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Abstract. Biological pathways represent interactions between complex chemi-
cal entities that occur in cells. There are some graphical notations to describe
biological pathways. Among them, process diagrams have been widely used. A
process diagram is essentially a graph in which vertices andedges represent bio-
logical components as well as relationships among these components, and there is
a graphical notation associated with each different element. In this paper we give
a formal foundation for biological process diagrams, by defining their (concrete
and abstract) syntax and semantics using a formalism calledgraph grammars. We
first build a graph called BioProc Graph, describing the meta-model of process di-
agrams. Instances of this BioProc graph are concrete process diagrams modeling
biological pathways. They can be constructed by (graph) rules defining the syn-
tax of the process diagram language. The semantics of the resulting diagrams can
also be expressed by (graph) rules that change the amount of substances present
in the given pathway. Moreover, since we have a meta-model formally defined as
a graph, we can use it as a basis for model evolution using (graph) rules.

1 Introduction

One of the topics of investigation in systems biology is the complex interactions repre-
sentation’s between chemical entities (proteins, substrates, metabolites, etc.) that hap-
pen at a molecular level in cells. Such interactions, calledbiological pathways, are very
important for the vital functions of living organisms. There are 4 types of biological
pathways [1]: metabolic, signaling, regulatory and molecular interaction pathways.

Biological pathways are complex to describe and, most important, understand in
an intuitive way. There is a need for description languages that generate models with
predictive value, that is, that enable analysis methods to verify whether the model corre-
sponds to the real one, as well as to predict behaviours, either as a stand alone pathway
or as a part of a complex network. Such models would increase the understanding of
living systems by relating the basic molecule’s behaviour to complex behaviours.

Although it is possible to build mathematical models (like differential equations)
to describe the behaviour of a system from scratch just by observing the system, using
mathematical language directly makes the understanding ofthe proposed model more
difficult, specially for biologists. A visual representation widely used by biologists to
describe pathways is the Kitano’s process diagrams notation [2]. Here we formalize
this visual language, defining its abstract and concrete syntaxes, as well as providing
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a formal semantics for the generated diagrams. Moreover, weshow how to (formally)
describe evolutions of process diagrams. This is relevant since models are usually con-
structed incrementally, and a formal specification of how a model shall be transformed
provides a basis for analysis of the evolution process itself. Our approach is based on
Graph Grammars, a formalism that provides natural representations for models that are
inherently based on graphs (as it is the case for biological processes diagrams). We use
graph grammars to model the three different aspects discussed above: syntax, semantics
and evolution.

This paper is structured as follows: Section 2 shortly reviews the Kitano’s nota-
tion to describe biological pathways and presents the metamodel of process diagrams,
including abstract and concrete representations; the rules of the syntax are shown in
Section 3; Section 4 defines the semantics of process diagrams using Stochastic Graph
Transformation Systems; Section 5 discusses the idea of model evolution, and finally
Section 6 presents our conclusions.

2 A Meta Model for Process Diagrams: BioProc Graph

Kitano et al [2] describes a biological process diagram as a set of state nodes (entities
of the biological process, such as proteins, RNA or genes) and a set of transition arcs
(modulations of the reactions, such as association, dissociation, etc.). The graphical
symbols used in the Kitano notation can be found in [2].

Although there is a formal description of the underlying graphs that represent pro-
cess diagrams, this description covers only part of the aspects of the diagrams. Thus,
it can be considered as a semi-formal description. Moreover, rules for construction of
such diagrams as well as their meaning (semantics) were onlyinformally described.
Formal descriptions eliminate ambiguities and doubts thatmay occur in specifications
and serve as basis for formal reasoning, allowing the constructions of more accurate
models. By having a more faithful model of reality, more effective predictions can be
made by analysis of the model.

A visual language defines the set of all visual sentences (diagrams) which can be
derived from its the grammar. We will formalize the process diagrams language’s. The
rest of this section defines the metamodel for process diagrams. This metamodel will
be used in the next section as a basis for the grammar rules that define this visual
language. The process diagrams metamodel will be given by a special kind of graphs
and a related visual representation. Thus, a graph will be anabstract representation of a
process diagram. We will use rules over graphs to define the grammar rules that generate
all (syntactically correct) process diagrams. Then, a formal semantics for this language
will be presented, assigning meaning to each process diagram.

The abstract representation of a process diagram will be given by a graph. We chose
special graphs, in which nodes and edges have special labels. The basis of our approach
is the definition of attributed hypergraphs [5], that are graphs in which each edge may
have many source and target vertices, and in which the vertices and edges are attributed,
that is, values may be assigned to them.

Definition 1 (Graph). An (attributed hyper) graph is a tuple
G = (VG

G ,VG
D ,EG

G ,EG
NA,E

G
EA,(sourceGj ,targetGj ) j∈{G,NA,EA}), where
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– VG
G and VG

D are sets, called sets ofgraph verticesanddata vertices, respectively;
– EG

G,EG
NA and EG

EA are sets, called sets ofgraph edges, vertexand edge attributes,
respectively;

– sourceGG : EG
G → VG∗

G , targetG : EG
G → VG∗

G are total functions that assign lists of
vertices as source and target for each graph edge (VG∗

G denotes the set of all lists
over the set VGG );

– sourceGNA : EG
NA →VG

G , targetNA : EG
NA →VG

D are total functions that define source
and target vertices for each vertex attribute;

– sourceGEA : EG
EA → EG

G, targetGEA : EG
EA →VG

D are total functions that define source
and target vertices for each edge attribute.

Graphs are related by morphisms which map vertices and edgesin a compatible
way, that is preserving the source and target of each edge.

Definition 2 (Graph Morphism). Consider two graphs G1 and G2

Gi = (VGi
G ,VGi

D ,EGi
G ,EGi

NA,E
Gi
EA,(sourceGi

j ,targetGi
j ) j∈{Gi ,NA,EA}) for k = 1,2.

A (partial) graphs morphism g: G1 →G2 is a tuple f= ( fVG, fVD , fEG, fENA, fEEA) where

fVi : VG1
k → VG2

k e fE j : EG1
j → EG2

j for k ∈ {G,D} and j∈ {G,NA,EA} are (partial)
functions, such that f commutes with all source and target functions, that is, for all
edge e and corresponding source and target functions fV ◦ source(e) = source◦ fE(e)
and fV ◦ target(e) = target◦ fE(e). If all components of a morphism are total, we say
that the morphism i total.

Process diagrams have a particular structure, and therefore we will use a typing
mechanism for vertices and edges to distinguish among the different kinds of elements
that appear in these diagrams. Formally, this concept of typing will be given by defining
a graph in which vertices and edges represent the types of elements, calledgraph of
types. Types of elements of each graph will be defined by mapping this graph to the
typed graph by a morphism.

Definition 3 (Typed graph). Let TG be a graph, calledgraph of types. A graph typed
over TG is a tuple(G, type) whereG is a graph andtype: G → TG is a total graph
morphism.

Process diagrams are a special class of typed graphs, where each node represents
one chemical element and each edge represents a each chemical reaction. Now we de-
fine the graph of types that will be used to represent such diagrams. First, we define the
set of (graph) vertices and edges (Def. 4), then the attributes (Def. 5), and finally the
source and target functions (represented in Figure 2). Moredetails about the informal
semantics of each element of a process diagram can be found in[2] and [3].

Definition 4 (BioProc types). The set graph vertices and edges of BioProc, denoted
by VBio and EBio, are:

VBio = {Protein,Receptor, Ion Channel,TruncatedProtein,SimpleMolecule, (1)

UnknownMolecule,Phenotype,Homodimer, Ion,Gene,RNA,AntisenseRNA, (2)

Complex,Compartment,And,Or,EmptySet,LegendsConcentrations} (3)
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EBio = {StateTransition,UnknownTransition,Known TransitionOmmited, (4)

Translocation,Bidirectional Transition,Association,Dissociation,Truncation, (5)

In Compartment, In And, In Or, In Complex} (6)

Vertex types represent the different types of substances involved in reactions (lines
(1) and (2)). Moreover, we use special types (line (3)) likeLegendsConcentrationsto
represent concentrations of substances. Eight edge types (lines (4) and (5)) correspond
to the different kinds of edges in the process diagram notation. There are additional
edge types (line (6)). For example, edge typesIn Compartment/In Complexare used
to associate an instance of typeCompartment/Complexto a list of substances; an edges
of kind In And associates an instance of typeAnd to a list of substances (the idea is
that all these substances must be present to activate the inhibition or stimulation of the
corresponding reaction);In Or has a similar role.

Each vertex and edge has associated attributes. Originally, graphs representing pro-
cess diagrams (defined in [2]) had no attributes associated to vertices and edges. How-
ever, such attributes are needed to obtain models that are suitable for analysis, and thus
must be part of the abstract syntax of the language. The choice of attributes used here
was based on the database of biological pathways BioModels [4].They are the neces-
sary parameters for simulation/analysis of biological processes, as well as parameters
of the textual description of the system.

Definition 5 (Bio-Attribute types). The types of attributes of the BioType graph are:

VBio
D = {Integer,Double,String,Boolean,List[String],

List[Integer],List[pair(Integer, Integer)],Booleanexpression}

The names of attributes of vertices and edges EBio
NA and EBio

EA are defined by

EBio
NA = {name,amount,state,units, intervals,colors}

EBio
EA = {namereact, rate law, react parametertax,

participants, prod parametertax,conditiontrigger}

Intuitively, the attribute names have the following types and meaning:

– name: String- scientific name of the participant substance;
– amount: Integer- quantity of substance present in the biological pathway ;
– state: Boolean- substance state, indicating whether it is normal or activated;
– units: String- type of unit that is used to define concentration ranges;
– intervals: List(pair(Integer, Integer)) - defines concentration ranges which the at-

tribute amountof each substance may assume. It is a list of pairs of integers, in
which the first elements represent the minimum and the secondthe maximum val-
ues in the range;

– colors: List(Integer) - defines the color associated with each concentration inter-
val;

– namereact : String- scientific name to identify the reaction;
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– rate law : Double- indicates the speed with which the reaction occurs. It may be
a constant rate or an expression depending on parameters such as the quantity of
substances participating in the reaction;

– react parametertax : List(Integer) - list of parameters that represent the stoichio-
metric coefficients of each reagent of the reaction. The order of elements in this list
must correspond to the order of source vertices of the corresponding edge;

– participants: List(String) - list of labels that define the substance as part of the
reaction is as simple participant, promoter or inhibitor ofthe reaction;

– prod parametertax : List(Integer) - list of parameters that represent the stoichio-
metric coefficients of products of the reaction. The order ofelements in this list
must correspond to the order of target vertices of the corresponding edge.

– conditiontrigger - necessary condition for the occurrence of the reaction, for ex-
ample when a substance reaches a certain amount. The type isBooleanexpression,
when no condition is specified its value istrue;

Now we can define the type graph that can be used as abstract syntax for process
diagrams.

Definition 6 (Bio Type Graph). The graph of types that represents process diagrams,
is defined by:
Bio = (VBio

,VBio
D ,EBio

,EBio
NA ,EBio

EA ,(sourceBio
j ,targetBio

j ) j∈{G,NA,EA}) where:

– VBio, VBio
D , EBio ,EBio

NA , EBio
EA are defined in. 4 and 5;

– the source and target functions are defined in Figure 2.

In the following we denote byValueBio
D the disjoint union of the sets corresponding

to all data type names ofVBio
D .

Definition 7 (BioProc).Given the graph of types Bio, a BioProc is any graph(G,type)
typed over Bio, with VGD =ValueBio

D . Given a BioProc(G,type), whenever an attbribute
attr of a vertex or edge x will be considered, we will write attr(x) for d such that there is
a vertex attrInst and sourceG

i (attrInst)= x, targetGi (attrInst)= d and type(attrInst)=
attr, with i ∈ {NA,EA}

The graphBio can be considered as a meta-model for process diagrams. Any graph
that can be mapped to it, called hereBioProc, is an abstract representation of a process
diagram. Note that using a graph of types (instead of just labels for vertices and edges,
like in [2]) has the advantage that structural constraints are also represented. For ex-
ample, if in the graph of types there is no edge of typeX between vertices of typesA
andB, in any instance of this graph such kind of arcs may appear connecting vertices
typed withA andB. This means that a grammar that generatesBioProconly generates
syntactically correct abstract descriptions of process diagrams.

The relation between abstract and concrete syntax can be seen in Figure 1. We
assigned a graphical representation to each vertex, edge and attribute used inBioProc
graphs. In Figure 2 we present one short representation of graph type of the language.
The square in dot lines represents the attributes. To illustrate in a clear way how each
edge relate your source and target types, we fetch the nodes in small blocks with types
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that has common characteristics:simplesub, composedsub, geneticelemand logic
represented respectively with the triangle, square, circle and diamond shapes. Each edge
has types that can be associated with a source or target functions. If we associated one
shape for one of this functions all types of the block can be associated with the edge.

Fig. 1. Abstract and concrete syntax of nodes, edges and attributes.

Fig. 2.Short graph type representation
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To illustrate the relation between the two proposed syntaxes, we show an example
of a reaction that cleaves lactose in glucose plus galactoseand it is catalyzed by beta-
galactosidase protein. Each graphical symbol of the substances included in the diagram
is an instance of a vertex of the graph of typesBio (s1,s2 ands3 are instances of type
SimpleMolecule, p1 is an instance of the typeProtein). Each substance has an attribute
name associated to it, which has the type String . The reactions are typed according to
the graph edges of types. In the example the reactiont1 is of typeStateTransition.
The reaction combines a list of reactive substances by the functionsourceand a list of
products by the functiontarget.

Substances (nodes):

p1:Protein 

s1,s2,s3:SimpleMolecule, 

name(p1) = "beta−galactosidase"

name(s1) = "lactose"

name(s2) = "glucose"

name(s3) = "galactose"

Reactions (edges):

t1: State_Transition

source (t1) = [p1,s1]

target(t1) = [s2,s3]

Process Diagram

Concrete Syntax

Abstract Syntax

glucose

beta−galactosidase

Graph Type "beta−galactosidase":String

lactose

galactose

p1:Protein

"lactose":String

s1:Simple_Molecule

t1:State_Transition

"glucose":String

s2:Simple_Molecule

"galactose":String

s3:Simple_Molecule

Fig. 3. Representation of Abstract and Concrete Syntax of a ProcessDiagram.

In the following sections we show how to use rules over BioProc graphs to describe
syntax, semantics and evolution of pathways. Due to space limitations, we will not
present the corresponding formal definitions, and will showjust some examples to rules
of each of these three kinds.

3 Constructing Process Diagrams

A production of a (string) grammar is defined asL := Rwhere L is called left hand side
(LHS) and R right-hand side (RHS). A production can be applied if there is an instance
of LHS in the string that is being transformed, and the effectof the application is to sub-
stitute the occurrence of the LHS by the occurrence of the RHS. Using graphs, the idea
remains essentially the same, just that the notion of substitution is a bit more involved.
Here we will not present the formal definitions of graph production and application, see
[5] for the corresponding definitions.

The rules to define process diagrams are graph rules that describe how (syntacti-
cally) correct diagrams can be generated. Examples of theserules are depicted in Fig-
ure 4. RuleInsert Proteincan always be applied (the LHS is empty) and its effect is to
generate a vertex representing a protein. RuleInsert Associationcan be applied if two
proteins and a complex have previously been generated, its effect is to connect them by
anAssociationedge. Given a type graph, one can derive automatically the set of rules
necessary to construct correct instances of this type graph[6]. If we have an associ-
ated concrete syntax, these rules can be used to automatically generate a corresponding
graphical editor (see [6]).
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Insert_Protein

:= Name

Insert_Association

:=
Name

Name
Name

Name

Name
Name

RHS
LHS

LHS

RHS

Fig. 4. Some Rules to Construct Process Diagrams

4 Semantics of Process Diagrams as Stochastic Graph
Transformation Systems

A process diagram essentially represents a static structure: the structure of the pathway.
The graph grammar presented in the previous section produces process diagrams in
which each substance has an associated value, describing the current concentration of
this substance in the system. Thus, BioProc graphs represent snapshots or states of a
biological system. To model the dynamic aspects of biological pathways, it is necessary
to associate an execution of simulation model to these diagrams. We propose to interpret
each reaction as a rule, that changes the amount of the involved substances (reagents and
products), leaving the rest of the graphical structure of the pathway intact. Of course,
results of a simulation of such a rule system will be approximations with respect to the
real system, since we are using discrete simulation.

The formal semantics of this underlying rule system is givenby Stochastic Graph
Transformations. This special kind of Graph Grammars was proposed by [7] as an ex-
tension of the original framework, in which a rate is associated to each transformation
rule. Each rate represents an exponentially distributed application delay to be consid-
ered during execution. We also associate conditions to eachrules, that are booleans
expressions that must be true for a rule to be applied. We may use variables in the rules,
as well as operations of the corresponding data types. To select a rule for application,
besides finding an image of the graph of the left-hand side of the rule in the current
state, we must also find an assignment of all variables appearing in its left- and right-
hand sides to values, such that the conditions for the rule application become true.

Some rules of the semantics of process diagrams are shown in Figure 5. The first
rule (processAssoc) shows the behavior of associations of substances. We startwith an
association of two proteins (p1 andp2) and a complex (c1) with respective amounts
(x, y andz). The attributerate law is used as a delay of application of the rule. The
values of attributes will change according to right hand side of the rule:p1 andp2 are
subtracted by values ofreact parametertax list r1, r2, respectively, andc1 is summed
by prod parametertax list valueprod1. This rule can only be applied if the concentra-
tion of substancesp1 andp2 is greater or equal tor1 andr2, respectively. The second
rule (processTrans) is analogous, but shows the behavior when there is an inhibitor
substance involved (p1). This reaction can only occur ifp1 is not present, described by
the equationx = 0 associated to this rule.

We can use Stochastic Graph Transformation Systems to buildMarkov Chains.
Each state of graph grammar corresponds to a markovian state, where there are as-
sociated a probabilities of changing to another state and tostay in the same state. Its
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Fig. 5.Semantic Rules.

possible to analyze (via model checking) and simulate such systems using the PRISM
tool [8].

5 Evolution of Process Diagrams

Models are constantly changing: new kinds of vertices/edges/attributes may show to be
necessary, others may become obsolete, new graphical representations may be needed,
etc. We can use the Bio Type graph as a basis for model transformation. Graph gram-
mars have been successfully used as a tool to describe model transformations [9]. The
idea is that we can use graph rules to describe at a metamodel level how models evolve.
Some examples of rules that could be used to show the evolution of BioProc model are
depicted in Figure 6. First, suppose that we would like to integrate two attributes into
one. Rulered att cols integratesintervals(a list of pair structure) andcolors(a list of
values) creating a new attribute calledinterval colors, that is a list of triples (the first
two number describe the intervals and the third the color of associated to this edge). An
another example could be the inclusion in the model of a boolean attribute to indicate
if a protein is a enzyme or not.

Fig. 6.Some Evolution Rules.
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6 Conclusions and future work

In this paper we have developed a formal foundation for biological process diagrams, by
defining their (concrete and abstract) syntax and semanticsusing the graph grammars
formalism. This approach enables an user-friendly framework to manipulate biologi-
cal pathways specifications, as well as takes advantage fromthe well-developed theory
of graph grammars to analyze specifications [10]. The use of graph grammars to de-
scribe model evolution enables to improve the model of biological process diagrams
with new properties, characteristics and relations not assumed at the time of definition
of the model. This is interesting for communities like SBGN [11] where improvements
are constantly being made in the descriptions of biologicalpathways. This paper defines
the basis of our framework, that is the metamodel of process diagrams, and discussed
how to use it to accomplish these three different tasks: definition of syntax, seman-
tics and evolution. Future work includes implementation ofthe approach, by using and
extending the existing tools, as well as validating it by realistic case studies.

.
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