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Abstract Message lost or delay, link and computer crashes, as well as network
partitioning can lead a system to an inconsistent behavior. The identification and
the precise reproduction of these faults may be hard to be done, specially during
the test of complex communication systems. Fault injectors are tools that intro-
duces faults in an application under test according to a faultload previously de-
scribed by a test engineer. This controlled way to inject faults allows to evaluate
the system dependability. Unfortunately, each fault injector presents a different
and sometimes hard to learn fault description format, which is one of the main
impairments to an efficient use of these tools. In this paper we present an envi-
ronment to overcome this problem, that translates a high level description into
faultload formats for different fault injectors. Furthermore, the environment gen-
erates all the commands needed to initiate a test campaign, thus reducing user
flaws and improving fault injector usability.

1 Introduction

Computational systems are an essential support in almost all human activities. In order
to attend the imposed requirements, they became complex in size and functionalities.
For these reasons, a minimum level of service quality is crucial but hard to obtain.
Dependability is an important concept, which indicates the ability of a system to avoid
failures that are more frequent and more severe than is acceptable [1].

Failure-free communication is one of the main requirements of large computer sys-
tems. In these systems, messages flow through a computer network, which is composed
of nodes (computers, servers, switches and routers) and paths (that interconnects any
two nodes of the network). The occurrence of faults is unavoidable. Node or path crash
as well as delay, drop and duplication of messages are examples of communication
faults. The system must implement some form of fault tolerance based on redundancy
to avoid that one of these unavoidable faults leads to system failure.

While faults are unavoidable, the probability of their occurrence may be considered
low. For this reason, in an operational environment, the identification and reproduction
of faults is a hard task, specially in distributed systems. Thus, the use of fault injectors
permits the creation of complex fault scenarios to test the system. The injected faults
are close to real ones and represent the most usual faults that can occur. Better than
real faults, they can be introduced in a fully controlled way. Fault injection is specially
useful to test the fault tolerance mechanisms built to improve the dependability of a
system. If fault coverage is low, the system can suffer a failure. In this case, the injected
fault permits to identify the failure mode of the system and estimate its robustness.



There are a significant amount of fault injectors reported in the literature [7]. How-
ever, from the point of view of test engineers, that are the users of fault injectors, the
main issues are related to the classes of faults they can inject and to the formats avail-
able to describe faultloads. A faultload defines the faults that will be injected during the
test campaign, as well as its configurations (moment of activation, duration, frequency
of occurrence, distribution, location and many others). Appropriate faultloads must be
provided by the user. Thus, the easiness to describe faultloads are directly related to the
usability of the injector as a whole, influencing its effective use.

Unfortunately, it is still hard to describe a faultload with its detailed configuration
for each specific fault injector. Thus fault injection may be completed dismissed during
the validation phase of a system - a test engineer may prefer to use empirical techniques
(for instance, an easy but potentially harmful disconnection of a network cable). Each
injector demands a specific format that must be followed to describe a faultload. These
formats vary from configuration files to script languages, from binary codes to XML.
The time to learn each variation inhibits broader acceptance of fault injection and biases
the usability of the tools. Moreover, if a test engineer wants to use two or more fault
injectors to compare or complement the test results, he must write a specific faultload
for each injector considering the details of each format and spending his precious time
describing several times the same fault scenario.

Considering the above concerns, we propose an environment to describe faultloads
at a high abstraction level. The environment interacts with the users producing fault-
loads for different communication fault injectors. Our approach targets fully functional
systems and prototypes for testing them under fault conditions. The main goal is us-
ability improvement through simplified and reusable descriptions of faultloads. For this
reason, extensibility is a key point, in a way that new faultload formats for new fault
injectors may be included, attending user needs. Finally, emphasis is given to the con-
struction of complex faultloads, in order to support rich scenarios, such as sequence of
faults, multiple faults and distributed faults.

For extensibility purposes we adopted a framework approach. In an extensible envi-
ronment, unpredictable cases may be considered in a straightforward manner. Consid-
ering the environment development, we assume the following premises:

Focus on communication faults: emphasis is given to communication fault, be-
cause these are the main sources of failures regarding message-based systems.

Fault injector independence: a faultload must describe the fault scenario the test
engineer wants and must be the same for any fault injector that can be used in a test
campaign. So, an unique high-level faultload will be converted automatically to specific
formats appropriated to each injector that can be used.

Specification of rich faultloads: the environment supports the specification of mul-
tiple faults in a faulload with different activation triggers and probabilities. In that way,
several classes of faults may be defined to executed into a specific fault injector during
the test campaign.

Extensibility/flexibility: extensibility is widely supported. The environment may
be easily adopted to describe several different fault scenarios to different fault injectors,
according the requirements of the test engineer.

The remainder of the paper is organized as follows. Section 2 describes related



works. Section 3 details a model of the environment, while section 4 explains its archi-
tecture. Section 5 shows examples of faultloads generated for different fault injectors.
Finally, section 6 concludes the paper.

2 Related Work

Injectors use several formats and approaches to permit the user creating fault scenarios.
This section describes fault injectors that realizes some effort to make this task easier.
With this background, comparisons may be done between the existing approaches and
the proposed environment.

Related to classical tools, DOCTOR [5] is an environment for evaluation of real
time distributed systems, that allows injection of hardware and communication faults.
ORCHESTRA [2] is a tool for testing network protocols, implemented through a frame-
work that intercepts communication messages. NFTAPE [11] allows the creation of new
fault injectors using components and interfaces provided by the tool, bringing portabil-
ity and extensibility to the description of test scenarios.

Considering more recent tools, MENDOSUS [8] implements fault injection into
emulated networks, where faults may be injected directly into the components of the
network under test. FIRMAMENT [3] injects faults into messages passing through the
protocol stack inside the operating system kernel, which allows a direct packet manipu-
lation. FAIL/FCI [6] is a tool that evaluates cluster applications, where the construction
of test scenarios is based on a state machine approach.

To compare the injectors above we analyze the following parameters, based on the
desirable requirements to faultload description, as well as on previous approaches [12]:
expressiveness (how similar to real and complex fault scenarios the described faultloads
can be), difficulty (how difficult is the creation of a faultload for a given injector) and
usability (including issues like user documentation, availability of the tool and extensi-
bility).

Starting with expressiveness, we consider that NFTAPE and DOCTOR present low
expressiveness because both offer only few mechanisms for faultload description - only
configuration files are accepted by them. MENDOSUS and ORCHESTRA expressive-
ness are medium. They provide configuration scripts that helps the specification of fault-
loads, but with limited fault models. FAIL/FCI and FIRMAMENT use scripts that spec-
ify rich sets of faultloads - for this reason, we consider that both present high expres-
siveness.

Following with difficulty and usability, FAIL/FCI has low difficulty and medium
usability - its faultload description is intuitive but specific to grid environments. MEN-
DOSUS presents medium difficulty and usability, also from its specific focus (related
to emulated networks), as well as from the limited fault model used. FIRMAMENT,
NFTAPE, ORCHESTRA and DOCTOR have both high difficulty and low usability,
because the hard curve of learning (considering FIRMAMENT) and few available doc-
umentation and information (all other injectors). None of the analyzed injectors show
high usability. Table 1 summarizes these comparisons.



Table1. Faultload description comparison

FAIL/FCI

FIRMAMENT

MENDOSUS

NFTAPE

Expressiveness

High

High

ORCHESTRA

Medium

Low

Medium

LowDOCTOR

Difficulty

Low
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Medium

High

High

High

Usability

Medium

Low

Medium

Low

Low

Low

3 Model of the Environment

The environment model is based on modularity (independent units) and extensibility
(for modifications without side effects). It provides a conceptual base for the archi-
tecture of the environment, turning its conception more precise. This model, defined
previously [9], is divided into elements (figure 1). The fault injectors themselves are not
components of the environment. They will be used later during the test campaigns. In
the following paragraphs, we describe each element.
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Figure1. Environment model

Core: Includes operations supported by the model to define the type of injected
faults. The core is composed by: Node, Path, Packet and Network. In the core, one or
more primitive faults may be selected to be injected later during test runtime.

Fault Composition: Defines a set of primitive faults, that may be used as a single
fault. It allows the creation of new fault types, based on primitive faults already available
on the Core. Fault composition is optional (as dotted lines in figure 1).

Interface: Realizes a mapping between a faultload created by a user, and a specific
faultload (related to an injector and following the syntax and semantic defined by this
injector). To manage this task, we define another type of user, called Administrator.
The main advantage of this approach is the separation of concerns: while issues of



configuration are delegated to special people, a test engineer may focus his attention to
fault injection, improving the quality of the test campaign.

Faultload: Through faultloads, the environment users (the test engineers) describe
which faults will be injected later in the test campaign, as well as their configurations.

From this point onwards we start presenting the new contributions of this paper. The
current work defines a Java subset language, as well as additional libraries, for faultload
description. In this subset, all the known constructions and operations used in Java are
allowed, among other additional features. Table 2 describes the main functionalities
supported in this subset. The advantage of using a Java subset instead another faultload
description language are easy to see - it eliminates the learning curve.

Table2. Main functionalities of the environment’s language

Variable 
Declarations

Permits the declaration of variables of several types 
(such as numeric/alfanumeric).

Syntax: <type> <name> [=<value>];

Conditional
Statements

Defined through an if command (such as Java language).
Syntax: if (<expr>) { <commands> }

Loop
Statements

Used for operations that must be its execution repeated, 
according to an expression.

Syntax: while|for (<expr>) { <commands> }

Topology
Components

Support of additional classes, related to the topology 
previously defined.

Syntax: Node|Path|Packet <name> [=<value>];

4 Architecture

In order to assert an appropriate level of usability [4, 10], a computational environment
must be easy to use. At the same time, this environment must be also powerful enough
to allow several levels of operation from final users. Finally, extensibility and modu-
larity are also important requirements to consider in developing this kind of system. In
this context, the environment proposed in this paper has a modular architecture. The ap-
proach used here is based on the model described in the previous section, with emphasis
on extensibility. Figure 2 presents a general diagram of the architecture.

With this general architecture in mind, the following items explains the internal
function of each component as well as the interaction between them.

Input represents the main input of the environment and is responsible for its config-
uration and execution. This input encompasses three phases: (1) Faultload specifies the
faults that will be injected in a test campaign; (2) Compiler Call contains the set of calls
needed to convert the general faultload into specific faultloads for each fault injector
used, and (3) Injector Call provides all the mechanisms for an appropriate execution of
fault injectors during the test campaign.

Topology allows the specification of a network topology that will be used in a test
campaign. The main components in a topology are nodes and paths.
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Figure2. Environment architecture

Application indicates the target application that will be tested in a test campaign.
The target application is indicated by: (1) Call Name (name of the application); (2)
Configuration Parameters (all the required parameters to execute the target applica-
tion); and (3) Topology (identification of where the target application will be executed,
considering the topology defined for the test campaign).

Extractor is responsible to extract relevant information from the Topology and Ap-
plication components. This extra information is used to complete the generation of
faultloads, as well as calls for compilers and fault injectors (such as the name of each
component in a given topology, as well as their types.

Compiler converts the high-level faultload described by the user using the Java sub-
set language to a faultload format closer to the descriptions used by the fault injectors.
The Intermediate Language used to represent these faultloads is simpler and less struc-
tured than the Java subset language described previously, following the main purpose to
gain performance on the compilation process. This language has only a Symbol Table
(for data storage) and six commands: INSERT (adds a value into the Symbol Table),
RUN (runs a specified target application), RAND (generates a random number, based
on given seed), EVAL (evaluates a given expression), GOTO (goes to a given line into
the code), DROP (drops a given packet) and DELAY (delays a given packet).

Fault Injector Compilers translate the faultloads previously created to each spe-
cific faultload format needed. For each fault injector available to be used must exist a
compiler in the environment. New compilers for new fault injector can be created by
the administrator. The main goal is to realize the mapping between the functionali-
ties provided by the environment and that of the fault injectors. The translation uses
mapping and triggering scripts. The mapping script has the following syntax: “Inter-
mediate Language Command” : “Fault Injector Command”, where the first one
represents a command of the intermediate language, while the second one indicates
what command or sequence of commands of the fault injector is associated with it.
The triggering scripts are used for extra features provided by fault injectors, that is not
directly treated by the environment. It is possible to define triggers in the following
points: before faultload (for initialization purposes), before line (considering a line of



the intermediate language), after line (activated at the end of the current line) and after
faultload.

Output consists of faultloads and commands that will be used to activate a fault
injection test campaign. A complete fault scenario related to each fault injector, the ac-
tivation commands for a fault injection campaign and also information about topology,
when needed for a specific fault injector, are the output of the environment. This fault
scenario embraces not only the faultload, but all configuration parameters required for
the execution of a fault injector in a test campaign. Following this phase, the test engi-
neer can finally start a test campaign.

It is worth to mention that the proposed environment does not replace the fault injec-
tion environment where the test campaign will finally run. It complements the last one
allowing to describe the desired faultload at a high abstraction level and independently
from a given fault injector format. It also allows that the same faultload description can
be translated to formats appropriated for different fault injectors without the need to
learn their specific formats and configuration details. One can argue that the adminis-
trator must still know the fault injector details to developed the needed fault injector
compiler. It is true, but the administrator just do that for a new fault injector the test
engineer wants to use and just one time. The description of faultloads is instead a more
frequent task; tests must be repeated several times with different faultloads and work-
loads, and a significative amount of different faultloads is needed to cover the most
common fault scenarios associated to real networks.

5 Case Example

This section describes the generation of faultloads using the proposed environment. In
this execution, from a general faultload we generate three different faultloads for three
fault injectors that use different and incompatible formats: FAIL/FCI, MENDOSUS and
FIRMAMENT. A format accepted as correct by MENDOSUS for example is not rec-
ognized as valid by FIRMAMENT. The main goal here is to illustrate the concepts ex-
plained in the previous sections. Table 3 illustrates an example of a faultload described
with the input language that was defined for the environment, a Java subset language.
In this faultload, a crash will be injected during a test campaign with a probability of
5% (represented from the 0.05 number). This high level description is converted to an
intermediate language closer to that used by the injectors.

Table3. A sample of high-level faultload, followed by the representation in intermediate language

import env.Node;

public class Client {
   public static void main(String[] args) {
      Node n = new Node("n1");
      n.setApp("/opt/ClientProgram");
      n.crash(0.05);
   }
}

Java Faultload
1 INSERT n "n1"
2 INSERT app "/opt/ClientProgram"
3 INSERT crash "95"
4 INSERT total "100"
5 RUN app
6 RAND value total
7 EVAL "value  total < 0" ? 8 ! 6
8 DROP "n1"
9 GOTO 6

Intermediate Language



A set of triggers for each fault injector used is defined, as well as the mapping scripts
that will be used on the compilation phase. Table 4 summarizes these scripts, with one
example for each fault injector.

Table4. Triggers and mapping scripts related to fault injectors

INSERT(x,y) : "int $x $y"
RUN(x)      : "Computer $x { program = '$x'; daemon = '$xLogic'; }"
RAND(x,y)   : "FAIL_RANDOM($x, $y)"
EVAL(x?t!f) : "$x > $t"
DROP(x)     : "stop"

Mapping Scripts

INSERT(x,y) : ""
RUN(x)      : "set_command $i '$x' EXEC $i $x"
RAND(x,y)   : "poisson $x"
EVAL(x?t!f) : ""
DROP(x)     : "set_fault $x fail_host_power_off TRANSIENT"         

INSERT(x,y) : "SET $y $x"
RUN(x)      : ""
RAND(x,y)   : "RND $y $x"
EVAL(x?t!f) : "JMP $x $t"                                          
DROP(x)     : "DRP"         

FAIL/FCI

BeforeFaultload : "Daemon $xLogic {"
BeforeLine      : "node $x"
AfterLine       : ", goto $x;"
AfterFaultload  : "}"

BeforeFaultload : "set_host $x $y"  
BeforeLine      : ""
AfterLine       : ""
AfterFaultload  : ""

MENDOSUS

BeforeFaultload : "MAIN:"           
BeforeLine      : ""
AfterLine       : ""
AfterFaultload  : "END:"

FIRMAMENT

Triggers

Finally, the environment translate the faultload to appropriated formats using the
representation in intermediate language, the triggers and the mapping scripts. Table 5
illustrates the description of a crash fault, that occurs with the probability of 5% in three
different but equivalent formats. Each format is syntatic and semantic well-formed for a
specific injector: FAIL/FCI, MENDOSUS or FIRMAMENT. This example shows that
even considering simple faultloads, the formats accepted by each injector differ highly,
as well as the semantic associated with fault types into each fault injector.

Receiving the faultloads generated by the environment (table 5), the test enginner
can now start test campaigns with one of more fault injectors or he can describe and
generated new faultloads using the environment. Comparing the input description of 3
with the faultloads of (table 5) we can see that even for this simple example the proposed
solution allows for better readability of faultloads.

6 Final Remarks

This paper presents an environment for detailed description of communication fault-
loads. We detail its model, as well as its architecture and the internal components. Fi-
nally we show an example of faultload translation for three different fault injectors.

Considering usability issues, the environment proposes a language for faultload de-
scription at a high abstraction level and a method for translating it to formats that the
injectors accept. Related to requirements mentioned in section 2, the environment has
high expressiveness, low difficulty and high usability. These are possible using simpli-
fied high level descriptions, which involves few language constructions and, at the same
time, allows to describe powerful and detailed fault scenarios, as illustrated in section
5.

Other issues related to usability refers to the target public - although usability is
generally related to final users, developers and system architects must also be consid-
ered to improve their levels of productivity. The environment is developed with this idea



Table5. Specification of a faultload (crash with 5% probability) into fault injectors

FAIL/FCI

Daemon ClientLogic {             
   node 1: int prob = FAIL_RANDOM(1,100);

                 prob <= 5 > stop, goto 2;
         node 2: 

}
Computer Client {
   program = "/opt/ClientProgram";
   daemon = "ClientLogic"; 
}

// Configuration of topology:
set_host Client 10.0.0.1
// Target system commands: 
set_command 0 "/opt/ClientProgram" 
            EXEC 0 Client
// Faults that will be injected:
set_fault Client ft_host_power_off 
          TRANSIENT poisson 0.05  

; R0 = 100; // 100%
SET  100 R0
; R1 = RND(R0)
; (sorts a number, with seed 100)    
RND  R0  R1
; R0 = 95
; (looking for 5% of probability)
SET  95  R0
; R0 = R0  R1;    
SUB  R1  R0
; if R0 is negative, drops packet (crash)
JMPN R0  DROP  
DROP: DRP

MENDOSUS

FIRMAMENT

in mind - all descriptions are at a high abstraction level, such as in programming lan-
guages. Besides this, the environment separates concerns affecting configuration and
description, which organizes all the parameters and commands related to a test cam-
paign.

To achieve better usability, the environment attends properly the usability metrics
previously defined [4, 10]. The language proposed to describe faultloads is both easy to
learn and easy to remember through simplified scripts that use constructions commonly
found in programming languages. This simplicity also leads to efficient and relatively
error-free faultload description, as showed in the previous section. Finally, considering
the target public (developers, test engineers and system architects), the environment is
pleasant to use because it does not impose another fault description language but uses
constructions next to the world of developers.

In comparison to similar approaches (described in section 2), the environment im-
plements a more detailed fault model than MENDOSUS and FAIL/FCI. Another feature
the environment offers is the independence of a specific network infrastructure or sys-
tem type, differently of the fault model of DOCTOR (with focus on real-time distributed
systems) and of ORCHESTRA (that focuses on network protocols). Finally, the envi-
ronment uses a simplified approach in all of its constructions, feature not found in the
faultload description formats defined by FIRMAMENT and NFTAPE.
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