Graph Grammars as a Formal Foundation for
Biological Process Diagrams

Ramon Medradband Leila Ribeird

Instituto de Informatica, Universidade Federal do Rior@&eado Sul, Brazil,
{ramon.medrado,leila}@inf.ufrgs.br
WWW home pagehttp://www.inf .ufrgs.br/~rgmedrado

Abstract. Biological pathways represent interactions between cermphemi-
cal entities that occur in cells. There are some graphictdtioms to describe
biological pathways. Among them, process diagrams have Wdely used. A
process diagram is essentially a graph in which verticessdgeés represent bio-
logical components as well as relationships among thespaoents, and there is
a graphical notation associated with each different elénhethis paper we give
a formal foundation for biological process diagrams, byrde{ their (concrete
and abstract) syntax and semantics using a formalism agdégzh grammars. We
first build a graph called BioProc Graph, describing the rmetalel of process di-
agrams. Instances of this BioProc graph are concrete maliagrams modeling
biological pathways. They can be constructed by (grapt®srdefining the syn-
tax of the process diagram language. The semantics of thitingsdiagrams can
also be expressed by (graph) rules that change the amounbsthsices present
in the given pathway. Moreover, since we have a meta-modeildty defined as
a graph, we can use it as a basis for model evolution usingltyrales.

1 Introduction

One of the topics of investigation in systems biology is thmplex interactions repre-
sentation’s between chemical entities (proteins, sutestranetabolites, etc.) that hap-
pen at a molecular level in cells. Such interactions, cdlietbgical pathways, are very
important for the vital functions of living organisms. Tlkeeare 4 types of biological
pathways [1]: metabolic, signaling, regulatory and molacinteraction pathways.
Biological pathways are complex to describe and, most itambr understand in
an intuitive way. There is a need for description languabeas generate models with
predictive value, that is, that enable analysis methodstifywhether the model corre-
sponds to the real one, as well as to predict behaviourgraitha stand alone pathway
or as a part of a complex network. Such models would incrdesemderstanding of
living systems by relating the basic molecule’s behaviourdmplex behaviours.
Although it is possible to build mathematical models (likéfedential equations)
to describe the behaviour of a system from scratch just bgrebg the system, using
mathematical language directly makes the understanditigegbroposed model more
difficult, specially for biologists. A visual representati widely used by biologists to
describe pathways is the Kitano’s process diagrams nat§®p Here we formalize
this visual language, defining its abstract and concreteages, as well as providing

a formal semantics for the generated diagrams. Moreovesheoe how to (formally)
describe evolutions of process diagrams. This is relevaoésnodels are usually con-
structed incrementally, and a formal specification of howaalet shall be transformed
provides a basis for analysis of the evolution processfit€elr approach is based on
Graph Grammars, a formalism that provides natural reptasens for models that are
inherently based on graphs (as it is the case for biologitalgsses diagrams). We use
graph grammars to model the three different aspects disd@mve: syntax, semantics
and evolution.

This paper is structured as follows: Section 2 shortly megi¢he Kitano’s nota-
tion to describe biological pathways and presents the nmdaiof process diagrams,
including abstract and concrete representations; the flehe syntax are shown in
Section 3; Section 4 defines the semantics of process diagraimg Stochastic Graph
Transformation Systems; Section 5 discusses the idea oélneodlution, and finally
Section 6 presents our conclusions.

2 A Meta Model for Process Diagrams: BioProc Graph

Kitano et al [2] describes a biological process diagram ast afsstate nodes (entities
of the biological process, such as proteins, RNA or genes)aaset of transition arcs
(modulations of the reactions, such as association, degtme, etc.). The graphical
symbols used in the Kitano notation can be found in [2].

Although there is a formal description of the underlyingra that represent pro-
cess diagrams, this description covers only part of thecsé the diagrams. Thus,
it can be considered as a semi-formal description. Moreoukss for construction of
such diagrams as well as their meaning (semantics) wereiofuymally described.
Formal descriptions eliminate ambiguities and doubts ey occur in specifications
and serve as basis for formal reasoning, allowing the coctsbtins of more accurate
models. By having a more faithful model of reality, more efiee predictions can be
made by analysis of the model.

A visual language defines the set of all visual sentenceg@ias) which can be
derived from its the grammar. We will formalize the procesgycams language’s. The
rest of this section defines the metamodel for process diagrahis metamodel will
be used in the next section as a basis for the grammar rulesléfiae this visual
language. The process diagrams metamodel will be given Ipeeia kind of graphs
and a related visual representation. Thus, a graph will kebatract representation of a
process diagram. We will use rules over graphs to define eramgar rules that generate
all (syntactically correct) process diagrams. Then, a &dsemantics for this language
will be presented, assigning meaning to each process diagra

The abstract representation of a process diagram will kendiy a graph. We chose
special graphs, in which nodes and edges have special.ldbel®asis of our approach
is the definition of attributed hypergraphs [5], that arepiysin which each edge may
have many source and target vertices, and in which the eerdéiod edges are attributed,
that is, values may be assigned to them.

Definition 1 (Graph). An (attributed hyper) graph is a tuple
G = (V&,V5,EE,EGa EEa, (SOUrcé target®) jc (o nakay), Where

V§ and \f§ are sets, called sets @gfraph verticegnd data verticesrespectively;

- Eg, E,E,;A and ESA are sets, called sets afraph edgesvertexand edge attributes
respectively;

sourcg : ES — V&, targets : ES — V&* are total functions that assign lists of
vertices as source and target for each graph edg,%*(kienotes the set of all lists
over the set ¥¥);

sourcé , : ES, — V&, targeia : ES, — V§ are total functions that define source
and target vertices for each vertex attribute;

sourc§, : ES, — EE, targe, : ES, — V§ are total functions that define source
and target vertices for each edge attribute.

Graphs are related by morphisms which map vertices and edgesompatible
way, that is preserving the source and target of each edge.

Definition 2 (Graph Morphism). Consider two graphs gand &

G = (Vg‘i ,Vgi , Eg‘ , E,E,;‘A, ESA, (source]§i ,targetJGi)je{Gi,NAEA}) fork=1,2.

A (partial) graphs morphism gG1 — Gy is atuple f= (fyg, fvp, TEg, TEya, TECA) Where

fu; :VkGl — VkG2 e fg ! EJ-Gl — EJ-G2 fork € {G,D} and je {G,NA EA} are (partial)
functions, such that f commutes with all source and targettions, that is, for all
edge e and corresponding source and target functignssburcee) = sourceo fe(e)
and f, otarget(e) = targeto fg(e). If all components of a morphism are total, we say
that the morphism i total.

Process diagrams have a particular structure, and thereferwill use a typing
mechanism for vertices and edges to distinguish among ffezetit kinds of elements
that appear in these diagrams. Formally, this concept afigywill be given by defining
a graph in which vertices and edges represent the types rokats, calledyraph of
types Types of elements of each graph will be defined by mappirgydhaph to the
typed graph by a morphism.

Definition 3 (Typed graph).Let TG be a graph, calledraph of types. A graph typed
overTGis a tuple(G,type) whereG is a graph andype: G — TG is a total graph
morphism.

Process diagrams are a special class of typed graphs, wharenede represents
one chemical element and each edge represents a each dhremiti@an. Now we de-
fine the graph of types that will be used to represent suclraliag} First, we define the
set of (graph) vertices and edges (Def. 4), then the atg#b(Def. 5), and finally the
source and target functions (represented in Figure 2). Metails about the informal
semantics of each element of a process diagram can be fo{@jdind [3].

Definition 4 (BioProc types). The set graph vertices and edges of BioProc, denoted
by VBI© and EB°, are:
vBio — {Protein Receptadon_Channel| TruncatedProtein SimpleMolecule Q)
UnknownMolecule Phenoty pegHomodimeron, GeneRNA AntisenseRNA (2)
ComplexCompartmentAnd, Or, Empty Set LegendsConcentration$ 3)

EBC — {StateTransitionUnknownT ransition Known.TransitionOmmited 4)
TranslocationBidirectional Transition AssociationDissociation Truncation (5)
In_.Compartmentin_And, In_Or,In_.Comple} (6)

Vertex types represent the different types of substaneedvied in reactions (lines
(1) and (2)). Moreover, we use special types (line (3)) lilegendsConcentrationso
represent concentrations of substances. Eight edge tiypes (4) and (5)) correspond
to the different kinds of edges in the process diagram rmtafihere are additional
edge types (line (6)). For example, edge type€ompartmenin_ Complexare used
to associate an instance of typempartmenComplexo a list of substances; an edges
of kind In_And associates an instance of typadto a list of substances (the idea is
that all these substances must be present to activate titdiimm or stimulation of the
corresponding reaction)i_Or has a similar role.

Each vertex and edge has associated attributes. Origigedlghs representing pro-
cess diagrams (defined in [2]) had no attributes associateertices and edges. How-
ever, such attributes are needed to obtain models that @ablsufor analysis, and thus
must be part of the abstract syntax of the language. The elodiattributes used here
was based on the database of biological pathways BioModglEhey are the neces-
sary parameters for simulation/analysis of biologicalogsses, as well as parameters
of the textual description of the system.

Definition 5 (Bio-Attribute types). The types of attributes of the BioType graph are:

VB = {IntegerDouble String BooleanList[String,
List[Integef, List[pair(Integerintegen], Booleanexpressioh

The names of attributes of vertices and edgg Bnd EE? are defined by

EE}‘Q = {nameamountstate units intervals colors}
EER = {namereact rate_law, react parametertax,
participants prod_parametertax, conditiontrigger}

Intuitively, the attribute names have the following typesl aneaning:

— name: String- scientific name of the participant substance;

— amount: Integer- quantity of substance present in the biological pathway ;

— state: Boolean substance state, indicating whether it is normal or atgtta

— units: String- type of unit that is used to define concentration ranges;

— intervals: List(pair(Integerinteger) - defines concentration ranges which the at-
tribute amountof each substance may assume. It is a list of pairs of integers
which the first elements represent the minimum and the sett@nchaximum val-
ues in the range;

— colors: List(Integer - defines the color associated with each concentration-inter
val;

— namereact: String- scientific name to identify the reaction;

rate_law : Double- indicates the speed with which the reaction occurs. It may b
a constant rate or an expression depending on parametérasube quantity of
substances participating in the reaction;

react parametertax: List(Integer) - list of parameters that represent the stoichio-
metric coefficients of each reagent of the reaction. Theraflelements in this list
must correspond to the order of source vertices of the qooreting edge;
participants: List(String) - list of labels that define the substance as part of the
reaction is as simple participant, promoter or inhibitothaf reaction;
prod_parametertax: List(Integen - list of parameters that represent the stoichio-
metric coefficients of products of the reaction. The ordeelefnents in this list
must correspond to the order of target vertices of the cpareding edge.
conditiontrigger - necessary condition for the occurrence of the reactianexe
ample when a substance reaches a certain amount. The §pelsanexpression
when no condition is specified its valuetise;

Now we can define the type graph that can be used as abstraax $gnprocess
diagrams.

Definition 6 (Bio Type Graph). The graph of types that represents process diagrams,
is defined by: ’ _ _ ’ ’
Bio = (VB V50, EB ERR EER, (sourcé® target’®); i naEa;) Where:

— VBio Bio EBio EBo FBIo are defined in. 4 and 5;
— the source and target functions are defined in Figure 2.

In the following we denote byalu%io the disjoint union of the sets corresponding
to all data type names &5'°.

Definition 7 (BioProc). Given the graph of types Bio, a BioProc is any grghty pe)
typed over Bio, with &3 = Valu%io. Given a BioProdG,type), whenever an attbribute
attr of a vertex or edge x will be considered, we will writeréx) for d such that there is
avertex attrinst and sourfgattrinst) = x, targef(attrinst) = d and ty péattrinst) =
attr, with i € {NA EA}

The graphBio can be considered as a meta-model for process diagrams.rAply g
that can be mapped to it, called h&®Proc is an abstract representation of a process
diagram. Note that using a graph of types (instead of jusiator vertices and edges,
like in [2]) has the advantage that structural constrainésadso represented. For ex-
ample, if in the graph of types there is no edge of typbetween vertices of types
andB, in any instance of this graph such kind of arcs may appeamnexiing vertices
typed withA andB. This means that a grammar that gener&ie®roconly generates
syntactically correct abstract descriptions of proceagmims.

The relation between abstract and concrete syntax can bbeisddgure 1. We
assigned a graphical representation to each vertex, edgattibute used iBioProc
graphs. In Figure 2 we present one short representatioraphdgype of the language.
The square in dot lines represents the attributes. Tordltesin a clear way how each
edge relate your source and target types, we fetch the nodasall blocks with types

that has common characteristicgdmplesuh composedsuh geneticelemandlogic
represented respectively with the triangle, square ecaot diamond shapes. Each edge
has types that can be associated with a source or targetdnsclf we associated one
shape for one of this functions all types of the block can Iseciated with the edge.

Bio _
Protein Receptor |lon_Chanell | Truncated_Protein|Simple Molecule|Unknown_Molecule| Phenotype|Homodimer|Empty Set
N P
|¢In Gene RNA Compartment Legends_Concentrations And or
Y
O 53157 [j Y
Attributes
name —"Name"
St ate T. Omitted | Translocation In_And amount —> [—
“ state — true—i7:
_]
) - false—(
Bidir _Tr, In_Or participants =
: > e “react” "inhibit" |"promoter
o 1

Fig. 1. Abstract and concrete syntax of nodes, edges and attributes

source

Attributes vertices

Bidirectional_Transition target

target

source —
Unknown_Transition arge

type_tgt_transition

Empty Set A

source

source
(—{ Transition_Omitted >

target

State Transition

[Compartment] O
Phenotype | []

Empty Set O <>
source target
%{Translocation }4

type_tgt_association

Phenotype logic <> type_src_transition
Compartment (Compartment| A\ []
simple_sub A\
ame: String lon_Channel
state: Integer : [type_src_association|
active: Bodlean lUnknown_Molecule - =
unis : String | Simple_Molecule | [Truncated Protein A D <>

source — target
50

genetic_elem O

composed_sub

U

Gene Antisense_RNA]

RNA

Empty Set

Homodimer Komp\eﬁ

intervals: List[(Integer,Integer)}:
colors: List{Integer]

type_tgt_dissociation

active: Boolean

Legends_Concentrations|

n_And

Comparment] O /A [

source

type_src_dissociation| source target
issociation A D O
type_src truncation | SOUrce target i
[Fen] g ncaten
type_src_in_logic source 7 target And

units: String

— target
In_Or s

Attributes edges
name_react:String
rate_law:Double

react_parameter_tax: List[Integer]
participants: List[String]
condition..trigger:Boolean.

type_src_in_compartmentf o o

(—{ In_Compartment }—){ Compartment]

A O
Eompar‘(ment O

type_src_in_complex

source

In_Complex

Fig. 2. Short graph type representation

target

To illustrate the relation between the two proposed syrstaxe show an example
of a reaction that cleaves lactose in glucose plus galactodét is catalyzed by beta-
galactosidase protein. Each graphical symbol of the sobstincluded in the diagram
is an instance of a vertex of the graph of tyfBis (s1,s2 ands3 are instances of type
SimpleMolecule plis aninstance of the tyg&rotein). Each substance has an attribute
name associated to it, which has the type String . The reectice typed according to
the graph edges of types. In the example the reat¢fias of typeStateTransition
The reaction combines a list of reactive substances by thetitn sourceand a list of
products by the functiotarget.

Abstract Syntax Graph Type "beta-galactosidase":String

Process Diagram
Substances (nodes): gl "Sti
Concrete Syntax p1:Protein glucose™:String

s1,s2,s3:SimpleMolecule,

beta—galactosidasg name(p1) = "beta—galactosidase”| S1:Simple_Molecule
name(s1) = "lactose” t1:State_Transition}| s2:Simple_Moleculd

pl:Protein

name(s2) = "glucose"

4 name(s3) = "galactose”
@ L] s3:Simple_Molecule

Reactions (edges): h WG
Qalactose) t1: state_Transition lactose":String "galactose":String

source (1) = [p1,s1]
target(t1) = [s2,s3]

Fig. 3. Representation of Abstract and Concrete Syntax of a Pr@ziegsam.

In the following sections we show how to use rules over BiaRy@phs to describe
syntax, semantics and evolution of pathways. Due to spatigations, we will not
present the corresponding formal definitions, and will shust’'some examples to rules
of each of these three kinds.

3 Constructing Process Diagrams

A production of a (string) grammar is definedlas= Rwhere L is called left hand side
(LHS) and R right-hand side (RHS). A production can be aplgfi¢here is an instance
of LHS in the string that is being transformed, and the eftétihe application is to sub-
stitute the occurrence of the LHS by the occurrence of the . RK81g graphs, the idea
remains essentially the same, just that the notion of gukisti is a bit more involved.
Here we will not present the formal definitions of graph pretittn and application, see
[5] for the corresponding definitions.

The rules to define process diagrams are graph rules thatlieesow (syntacti-
cally) correct diagrams can be generated. Examples of tise are depicted in Fig-
ure 4. Ruldnsert_ Proteincan always be applied (the LHS is empty) and its effect is to
generate a vertex representing a protein. Rugert Associatiorcan be applied if two
proteins and a complex have previously been generatedfgts & to connect them by
anAssociatioredge. Given a type graph, one can derive automatically thef sales
necessary to construct correct instances of this type di@pltf we have an associ-
ated concrete syntax, these rules can be used to autortyagieaérate a corresponding
graphical editor (see [6]).

Insert_Protein Insert_Association
i; "=
. - f— _]

Fig. 4. Some Rules to Construct Process Diagrams

4 Semantics of Process Diagrams as Stochastic Graph
Transformation Systems

A process diagram essentially represents a static steiche structure of the pathway.
The graph grammar presented in the previous section preduoeess diagrams in
which each substance has an associated value, descrikiegrttent concentration of
this substance in the system. Thus, BioProc graphs regresapshots or states of a
biological system. To model the dynamic aspects of bioklgiathways, it is necessary
to associate an execution of simulation model to these aimgr\We propose to interpret
each reaction as arule, that changes the amount of the é/elibstances (reagents and
products), leaving the rest of the graphical structure efghthway intact. Of course,
results of a simulation of such a rule system will be appr@tions with respect to the
real system, since we are using discrete simulation.

The formal semantics of this underlying rule system is gikgrStochastic Graph
Transformations. This special kind of Graph Grammars wap@sed by [7] as an ex-
tension of the original framework, in which a rate is ass@aao each transformation
rule. Each rate represents an exponentially distribut@dicgtion delay to be consid-
ered during execution. We also associate conditions to a#eh, that are booleans
expressions that must be true for a rule to be applied. We mayariables in the rules,
as well as operations of the corresponding data types. €etsalrule for application,
besides finding an image of the graph of the left-hand sidéefrtile in the current
state, we must also find an assignment of all variables ajgeiarits left- and right-
hand sides to values, such that the conditions for the ryécapion become true.

Some rules of the semantics of process diagrams are showigureFs. The first
rule (processAssqQshows the behavior of associations of substances. Wengtaran
association of two proteingl andp2) and a complexal) with respective amounts
(x, y and2). The attributerate law is used as a delay of application of the rule. The
values of attributes will change according to right hane sifithe rule:pl andp2 are
subtracted by values oéact parametertaxlist rl,r2, respectively, andl is summed
by prod_parametertaxlist valueprodl. This rule can only be applied if the concentra-
tion of substancepl andp2 is greater or equal tdl andr2, respectively. The second
rule (processTransis analogous, but shows the behavior when there is an tohibi
substance involvedd(l). This reaction can only occur fl is not present, described by
the equatiorx = 0 associated to this rule.

We can use Stochastic Graph Transformation Systems to Maldov Chains.
Each state of graph grammar corresponds to a markovian sth&ze there are as-
sociated a probabilities of changing to another state arsfiay in the same state. Its

prod:ct,paran:etetrja_x=1[prrzod1] LHS product_parameter tax=[prod1] RHS
— feact paramster faelrl®l - amount=z react parameter tax=[r112)
p1:Protein | Participan =["react","react’] participant=["react""react"]

ITOUNT S Conditon triggers(s>< r and = 12) M} condition trigger=(x>= 1 and y>= 12)
. / r o
p2iProtein o= m = r2[p2Protein amount=z+prod1

amount=y c1:Complex amount=y-12 c1:Complex
product_parameter_tax=[prod1] LHS!

RHS
amount =X rate_law= r amount =x product_parameter_tax=[prod1]

5 ie = o A law=r

1:Protein participants=["react", "inhibitor"] 1:Protein L o
react parameter tax=ri] processTrans | [p] Bonat paramator gy Drer]
condition_trigger= x=0 and y>= r1 condition_trigger= x=0 and y>= r1

; p(r) ,
f:SimpleMolecule ,. x=0 and y>= 1 (§1:SimpleMolecule <2:simpleMolec

amount=y amount=z amount=y-rl amount=z4prodl

:

Fig. 5. Semantic Rules.

possible to analyze (via model checking) and simulate systemss using the PRISM
tool [8].

5 Evolution of Process Diagrams

Models are constantly changing: new kinds of vertices/stigeibutes may show to be
necessary, others may become obsolete, new graphicasegpations may be needed,
etc. We can use the Bio Type graph as a basis for model tramnafam. Graph gram-
mars have been successfully used as a tool to describe madsidrmations [9]. The
idea is that we can use graph rules to describe at a metanewdehbw models evolve.
Some examples of rules that could be used to show the ewolotiBioProc model are
depicted in Figure 6. First, suppose that we would like tegnate two attributes into
one. Rulered_att_colsintegratesntervals(a list of pair structure) andolors(a list of
values) creating a new attribute calledlerval_colors, that is a list of triples (the first
two number describe the intervals and the third the colossbeiated to this edge). An
another example could be the inclusion in the model of a lzooédtribute to indicate
if a protein is a enzyme or not.

LHS RHS)
t :Legendsc?ncentratlon| red_att_col t1:LegendsConcentration |
¢olors=[i1,..,rn]
gintervals=[(p1 ,q2),...(pn,qn)§ I interval_colors=[(p1,q1,r1),...(pn,qn,rn)]
LHS RHS

ins_att_enz

p1:Protein > (p1:Protein|—enzime=T

Fig. 6. Some Evolution Rules.

10

6 Conclusions and future work

In this paper we have developed a formal foundation for lgjimial process diagrams, by
defining their (concrete and abstract) syntax and semamicg the graph grammars
formalism. This approach enables an user-friendly frammew@ manipulate biologi-
cal pathways specifications, as well as takes advantagetfremell-developed theory
of graph grammars to analyze specifications [10]. The useagdhggrammars to de-
scribe model evolution enables to improve the model of lgjiwial process diagrams
with new properties, characteristics and relations nairassl at the time of definition
of the model. This is interesting for communities like SBGAN]where improvements
are constantly being made in the descriptions of biologia#tiways. This paper defines
the basis of our framework, that is the metamodel of proceggams, and discussed
how to use it to accomplish these three different tasks: tiefinof syntax, seman-
tics and evolution. Future work includes implementatiotthef approach, by using and
extending the existing tools, as well as validating it bylistia case studies.

References

1. Luciano, J.S., Stevens, R.D.: e-science and biologativpay semantics. BMC Bioinfor-
matics8 Suppl 3(2007) 1-21

2. Kitano, H., Funahashi, A., Matsuoka, Y., Oda, K.: Usinggass diagrams for the graphical

representation of biological networks. Nature Biotechggl23(8) (August 2005) 961-966

Kitano, H.: A graphical notation for biochemical netwsriBiosilico1(5) (2003) 169-176

Le Novere, N., Bornstein, B., Broicher, A., Courtot, Ndonizelli, M., Dharuri, H., Li, L.,

Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, Biomodels database: a free,

centralized database of curated, published, quantitativetic models of biochemical and

cellular systems. Nucleic Acids R&8d(Database issue) (January 2006)

5. Ebhrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamsnif Algebraic Graph Transfor-
mation (Monographs in Theoretical Computer Science. AnE8Beries). Springer (March
2006)

6. Bardohl, R.: GenGED - Visual Definition of Visual Languadeased on Algebraic Graph
Transformation. PhD thesis, Technische UniversitatiB¢i999)

7. Heckel, R., Lajios, G., Menge, S.: Stochastic graph foansation systems. Fundam. Inf.
74(1) (2006) 63-84

8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probiatit symbolic model checker.
In Field, T., Harrison, P., Bradley, J., Harder, U., edsod?12th International Conference
on Modelling Techniques and Tools for Computer PerformaBealuation (TOOLS’02).
Volume 2324 of LNCS., Springer (2002) 200-204

9. Ebhrig, H., Ehrig, K.: Overview of formal concepts for métlansformations based on typed
attributed graph transformation. Electr. Notes Theor. @oinSci.152 (2006) 3—-22

10. Rozenberg, G., ed.: Handbook of Graph Grammars and Qorgpay Graph Transforma-
tions, Volume 1: Foundations. In Rozenberg, G., ed.: Haoklnd Graph Grammars, World
Scientific (1997)

11. Novere, N.L., Moodie, S., Sorokin, A., Hucka, M., Schezj F., Demir, E., Mi, H., Mat-
suoka, Y., Wegner, K., Kitano, H.: Systems biology graphigatation: Process diagram
level 1. Available from Nature Precedings : http://hdl.tennet/10101/npre.2008.2320.1
(2008)

Pw

