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Abstract. We describe a method for determining the surface normals
(slopes) of a three-dimensional scene, from three or more digital pho-
tographs taken from the same viewpoint under different lighting condi-
tions. We assume that the scene contains a light gauge, a test object with
known shape and uniform color. The slope at a point p of the image is
found by locating a point q of the gauge that displays similar reaction
to the incident light in all images. The method can be used also with
simulated images of gauges (virtual gauges) computed from a descrip-
tion of the relevant light fields. In particular, we show how to fit a simple
light field model to a photo of an actual light gauge of known geome-
try. This procedure can be used to extract the significant photometric
information from the gauge’s photos, while discarding small-scale noise
that arises from dents or stains of the real object. In order to validate
the method, we presented tests using real objects.

1 Introduction

1.1 Variable-lighting photometric stereo

We describe a technique for variable-lighting photometric stereo (VLPS), which
aims to recover the surface normals (slopes) of a three-dimensional scene from
a collection of 2D images taken with different lighting conditions but with the
same pose and viewpoint. The main features of our method are (1) the use of
light gauges to assess the illumination field; (2) a procedure for fitting a simple
illumination model to images of real light gauges; and (3) efficient inversion of
the shading function by a two-dimensional bucket grid.

The normal computation procedure also yields the albedo of the scene at
every point of the image. The method can be applied also to surfaces with
arbitrary (non-Lambertian) finish, provided that the relevant object has the
same uniform color and finish as the light gauge — that is, the same bi-directional
reflectance function (BRDF) everywhere. The method works even in the presence
of attached shadows (parts of the target surface which are turned away from the
light) and with extended sources and other complex light fields, as long as the
light field is uniform over the scene. Moderately non-uniform light fields could be
handled by including multiple light gauges in the scene and interpolating their
information.
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On the other hand, the normal computation method cannot be directly ap-
plied to scenes with projected shadows; but can detect them, and can still be used
at every pixel which is fully illuminated in at least three photos. The method
does not handle complex optical paths, such as light incident at P that has been
scattered, reflected, or refracted by other parts of the scene. Figure 1 shows a
typical set of input images.

Fig. 1. Four images of a scene under different lighting conditions.

1.2 Related work

The principles of photometric stereo has been known since the establishment
of photography and the development of photometry, in the early 20th century.
Early articles assumed very simple settings: a smooth object with uniform color
and Lambertian finish, illuminated by a single light source, distant and point-
like (i.e. by a uniform and unidirectional light field). Those methods emphasized
extraction of the depth information from a single monochromatic image [5].

The extraction of slope information from multiple images under different light
fields, using light gauges, was pioneered by Woodham in 1980 [10] and has been
extensively researched since then. Woodham [11] also introduced the technique
of the look-up table to search the best match between the brightness vector of
the sphere (gauge object) and the brightness vector of the scene object. The
table size of look-up table is exponential in number of images (the total size of
the look-up table is (2bd), which depends on the dimension d and the number
of bits b into which brightness is quantized). When the number of registered
images increase, we have many brightness vectors of the gauge object and the
dimension look-up table has a prohibitive cost.

In 2005, Hertzmann and Seitz [4] presented a stereo photometric approach,
with the use of gauge objects, which enables reconstructing surfaces with arbi-
trary BRDF (the method assumes orthography, distant lighting, no cast shadow,
no inter-reflection, no subsurface scattering, and no transparency). Zhong and
Little [12] developed a method that extend a work of Hertzmann and Seitz [4].
To speed up the search, the authors adapted the LSH (Locality Sensitive Hash-

ing) to perform searches for matches of brightness vectors in a high dimensional
space. However, the above methods have a common shortcoming: they consider
the set of all gauge signatures to be a generic cloud of points scattered in m-
dimensional space, and therefore use general m-dimensional nearest-neighbor
search algorithms, which are inherently expensive in space and/or time [6]. Our
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search method [9] is exact and always yields the best matching entry in the table,
and not merely a close approximation.

Shadows and highlights are a major nuisance in photometric stereo, since
pixel values carry no shape information wherever those features are present.
Barsky and Petrou [1] described a method to detect such regions in a set of
four or more images and Chandraker et al. [2] used a graph-cut approach to
determine shadowed regions. Recently, we developed a non Euclidean metric to
circumvent this problem [3].

2 Principles and notation

The main input data for our method is a list of m ≥ 3 digital photos S1, .. Sm

of some optically passive scene, the scene images, satisfying certain conditions.
First, all m images must be taken with different lighting conditions, but with
the same pose and viewpoint; and must have been geometrically corrected and
aligned, so that a certain point of the scene is projected at the same pixel position
p on all images. The photos must be effectively monochromatic, with a linear
color scale (i.e. pixel values must be proportional to physical light intensity). To
simplify the exposition, we also assume a simple orthogonal projection of the
scene onto the images, without perspective distortions.

Under these assumptions, we may assume that the relative intensity Si[p] at
a point p of photo Si depends only on three attributes, associated to the portion
P of the scene’s surface that projects onto p:

– the surface’s intrinsic optical properties β[p] (that depend on its material
and finish, such as emissivity, reflectance, polish, etc);

– its normal direction ŝ[p] (the unit vector perpendicular to the surface and
directed away from the underlying object); and

– the incident light field Φi (the intensity of light flowing in each direction
towards the surface) used in each photo.

The intrinsic optical properties β[p] can be modeled as a bidirectional re-

flectance function, or BRDF — a function β[p](n̂, û, v̂) that gives the apparent
brightness of the surface when oriented with normal n̂, viewed from the direction
v, and illuminated with unidirectional light of unit intensity flowing in the direc-
tion u. (Note that we consider the geometric light spread factor max {0, û · · · n̂}
included in the BRDF β).

The fundamental principle of multiple image photometric stereo is that we can
in principle recover the surface normal ŝ[p] at each image point p from analysis
of the m pixel intensities Si[p], provided that we have sufficient knowledge of the
BRDF β and the light fields Φi.

In gauge-based VLPS, the relevant information about β[p] and the flows Φi

are obtained indirectly from a set G1, .. Gm of gauge images — photos of a
reference light gauge object of known shape. The gauge object must have with
the same BRDF as the scene’s surface at p, except for a constant factor; and each
photo Gi is taken with the same camera position and under the same lighting



4 R. F. V. Saracchini, J. Stolfi, H. C. G. Leitão

conditions as the corresponding scene photo Si. It is often convenient to include
the gauge object as part of the scene. In that case, the gauge photos Gi are
actually contained in the scene photos Si.

Each scene or gauge photo is assumed to be a real-valued function of two
real-valued image coordinates, defined in some image domain — a subset of R

2.
The domains of Si and Gi are denoted S and G, respectively.

Image formation model. Under the above assumptions, the BRDF β[p] at every
point p of the scene images can be factored into the product of some unknown
scalar S∗[p] — the scene’s intrinsic albedo at p — and a single unknown BRDF
β̄. Likewise, the gauge’s BRDF at a point q of the gauge images is assumed to
be G∗[q]β̄, for a known intrinsic albedo G∗.

It follows from these assumptions that each scene or gauge photo can be fac-
tored into the product of two images: the intrinsic lightness map, S∗ or G∗, and
a factor that depends only on the lighting conditions and the local orientation
of the surface. Specifically,

Si[p] = S∗[p]Li(ŝ[p])
Gi[q] = G∗[q]Li(ĝ[q])

(1)

for some set of shading functions L1, .. Lm. Here ŝ and ĝ are the normal maps

of the scene and gauge, respectively. That is, ŝ[p] is the the unit-length vector
perpendicular to the visible portion P of the scene’s surface which projects to
point p of the image; and ĝ[q] is similarly defined for the gauge object and the
gauge images.

Note that, in this model, the intrinsic albedo maps G∗ and S∗ are distinct but
the same for all i, whereas the shading functions Li, that map surface normals
to relative apparent intensities, are different for each i but are shared by the
scene and gauge objects. The function Li depends only on the light field Φi and
the common BRDF β̄, by the formula

Li(n̂) =

∫

S2

Φi(û)β̄(n̂, û, v̂) dû (2)

where v̂ is the (fixed) viewing direction in all photos.
This model obviously holds for a scene consisting of purely diffusive (Lam-

bertian) surfaces of arbitrary and varying lightness. In that case, S∗[p] is the
surface’s reflectance at pixel p; and β̄(n̂, û, v̂) reduces to the geometric spread
factor, max {0, 〈û|n̂〉}. However, this model also fits some non-Lambertian sur-
faces, under more restrictive conditions. It applies, for example, when the scene
and gauge are made of the same material, with the same intrinsic color and fin-
ish (e.g. molded pieces of the same plastic material), possibly with an obscuring
layer of black “dust” over it.

2.1 Input gauge model.

Besides the scene and gauge images, our method also needs to be given the
gauge’s normal map ĝ and intrinsic albedo map G∗. If the gauge has a simple
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geometric shape and uniform color, that information can be computed analyti-
cally from a few parameters.

The signature matching principle. If the model (1) holds, then, for any two pixels
p, q such that ŝ[p] = ĝ[q], we must have Li(ŝ[p]) = Li(ĝ[q]) for all i, and thus

Si[p]

Gi[q]
=

Sj [p]

Gj [q]
=

S∗[p]

G∗[q]
(3)

for all i and j. That is, the vectors

S[p] = (S1[p], .. Sm[p]) = S∗[p](L1[p], .. Lm[p])
and

G[q] = (G1[q], .. Gm[q]) = G∗[q](L1[q], .. Lm[q])
(4)

must be multiples of each other, by the ratio S∗[p]/G∗[q]. Therefore, we could
in principle determine the normal ŝ[p] at a point of the image, by looking for a
point q in G such that G[q] is a multiple of the vector S[p]. Assuming that neither
vector is zero, this is equivalent to matching the lighting signatures s[p] = g[q],
where

s[p] =
S[p]

|S[p]|
g[q] =

G[q]

|G[q]|
(5)

and |·| is any norm of R
m, e.g. the Euclidean norm |X| =

(
∑m

i=1
X2

i

)1/2

. That
is, we locate a point q on the gauge images that reacts in the same way as point
p of the scene to changes in the light field, except for a fixed constant factor α[p].

Having located the matching gauge point q, we can recover the normal map
and intrinsic albedo map of the scene at p by

ŝ[p] = ĝ[q]

S∗[p] =
|S[p]|

|G[q]|
G∗[q]

(6)

Feasibility conditions. Formally, the result of the procedure consists of two func-
tions σ̂ and σ∗, from the scene image domain S to the set of all normals (that
is, the unit sphere S

2) and to the real, respectively, where

σ̂[p] = ĝ(g−1(s[p])) and σ∗[p] = G∗(g−1(s[p])) (7)

for all p ∈ S. Thus, in order for the method to be feasible, the following conditions
must be satisfied:

(C1) the range of g must include the set of all vectors s[p] that occur in the scene
images; and

(C2) the function g must be invertible.

Condition (C1) means that, for any visible point p of the scene, the gauge must
have at least one visible point q with the same normal as p. Condition (C2)
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is more complicated, since it depends on the BRDF β̄. Basically, it says that
any change in the surface’s normal n̂ must imply a change in the normalized
gauge image intensities g[p] — that is, a change in the vector G[p] which is
not simply a scaling. By counting degrees of freedom, it is obvious that for
every normal direction n̂ there must be at least three lighting setups Φi which
illuminate surfaces with that orientation. This condition is usually sufficient for
Lambertian surfaces, if those three light fields are dominated by compact light
sources in well-separated and non-coplanar directions.

2.2 The light table.

Computationally, the hardest part of the method is inverting the g function,
that is, finding the point q ∈ G such that g[q] = s[p].

The light gauge normal map ĝ and the gauge photos Gi can be preprocessed
to produce a light signature table, a set T of triplets (ĝk,gk, αk), each consisting
of the light signature gk, the surface normal ĝk, and the normalizing factor αk for
some pixel qk in the gauge photos. Note that the pixel qk itself is irrelevant and
need not be stored. Thus the normal computation reduces to finding the normal
ĝk in this table whose associated light signature gk best matches the scene’s
signature s[p]. However, due to the somewhat irregular nature of the function
ĝ ◦ g−1, the computation is still quite expensive, since the table T must have
thousands of entries in order to produce a reasonably accurate normal map.

To speed up this search, we use a bucket grid, a data structure that has
been quite effective in many geometric search problems [8, 7]. We use an original
formulation that is both simpler and more efficient than those reported in the
literature. The key idea is that the set of all normalized signatures gk spans
a two-dimensional manifold in m-dimensional space, which can be projected
onto a plane with moderate geometric distortion. Therefore, the table can be
efficiently hashed into a two-dimensional bucket grid structure, and the search
can be confined to a few buckets. The details are given in the paper [9].

3 Light gauge processing

As explained in section 2.1, the normal computation method requires knowl-
edge of the light gauge’s intrinsic lightness map G∗ and normal map ĝ, precisely
matching the photos Gi. For Lambertian scenes, we use smooth Lambertian
spheres of uniform color. The spheres should be small enough to be placed near
the target objects without significantly disturbing the light field. The spheri-
cal shape provides a fairly uniform sampling of the light field, and simplifies
considerably the computation of the gauge’s surface normals.

In practice, the light gauges deviate from the ideal spherical shape, due to
manufacturing defects, dents, scratches, etc.. Even a small defect, covering a
couple of pixels, may introduce large errors in the signature-to-normal table. A
small dent or bump may create an arbitrarily large error between the actual
surface normal and the given normal map ĝ. A small stain, especially one that
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changes the surface finish, will change the normalization α, thus introducing
a bogus complementary stain at every part of the scene that has that normal
orientation. Moreover, if the stain has a different BRDF than the scene, it may
also change the normalized signature g by a large amount. Either kind of defect
will introduce grossly incorrect normal-signature pairs (ĝk,gk) into the table T ,
which may produce large errors over large areas of the output normal map ŝ.

3.1 Modeling the shading function

This difficulty can be overcome by observing that the BRDFs of typical mate-
rials, especially the Lambertian ones, broadly spread the light flowing in any
direction u over the hemisphere of all directions that make an acute angle with
the normal ŝ. It follows that the shading function Li of Lambertian and near-
lambertian surfaces is a fairly smooth function, even when the light flow is con-
centrated in a few directions.

Thus, the solution to the problem of imperfect gauges is to filter the “noisy”
shading function Li that is obtained by pairing the presumed normal map ĝ[q] of
the gauge with the noisy photo Gi[q]. The smoothing generally removes spurious
entries due to small defects, leaving only the useful part of the shading data.

In any case, once we have determined the smoothed shading functions Li,
we can combine them with the normal map ĝ of any suitable virtual gauge, and
produce the artificial gauge photos by the composition Gi ← Li ◦ ĝ for input to
the matching procedure.

3.2 Fitting a simple light model

When computing the smoothed shading functions Li, we may further improve
the result by incorporating any information we have about the light flow Φi

used in the scene Si. For example, if we know that Φi was dominated by direct
light from a single point-like source at an unknown location, we can restrict the
smoothed shading function Li to a function of that form.

In our tests, we assumed a slightly more complex model where each light
field Φi was dominated by an isotropic and uniform ambient field of unknown
intensity Ai, and a distant source of unknown intensity and direction ŵi, which,
when seen from the scene, was contained in a cone with known angular radius ρ.
Assuming a Lambertian BRDF, the shading function Li(n̂) generated by such a
source coincides with that of a slightly dimmer point source in direction ŵi, for
those surface orientations that are fully illuminated by the extended source —
that is, whenever the angle between n̂ and ŵi is less than π/2 − ρ.

For those normal directions, the shading function (including the ambient
term) is simply

Li(n̂) = Ai + Wi(〈ŵi|n̂〉)
= Ai + Wiŵi.xn̂.x + Wiŵi.yn̂.y + Wiŵi.zn̂.z

(8)

Note that this is an affine (“linear”) function of the normal vector’s coordinates
n̂.x, n̂.y, n̂.z, with unknown coefficients Ai, Wiwi.x, Wiwi.y, Wiwi.z.
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Therefore, we compute the unknown parameters from the gauge photo Gi

and the gauge normal map ĝ, by the following iterative procedure. Starting with
a guess for the direction ŵi, we identify the subset G′ of all pixels q where
ĝ[q] · · · ŵi ≥ sin ρ. We then compute the coefficients Ai, Wiwi.x, Wiwi.y, Wiwi.z
of formula (8), by a straightforward least-squares fitting of Gi[q] over the pix-
els in G′. From the fitted coefficients we extract an improved estimate for the
direction ŵ. This procedure is iterated until the set G′ has stabilized, and the
fitted function is then extended to the whole sphere of normal directions n̂. If
t = 〈ŵi|n̂〉 is greater than sin ρ, Li(n̂) is defined by equation (8) above. If t is less
than − sin ρ, Li(n̂) is just Ai. If t lies between these two values, Li(n̂) is defined
to be the unique quadratic polynomial in t that interpolates between the two
parts with C1 continuity.

4 Experiments

4.1 Paper Models

In this test, we used a set of images of 3D paper models (a tetrahedron and a
cone). All images tested had three balls of ball-mouses placed near the top center
of the image and near the scene objects. The gray ball and the dust ball were
test objects, and the white ball was the gauge. The original images were acquired
with a Sony Cybershot DSC-W50 camera, in high-resolution 1632× 1224 pixels,
JPEG format). The test was performed with 23 images of the scene, taken with
different illuminations (Figure 2).

Fig. 2. Twelve of the 23 images of 3D paper models under different lighting conditions.

The normal maps computed by our method were converted to slope maps
and integrated to produce height fields Z(x, y). These height fields were then
rendered from different viewpoints with a 3D terrain visualization program, to
produce the image 3.

4.2 Plaster Sculpture

In this test, we used a scene consisting of a plaster sculpture painted with tem-
pera colors (see figure 1). The light gauges were four gray rubber mouse-balls
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Fig. 3. Three-dimensional views of the recovered height map.

— two of them unpainted, and two sprayed with matte white paint. The gauges
were nested into shallow conical cups made of black paper, to block stray light
from the scene (see figure 4(a)). We took 24 digital pictures of this scene (with
different illuminations) with a 3 Mpixel consumer camera (Sony CyberShot DSC-
V1). The digital photos were aligned, cropped from 2048 × 1536 to 672 × 1000
pixels, and then reduced to 168 × 250 in order to remove most of the JPEG
compression noise.

Figure 4(b) shows a 3D view of the height map obtained by integrating the
normal map, colorized with the albedo map.

(a) (b)

Fig. 4. A perspective photo of the plaster sculpture (a), and a 3D view of
the recovered height map (b).

5 Conclusions

We have obtained fairly reliable results from multiple-image photometric stereo,
by using photos of known light gauge objects to measure the actual light field,
and numerical fitting to smooth out the shading functions derived from those
photos. The main contributions of our method are (1) the use of simple light
gauges to assess the illumination field; (2) a procedure for fitting a simple illu-
mination model to images of real light gauges; and (3) efficient inversion of the
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shading function by a two-dimensional bucket grid. Our bucket-grid [9] scheme
provides fast and accurate best-match table search. Our two-dimensional grid is
faster and more space-efficient than approaches like LSH [12] or general nearest-
neighbor data structures [4] due the disposition of the signature vectors on the
m-dimensional space.

We are confident that our results will can be used for a software will become
a helpful tool to solve a variety of 3D problems in medicine, geology, engineering,
virtual reality, archaeology, and many other areas.
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