative perceptions.

3.5 Concluding Remarks

In fact, there is no direct and safe response for the question: What is the best
software productivity metric? The simplest and most commonly used met-
ric is the SLOC and its derivations, but these are admittedly problematic for



this purpose. Moreover, value-based metrics, which involve assessment of pro-
ductivity in many dimensions, show a good alignment with the idea of producing
value and are gaining popularity today, but are more complex, less common and
are still maturing.

According to Boehm [49, 50] quantifying the outcome of which is produced in
a software project should not be reduced to number and complexity of require-
ments or code, but to the product value for the stakeholders. In this thought,
the productivity metrics based on value, which are based on multiple dimen-
sions, and which correspond to what the stakeholders consider as the value being
produced, is the most complete and reliable to the organizational core business
perspective.

Morasca and Russo [43], for example, concluded that using both Function
Point and SLOC as a measure of output, which are both interesting depending
on the perspective of analysis used. According to them, different stakehold-
ers perceive the result of the work differently and evaluate the outcomes of a
project differently. This point reinforces the idea that to make use of a good
metric of productivity is essential (1) understanding the different outcomes; (2)
understanding the importance of each of these to the stakeholders; (3) known-
ing the perspective which the productivity is being evaluated. The item (3), in
particular, is extremely important because the same project can be extremely
productive from a technical viewpoint (e.g., producing many of FP or SLOC
per hour), but a disaster in the viewpoint of the business (if it cannot have a
good profit).

Many divergences exist over what is produced during the project and what
should be measured. Even some intangibles aspects such as quality and value
of what is being produced as a result of a project, become it difficult to define
exactly “What is productivity in software projects”. In this context, some argue
that to measure, in some way, is better than simply not measure at all [14, 51].
However, Austin [52], alerts about the risks of measuring dimensions that are
not strongly linked to the phenomenon being observed. He says there is a strong
possibility that by doing this, the performance of the process or phenomenon
being measured will worsen, despite the contrary opinion of the outcome met-
rics. This phenomenon was widely observed by the author in different types of
organizations, receiving the name of Dysfunction. In particular, productivity
measurement initiatives presents a great availability to emergence and deploy-
ment of dysfunction. For this reason it is suggested to be very carefully while
set up a productivity measurement model in software organizations.

The realization of the dimensions of value in software development is not
a easy task, several of them are difficult and costly to monitor or are simply
intangible. In addition, each organization has a singular work way and different
viewpoint about the value of outputs produced as a result of a software project.
Even this viewpoint varies within the organization, depending on the level of
those involved in the evaluation of productivity measures. Therefore, there is
no way to define a universal model for measuring productivity to any type of
software organization and projects. Each type of organization must define its
own model for productivity measurement, which can even vary depending on
the types of projects that runs it.



4 Related Works

Maxwell et al. [53] developed a research of analyze the European Space Agency
software development projects database with the purpose of identify the main
factors influencing the productivity as well as determine the best metric to
measure productivity. In this article, the authors present a review of previous
research on productivity metrics too, but because the main focus was not this,
they mention only 14 publications. To determine the best metric they make
a comparison between SLOC and Process Productivity [54] and conclude that
SLOC is better.

Scacchi [4] also examines the state of the art in productivity measurement
and indicates challenges involved in this practice. As Maxwell et al., he shows the
factors which influence productivity. Finally, he suggested the construction of
a simulation and modeling system for software development productivity based
on knowledge.

Both works did a general review on productivity, including metrics and fac-
tors that influence the productivity. Our work is different because it operates
with greater depth on the specific problem of measuring productivity. In this
work we make a survey of historical quotes on the subject, analyzing the most
common uses for each period and tried to identify future trends. Furthermore,
we defined a categorization of productivity metrics in order to organize the
diversity in this area and facilitate the exploration of the theme.

5 Future Directions

More effort needs to be done towards the definition and use of multidimen-
sional models for measuring productivity. There are several evident problems
arising from the use of traditional models that considers only a single metric,
or more specifically to assess a single dimension of the production of software
[52], however many reports and conclusions are made based on the use of these
models. To change the state of the art in software productivity, the first step is
to develop specifically the expertise in measuring productivity. For this, the use
and development of more modern approaches, which seek to achieve the real
dimensions of value produced in software projects are needed.

In special, a well defined process, which takes into account the difficulties
of measuring the productivity and reflects the best practices in measurement
programs, can help the organization to maximize the chances of success in defin-
ing and adopting a model of effective productivity measurement. Based on the
approach of Hubbard [51], which argues that anything can be measured, on the
recommendations and care cited by Austin [52] and on productivity measure-
ment literature review, we proposes the development of a process to support the
definition of productivity measures in software projects. The result of applying
this process produces a model of productivity measurement that takes into ac-
count the most relevant dimensions of value to the organization, based on the
vision of interested in monitoring and evaluating the productivity of projects.

Finally, a research area with good potential to produce good results on the
issue of productivity measurement is the research, refinement and adaptation



of methods and concepts already mature in other areas such as Administration,
Production Engineering and Economics, to Software Engineering. Specifically,
in the area of economics concepts and models related to the productivity mea-
surement are more mature and well documented. For example, there are clear
definitions of types of different products with different objectives, such as Capital
Productivity and Labour Productivity can be better interpreted in the software
development environments.

References

1. DeMarco, T.: Controlling software projects : management, measurement and es-
timation. Yourdon Press (1982)

2. Jones, C.: Measuring programming quality and productivity. IBM System Journal
17(1) (1978) 115–125

3. Boehm, B.: Improving software productivity. Computer 20(9) (September 1987)
43–57

4. Scacchi, W.: Understanding software productivity: a comparative empirical re-
view. System Sciences, 1989. Vol.II: Software Track, Proceedings of the Twenty-
Second Annual Hawaii International Conference on 2 (Jan 1989) 969–977 vol.2

5. Naur, P., Randell, B., eds.: Software Engineering: Report of a conference sponsored
by the NATO Science Committee. Scientific Affairs Division, NATO, Garmisch,
Germany (1969)

6. Farr, L., Zagorski, H.J.: Factors that affect the cost of computer programming: A
quantitative analysis. Technical Report TM-1447/001/00, System Development
Corporation, Santa Monica, California (August 1964)

7. Farr, L., Nanus, B.: Factors that affect the cost of computer programming. Tech-
nical Report TM-1447/000/02, System Development Corporation, Santa Monica,
California (July 1964)

8. Farr, L., Zagorski, H.J.: A summary of an analysis of computer programming cost
factors. Technical Report TM-1447/002/00, System Development Corporation,
Santa Monica, California (January 1965)

9. Nelson, E.A.: Management handbook for the estimation of computer programming
costs. Technical Report AD-A648750, System Development Corporation (Octuber
1966)

10. Fleishman, T.: Current results from the analysis of cost data for computer pro-
gramming. Technical Report TM-3026/000/01, System Development Corporation,
Santa Monica, California (July 1966)

11. LaBolle, V.: Statistical analysis of computer programming costs. In: SIGCPR ’66:
Proceedings of the fourth SIGCPR conference on Computer personnel research,
New York, NY, USA, ACM (1966) 29–38

12. Pietrasanta, A.M.: Current methodological research. In: Proceedings of the 1968
23rd ACM national conference, New York, NY, USA, ACM (1968) 341–346

13. Aron, J.D.: Estimating resources for large systems. In: In NATO Conference
Report on Software Engineering Techniques, Rome, Italy, Brussels: NATO Science
Committee (October 1969) 68–79

14. Gilb, T.: Software Metrics. Winthrop Publishers, Cambridge, Mass (1977)
15. Farr, L., LaBolle, V., Willmorth, N.E.: Planning guide for computer program

development. Technical Report TM-2314/000/00, System Development Corpora-
tion, Santa Monica, California (May 1965)

16. Walston, C.E., Felix, C.P.: A method of programming measurement and estima-
tion. IBM System Journal 16(1) (1977) 54–65



17. Lawrence, M.J.: Programming methodology, organizational environment, and pro-
gramming productivity. Journal of Systems and Software 2(3) (September 1981)
257–269

18. Bailey, J.W., Basili, V.R.: A meta-model for software development resource expen-
ditures. In: ICSE ’81: Proceedings of the 5th international conference on Software
engineering, Piscataway, NJ, USA, IEEE Press (1981) 107–116

19. Boehm, B.: Software Engineering Economics. Prentice Hall PTR, Upper Saddle
River, NJ, USA (1981)

20. Boehm, B., Elwell, J.F., Pyster, A.B., Stuckle, E.D., Williams, R.D.: The TRW
software productivity system. In: ICSE ’82: Proceedings of the 6th international
conference on Software engineering. (1982) 148–156

21. Vosburgh, J., Curtis, B., Wolverton, R., Albert, B., Malec, H., Hoben, S., Liu, Y.:
Productivity factors and programming environments. In: ICSE ’84: Proceedings
of the 7th international conference on Software engineering, Piscataway, NJ, USA,
IEEE Press (1984) 143–152

22. Grady, R.B., Caswell, D.L.: Software Metrics: Establishing a Company-Wide Pro-
gram. Prentice Hall PTR (1987)

23. Card, D.N., McGarry, F.E., Page, G.T.: Evaluating software engineering technolo-
gies. IEEE Trans. Softw. Eng. 13(7) (1987) 845–851

24. MacCormack, A., Kemerer, C.F., Cusumano, M., Crandall, B.: Trade-offs between
productivity and quality in selecting software development practices. IEEE Softw.
20(5) (2003) 78–85

25. Reifer, D.J.: Let the numbers do the talking. CrossTalk The Journal of Defense
Engineering (March 2002) 1–8

26. Moses, J., Farrow, M., Parrington, N., Smith, P.: A productivity benchmarking
case study using bayesian credible intervals. Software Quality Control 14(1) (2006)
37–52

27. Albrecht, A.: Measuring application development productivity. In Press, I.B.M.,
ed.: IBM Application Development Symp. (October 1979) 83–92

28. Behrens, C.A.: Measuring the productivity of computer systems development
activities with function points. IEEE Trans. Softw. Eng. 9(6) (1983) 648–652

29. Banker, R.D., Datar, S.M., Kemerer, C.F.: A model to evaluate variables impact-
ing the productivity of software maintenance projects. Manage. Sci. 37(1) (1991)
1–18

30. Parkan, C., Lam, K., Hang, G.: Operational competitiveness analysis on software
development. Journal of the Operational Research Society 48(9) (September 1997)
892–905

31. Jones, C.: Applied software measurement: assuring productivity and quality.
McGraw-Hill, Inc., New York, NY, USA (1991)

32. Symons, C.R.: Software sizing and estimating: Mk II FPA (Function Point Anal-
ysis). John Wiley & Sons, Inc., New York, NY, USA (1991)

33. Maxwell, K.D., Forselius, P.: Benchmarking software-development productivity.
IEEE Softw. 17(1) (2000) 80–88

34. Arnold, M., Pedross, P.: Software size measurement and productivity rating in
a large-scale software development department. Software Engineering, 1998. Pro-
ceedings of the 1998 International Conference on (Apr 1998) 490–493

35. Anda, B.C.D., Dreiem, H., Sjøberg, D.I.K., Jørgensen, M.: Estimating software
development effort based on use cases-experiences from industry. In: Proceedings
of the 4th International Conference on The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, London, UK, Springer-Verlag (2001) 487–502

36. Kusumoto, S., Matukawa, F., Inoue, K., Hanabusa, S., Maegawa, Y.: Estimating
effort by use case points: method, tool and case study. In: Software Metrics, 2004.
Proceedings. 10th International Symposium on. (Sept. 2004) 292–299



37. Antoniol, G., Fiutem, R., Lokan, C.: Object-oriented function points: An empirical
validation. Empirical Softw. Engg. 8(3) (2003) 225–254

38. Cantone, G., Pace, D., Calavaro, G.: Applying function point to unified modeling
language: conversion model and pilot study. In: Software Metrics, 2004. Proceed-
ings. 10th International Symposium on. (Sept. 2004) 280–291

39. Symons, C.R.: Function point analysis: difficulties and improvements. Software
Engineering, IEEE Transactions on 14(1) (January 1988) 2–11

40. Ejiogu, L.O.: Software engineering with formal metrics. QED Information Sci-
ences, Inc., Wellesley, MA, USA (1991)

41. III, V.C.: Change-points: a proposal for software productivity measurement. J.
Syst. Softw. 31(1) (1995) 71–91

42. Moser, S., Nierstrasz, O.: The effect of object-oriented frameworks on developer
productivity. Computer 29(9) (1996) 45–51

43. Morasca, S., Russo, G.: An empirical study of software productivity. In: COMP-
SAC ’01: Proceedings of the 25th International Computer Software and Applica-
tions Conference on Invigorating Software Development, Washington, DC, USA,
IEEE Computer Society (2001) 317–322

44. Duncan, A.S.: Software development productivity tools and metrics. In: ICSE
’88: Proceedings of the 10th international conference on Software engineering, Los
Alamitos, CA, USA, IEEE Computer Society Press (1988) 41–48

45. Anselmo, D., Ledgard, H.: Measuring productivity in the software industry. Com-
mun. ACM 46(11) (2003) 121–125

46. Hastings, T.E., Sajeev, A.S.M.: A vector-based approach to software size mea-
surement and effort estimation. IEEE Trans. Softw. Eng. 27(4) (2001) 337–350

47. Stensrud, E., Myrtveit, I.: Identifying high performance erp projects. IEEE Trans.
Softw. Eng. 29(5) (2003) 398–416

48. L.Buglione, A.Abran: Multidimensional software performance measurement mod-
els: A tetrahedron-based design. In R.Dumke, A.Abran, eds.: Software Measure-
ment: Current Trends in Research and Practice, Deutscher Universitats Verlag
GmbH (1999) 93–107

49. Boehm, B.: Value-based software engineering: reinventing. SIGSOFT Softw. Eng.
Notes 28(2) (2003) 3

50. Boehm, B., Huang, L.G.: Value-based software engineering: A case study. Com-
puter 36(3) (2003) 33–41

51. Hubbard, D.W.: How to Measure Anything: Finding the Value of ”Intangibles”
in Business. 1 edition edn. John Wiley & Sons, Inc. (August 2007)

52. Austin, R.: Measuring and Managing Performance in Organizations. Dorset House
Publishing Company (1996)

53. Maxwell, K.D., Wassenhove, L.V., Dutta, S.: Software development productivity
of european space, military, and industrial applications. IEEE Trans. Softw. Eng.
22(10) (1996) 706–718

54. Putnam, L.H., Myers, W.: Measures for Excellence: Reliable Software on Time,
within Budget. Prentice Hall Professional Technical Reference (1991)


