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Abstract. Graph grammar is a formal language that is suitable for
the description of distributed systems, and is intuitive even for non-
theoreticians. The extension of graph grammars to attributed graphs
gives raise to a framework to reason about attributes (data values). We
use a relational and logical approach for graph grammars, and use math-
ematical induction to analyze properties of the specifications, enabling
the proof of properties for systems with an infinite state-space and infi-
nite computations. Proofs by induction can be semi-automated by using
theorem provers. Two important questions of a user when using theorem
provers to analyze a system are: (1) how to state the desired properties;
and (2) which kind of help must be given to complete the proof of the
property. In this paper, we tackle these two problems, illustrating our
approach with an example: the mobile support for Internet Protocol ver-
sion 6 (IPv6). This protocol defines how mobile devices can move from
one network to another while maintaining ongoing communication.

1 Introduction

Graph grammars is a specification language that allows the description of a
system in terms of states and state changes, where the states are described by
graphs and the state changes are described by rules having graphs at the left-
and right-hand sides. The operational behavior of the system is expressed via
applications of the rules to the state-graphs depicting the actual states of the
system. The graphical notation and the definition of local changes to system
state using rules make it suitable for describing distributed systems [1, 2].

Attributed graph grammars enrich the graph grammar formalism integrating
data types into graphs, by allowing assignment of values to vertices and/or edges.
It is possible to use variables and terms in rules, giving the specifier a better level
of abstraction with respect to grammars using only non-attributed graphs. For
verification, however, the presence of attributes adds some difficulties, since data
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types typically involve infinite sets of values. There are approaches to deal with
verification of infinite state attributed graph grammars [3, 4], but their analysis
process is for limited classes of grammars.

In previous works [5, 6], we presented a relational and logical approach for
attributed graph grammars. These works provided the basis for the verification of
a large class of (infinite-state) graph grammars through mathematical induction.
Proofs by induction can be semi-automated by using theorem provers. In contrast
to another established techniques of verification, such as model-checking [7, 8],
theorem proving allows the analysis of a infinite-state system without any kind of
approximation. On the other hand, the adoption of such technique may require
interaction with the system developer.

Two important questions of a user when using theorem provers to analyze a
system are: (1) how to state the desired properties; and (2) which kind of help
must be given to complete the proof of the property. In this paper, we tackle these
two problems, by explaining how to state properties and construct corresponding
proofs, and illustrating our approach with an example: the mobile support for
Internet Protocol version 6 (IPv6). This protocol defines how mobile devices can
move from one network to another while maintaining ongoing communication.

The paper is organized as follows. Section 2 reviews attributed graph gram-
mars. Section 3 specifies the mobile support for Internet protocols. Verification
of properties is discussed in Section 4. Section 5 presents conclusions.

2 Attributed Graph Grammars

Graph-based formal description techniques often present a friendly means of ex-
plain complex situations in a compact and understandable way. Graph grammars
generalize Chomsky grammars from strings to graphs [9]. The basic idea of this
formalism consists on specifying the states of a system as graphs and describing
the possible state changes as rules, having graphs at the left- and right-hand
sides. Graph rules are used to capture the dynamical aspects of the systems.
That is, from the initial state of the system (the initial graph), the application
of rules successively changes the system state.

Attributed graph grammars [4] are an extension to the basic formalism in-
tegrating the use of data types into graphs. An attributed graph has two com-
ponents: a graphical part (a graph composed of vertices and edges) and a data
part. The use of attributed graphs gives to the specifier a language that is more
suitable for specification, merging the advantages of the graphical representation
with the standard representation of classical data types. In our approach, the
graphical and the data part are linked by attribution functions. That is, a graph
has some special kind of edges called attribute edges that are used to describe
attribution of vertices, and a mathematical function assigns a data value to each
one of these attribute edges. We use algebraic specifications to define data types
and algebras to describe the values that can be used as attributes.

An attributed graph grammar is a tuple consisting of a type graph, an initial

graph and a set of rules. The type graph characterizes the types of vertices and



edges allowed in the system. The part of the type graph describing data elements
consists of names of types. The initial graph represents the initial state of the
system and the set of rules describes the possible state changes that can occur.
A rule has a left-hand side (LHS) and a right-hand side (RHS), which are both
graphs, and a partial graph morphism that connects these graphs in a compatible
way and determines what should be modified by the rule applications. Attributes
in LHS and RHS of rules must be variables and the possible relations between
these variables are expressed by equations associated to each rule.

Intuitively, a state change occurs by applying a rule to a graph. A rule is
applicable in a graph if there is a match, that is, an image of the left-hand side
of the rule in the graph. Roughly speaking, this means that all items (vertices
and edges) belonging to the left-hand side must be present at the current state
and all variables of the left-hand side must be assigned to actual values of the
current state to allow a rule to be applied (also all rule equations and equations
of the specification must be satisfied by the chosen assignment of values to the
variables). Each rule application transforms a state-graph by replacing a part of
it by another graph. This process occurs in the following way: all items mapped
from the left to the right-hand side (via the graph morphism) must be preserved;
all items not mapped must be deleted from de current state; and all items present
in the right-hand side but not in the left-hand side must be added to the current
state to obtain the next one. The values of the attribute edges that came from
the current state and are not in the left-hand side of the rule are preserved
while the values of the preserved or added attribute edges are determined by the
equations of the rule and by the assignment of the values to the variables of the
right-hand side of the rule.

In previous work [6], we have defined a translation of attributed graph gram-
mars to relational structures. Given an attributed graph grammar, we associate
to it a tuple composed of a set and a collection of relations. The set describes
the domain of the structure (the set of vertices, edges and attribute values of
the graph grammar) and the relations define the type graph, the initial graph
and the rules. For instance, relations vertG (unary), incG (ternary) and attrG

(binary) model an attributed graph:

– vertG defines the set of vertices of G;

– incG represents the incidence relation between vertices and edges of G;

– attrG specifies the values of the attribute edges of G.

If we consider the graph depicted in Figure 1, we have for example, {MN, R,

bindAck} ⊂ vertG, {(homeAg, MN, R), (con, R, MN)} ⊂ incG and {(addr, Nat),
(bindCache, Cache)} ⊂ attrG. A series of logical conditions impose restrictions to
the elements of such relations in order that they really represent the components
of an attributed graph grammar (graphs, typed graphs, graph morphisms and
rules). Details can be found in [6]. In this approach, the application of a rule is
described by a definable transduction (that can be seen as an inference rule) on
the relational structure associated to a graph grammar.



3 Example: Mobile IP

Originally, the design of the Internet protocol suite did not account for the
possibility of mobile nodes. Portable computers and several IP capable devices,
as well as wireless connectivity, became very common in the last decade and the
requirement to support communication transparent node mobility became thus
natural: a mobile node should be able to dynamically change the access network
while transparently maintaining ongoing communication at application level.
This is intrinsically a routing problem and is solved through similar extensions
of both IPv4 and IPv6 protocols: on top of existing IP functionality, support
mobile nodes by dynamically assigning IP addresses in the networks they enter
and redirecting existing traffic to the current location (address) of the mobile
node. In the following, mobile IPv6 [10] explanations are introduced together
with their formalization in Graph Grammars.

3.1 Graph and Data Types

For this example, we use the algebraic specification MobileIP, consisting of
basic data types like natural numbers (Nat), booleans (Bool), pairs (Address),
and lists of numbers (ListNat), lists of pairs (ListAdd), pairs of a number and
an address (Cache) and usual operations. This specification is omitted due to
space limitations. The types of elements of the example can be seen in Figure
1. There are 3 kinds of vertices: MN (mobile node), R (router) and message
vertices, corresponding to mobile nodes, routers and messages, respectively. A
Mobile Node (MN) is connected to its home agent (homeAg - responsible to
forward data packets to MN while away from home), and to a default router
(default), both of type R (router). A Mobile Node has a home address5 (homeAd

of type Address) in its home network. When a MN visits a foreign network, it may
obtain an address in that network, called Care-of Address (CoA), together with a
router address in that network. This pair is stored in bindUpdL (of type ListAdd,
recording pairs care of address /router address). Several access networks may be
available in a given location. MN can hold several such pairs. At any time away
from home, an MN is using one primaryCoA (of type Address) to be addressed,
as well as one default router, respective to the CoA in use. An MN may be in a
handover (of type Bool) activity, whereby the primaryCoA and default router are
changed according to the chosen access network.

Both the home agent and the current default router of a mobile node are of
router type R. Each R vertex has an addr (of type Nat, the router’s address). It
supports address distribution to nodes, the address space managed by the router
is represented by freeAddrL (of type ListNat, recording the free addresses of this
router). As home agent, the router has to record the current CoA of the mobile
nodes belonging to its home network, supported by bindCache (of type Cache).

5 In the graphical representation, attribute edges are drawn as dashed edges connecting
a vertex and a data type. The same data types appear multiple times for convenience
(otherwise the graphical representation would be too cumbersome).



This allows the home agent to forward data packets to the current location of
the mobile node.

There is one message vertex for each type of message that can be sent in this
system. This message vertex is connected to a target node (that may be : MN or
R, depending on the message), and may have different types of arguments. The
use of messages is explained with the rules.

Address

MN

CoAAddress

ListNat

Nat
primaryCoA

R
con

homeAg

Address

Bool

AddresshomeAd

ListAdd
freeAddrL

addr

bindUpdL

handover

bindCache defaultCache
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homeAck

Bool bindAckAddress

Bool
Address

homeAd?

CoA?

bindUpd

Fig. 1. Type Graph

3.2 Graph Grammar for Mobile IP

Figures 2 and 3 present the rules. Mobile Nodes can be dynamically created
(rule createMN) and initialized by asking to a reachable router for their home
address (rule home?). A router may respond positively, reserving an address
(rule ackHome) or negatively (rule nackHome) in case, for instance, there is
no address available. While moving away from home, mobile nodes may reach
other routers and ask for care-of-addresses (rule reqCoA). If accepted in the
foreign network, a pair of care-of-address and router address are returned (rule
recCoA). When moving, a mobile node has to select among the CoAs, which is
to be used as primary, modifying the default router accordingly and updating
this information in the home agent. This comprises a handover procedure and
is initiated by a mobile node (rule reqBind). The home agent responds to the
update request positively (rule bind) or negatively (rule notBind), finishing the
handover procedure. In our modelling a router reacts to mobile node requests
to: obtain a home address (rules reqHome1 and reqHome2); to obtain a care-
of-address (rule respCoA); and to update the binding of a mobile node to a
care-of-address (rules bindOk and bindNOK).

4 Verification of Properties

The relational and logical approach for attributed graph grammars [5, 6] allowed
the use of mathematical induction to verify properties for systems with an infinite
state-space and infinite computations. The verification process involves two main
steps: the statement of properties and the proof of properties.
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4.1 Stating Properties

The first step in the verification process consists on the specification of system
requirements. These descriptions must be precise and unambiguous to enable
verification through (semi-)automated tools. In our approach we use first-order
logic. Although we are dealing with a very wide spread mathematical language,
some mathematical expertise is required to write correctly the specifications.

In order to help and simplify this task, we defined patterns for property
specifications [6]. The patterns use pre-defined functions, that are recursively
defined: each function is specified for the initial graph (G0) as the base case
and for any graph resulting of a rule application (apαi

m G, graph resulting from
the application of rule αi at match m) in the inductive step. Examples of such
functions are given in Table 1. Function edgt1 returns the edges of a reachable
graph of type t1, function edg returns all edges with their respective source
and target vertices of a reachable graph and function attE returns all pairs of
attribute edges and respective values of a reachable graph.

Table 1. Functions in the Standard Library

Description Function Definition

Edges of edgt1 G0 = {x | tG0

E (x, t1)}
specific type edgt1 apαi

m G = {x | tRi

E (x, t1) ∨ [x ∈ edgt1G ∧ ∄w mαi

E (w, x)]}

Edges with edg G0 = {(x, y, z) | incG0(x, y, z)}
source and edg apαi

m G = {(x, y, z) | [(x, y, z) ∈ inc G ∧ ∄w mαi

E (w, x)]∨
target vertices ∨ [∃r, s incRi(x, r, s) ∧ ∃w1, w2 [αiV (w1, r)∧

∧ αiV (w2, s) ∧ mαi

V (w1, y) ∧ mαi

V (w2, z)]]∨
∨ [incRi(x, y, z) ∧ ∄w1, w2 [αiV (w1, y)∧
∧ αiV (w2, z)]] ∨ ∃r [incRi(x, r, z)∧
∧ ∃w1 [αiV (w1, r) ∧ mαi

V (r, y)]∧
∧ ∄w2 αiV (w2, z)] ∨ ∃s [incRi(x, y, s)∧
∧ ∄w1 αiV (w1, y) ∧ ∃w2[αiV (w2, s) ∧ mαi

V (s, z)]]}

Attributes attE G0 = {(x, a) | attrG0(x, a)}
of edges attE apαi

m G = {(x, a) | attrRi(x, a) ∨ [(x, a) ∈ attE G∧
∧ ∄w mαi

E (w, x)]}

Relations used in definitions are part of the relational approach for graph
grammars. For instance, tGE is a binary relation that associates the edges of
graph G with their types. Relation αiV is the binary relation that maps the
vertices of the left-hand side (Li) of the rule αi to vertices of its right-hand side
(Ri). The pair of binary relations (mαi

V , mαi
E ) defines a match. All relations of

the relational structure that characterizes the graph grammar are considered as
axioms, that is, considering R a relation belonging to the relational structure,
R(x1, . . . , xn) ≡ true iff (x1, . . . , xn) ∈ R.

Using the pre-defined functions, a collection of patterns has been defined [6].
Examples are described in Table 2. Once the developer identifies requirements
of a system, patterns that fit those requirements are selected and instantiated.

Considering the Mobile IP example, the pattern system and the standard
library can assist, for example in the statement of the following properties.



Table 2. Properties Patterns

Property Pattern

If there is an edge of type t1, then there
is no edge of type t2 with the same
source vertex.

∃x1, y1, z1[x1 ∈ edgt1g∧(x1, y1, z1) ∈ edg g] →
∄x2, y2 [x2 ∈ edgt2g ∧ (x2, y1, y2) ∈ edg g]

For all edges of type t, its target ver-
tex has an attribute of type t2 with the
same value of as the attribute of type
t1 of its source vertex.

∀x1, y1, z1[x1 ∈ edgtg ∧ (x1, y1, z1) ∈ edg g] →
∃x2, x3, n[x2 ∈ edgt1g ∧ (x2, y1, y1) ∈ edg g ∧
(x2, n) ∈ attEg ∧ x3 ∈ edgt2g ∧ (x3, z1, z1) ∈
edg g ∧ (x3, n) ∈ attEg]

Description Each mobile node has only one home agent.
Property 1 If there is an edge of type homeAg, then there is no other edge of

type homeAg with the same source vertex.
Pattern first of Table 2.

Description A mobile node is always connected through its primary CoA.
Property 2 For all edges of type default, its target vertex has an attribute of

type addr with the same value of as the first component of the attribute of
type primaryCoA of its source vertex.

Pattern second of Table 2.

4.2 Proving Properties

The relational approach of graph grammars has been developed to allow the
use of theorem provers, short TP, for verification of properties. In contrast to
other methods of verification, like model checking [7], theorem proving allows the
application of techniques such as structural induction to prove properties over
infinite domains. Nevertheless, the adoption of such technique may require inter-
action with the system developer, and thus, the user may have some knowledge
of how proofs are constructed to interact correctly with the system.

The proof strategy used to verify properties for systems specified as graph
grammars in a theorem prover is the following. First, we define the relational
structure associated to the graph grammar (this can be totally automated us-
ing the definitions in [6]). The relations of this structure define axioms that can
be used in proofs. Then, we state the property to be proven using logic formu-
las (possibly with aid of property patterns). Finally, the proof is constructed.
Properties about reachable states are proven by induction: in the base case, the
property is verified for the initial graph (this step can be totally automated,
since it involves only consulting the relations that define the initial graph) and
then, for the inductive step, the property is verified for each rule applicable to a
reachable graph. The proof process for this step may be semi-automated, that is,
it may proceed until an auxiliary theorem is required; in this case, this theorem
must be proven before resuming the proof of the original goal. In many cases, the
proof of a property may depend on the establishment of a set of other properties
or theorems. However, it is important to notice that all these auxiliary theorems
can be used as simplification rules, and will probably be reused in future proofs.
Next, we describe proof schemes for the properties stated in the previous section.



Property 1 If there is an edge of type homeAg, then there is no other edge of

type homeAg with the same source vertex.

Basis: The property is verified for the initial graph: all functions of the stated
property are instantiated for G0. Since this involves only the base cases of func-
tions definitions, the property is trivially evaluated to true.
Hypothesis ⇒ Inductive Step: Assuming that the property is valid for any
reachable graph G, the proof requires 15 cases, depending on the considered rule.
A TP would go through all these cases, that can be grouped into 3 classes:

Case Class 1: Edges of type homeAg do not appear in the rule. In this case
the TP identifies, consulting the relations of LHS and RHS of the considered
rule, that there are no deleted, created or preserved homeAg edges. Then, TP
validates the property by using the induction hypothesis.

Case Class 2: There is an edge of type homeAg preserved by the rule. For
proofs about preserved items we can use the following statement: first, there is
an image using the match for all items that are in the LHS of the rule (rule
applicability condition); second, items that are image of the LHS always satisfy
the statements in G (by induction hypothesis). Consulting the relations of the
relational structure, TP verifies that there is no other edges of type homeAg in
the RHS of the rule. Since the edge of the RHS is preserved, the corresponding
edge in G satisfies the property, and thus, there is no other edge of type homeAg

with the same source vertex. For edges of type homeAg that are in the part that
is not changed of the reachable graph, property is validated by hypothesis.

Case Class 3: There is an edge of type homeAg created by the rule. In this
case, TP verifies the property for the RHS of the rule, but can not directly deduce
if there are edges of type homeAg in vertices that are image of the match. This
is an example of situation in which the user must use auxiliary properties to
complete the proof. One may use the following property: if there is an edge with
source in a vertex of type homeAck and target in a vertex of type MN, then there
is no edge of type homeAg with source in this MN vertex. After this statement
(and respective proof), the proof for this case can be completed.

Property 2 For all edges of type default, its target vertex has an attribute of

type addr with the same value of as the first component of the attribute of type

primaryCoA of its source vertex.

Basis: Analogous to proof of Property 1.
Hypothesis ⇒ Inductive Step: Here we also have 3 classes of cases:

Case Class 1: Edges of type default do not appear in the rule. Similar to the
case 1 of previous analysis.

Case Class 2: Edges default, addr and primaryCoA are preserved. According
to previous stated theorems, since the edges are preserved items they satisfy the
property in G and thus, also in the resulting graph. For the preserved part of
the reachable graph, the property is validated by hypothesis.

Case 3: There is an edge of type default created by the rule. The property
is verified by consulting the relations that define the RHS of the rule. For the
preserved part of the reachable graph, property is validated by hypothesis.



5 Final Remarks

In this paper we have described the two main steps, stating and proving of
properties, in the process of verifying a mobile support for Internet protocol
using attributed graph grammars. More specifically, we have adopted a relational
and logical approach of attributed graph grammars, which allowed the use of
mathematical induction as verification technique. The main advantage of such
choice consisted on the perspective of using a theorem prover in the system
analysis and on the possibility of verifying the system without using any kind of
approximation for the model, even though it comprising an infinite state-space.
Due to space limitations, we have restricted our analysis to only two properties.
Many other interesting properties could also have been considered.

We plan to use event-B [11] and its theorem provers to implement the rela-
tional and logical approach of graph grammars. Moreover, we intend to extend
the proposal to graph grammars with negative applications conditions [12]. These
conditions restrict the application of a rule by asserting that a specific structure
must not be present before or after applying the rule to a certain state-graph.
This extension may raise our flexibility in the use of the relational approach for
the specification of systems in all kinds of application areas.
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