
A Query Language for Data Access in
Ubiquitous Environments

Cristiano Silveira1, Leonardo Eloy2, José Maria Monteiro3

1 Mestrado Integrado Profissional em Computação - UECE
2 Centro de Ciências Tecnológicas - UNIFOR

3 Secretaria da Fazenda do Estado do Ceará - SEFAZ-CE

Abstract. Recent progress in ubiquitous computing technology is al-
lowing development of new and sophisticated applications that are now
able to store very large data on the mobile device itself, besides access
data stored remotely. Thus emerges the need to query and maintain data
from portable equipments. However, traditional query languages such as
SQL (Structure Query Language) and QbE (Query by Example) are in-
adequate for devices with small screens. Hence, this work presents QbZ
(Query by Zoom), a query language based on Semantic Zoom for small-
screen devices. The proposed mechanism is particularly suitable to locate
and access data stored in portable equipments. In order to demonstrate
the benefits of using QbZ, usability tests were conducted, as well as a
comparative analysis with the existing solutions.

Keywords: Query Language, Ubiquitous Environments, Semantic Zoom

1 Introduction

Recent progress in technology used in portable devices (such as PDAs, cell
phones and smartphones) is contributing to diminish the cost of these equip-
ments, making them accessible to a growing group of persons. This progress has
contributed to increasing the computational and storage capacities of portable
equipment. In the beginning of 2008 HTC, a smatphones manufacturer, intro-
duced the HTC X9501, which has a 40 GB HD [9].

Today, with the advancement of technology in both data communication
networks and accessing devices, new and sophisticated ubiquitous applications
can be developed, the demand for which should follow the growth trend. Ex-
amples of these applications are: teaching and collaborative working, electronic
tourist guides, navigation and route planning [1]. Thus, these new applications
will handle and store a large volume of information. Consequently, emerges the
need to query available data. However, traditional query languages, such as SQL
(Structure Query Language) and QbE (Query by Example), are inadequate for
devices with small screens [10]. Thereby, it is very important to investigate new
paradigms and metaphors to design query languages toward ubiquitous environ-
ments. This work introduces QbZ (Query by Zoom), a query language based on
Semantic Zoom [11] for small-screen devices. The proposed mechanism makes it
easier to locate and access data.



This article is organized as follows: Section 2 discusses related works; Section
3 presents the QbZ language; Section 4 presents the results of tests undertaken;
Section 5 concludes this work and points out directions for future works.

2 Basic Concepts

The success of a database system is, to a great extent, connected to the ease of
recovering stored information. It is through the database query language that
the user is able to express a set of restrictions and select the information desired.

A query language is defined as a high level computing language for recovering
and modifying data. A relational query language can be understood as a formally
well defined set of operators that can be combined to express queries in databases
[4]. The process of formulating the query is carried out in three steps, according
to [7]:

1. Location: the user selects a set of information of his interest, that is, objects
that will make up part of his response set, or that will be used to restrict
the set of values of the response;

2. Definition of requirements: some restrictions are applied to the objects
selected in the previous phase, and these restrictions must be satisfied in
order for such objects to become a part of the query result;

3. Viewing the result: the result of the query is presented to the user. The
same set of information may be presented in different ways, but the choice
of the adequate representation allows better interpretation of the results by
the user.

Query languages can be classified into two large groups: text languages and
visual languages. A text query language (SQL, for example) requires the user to
have great knowledge of syntax and of the manner in which the information is
stored in the database. Visual query languages, or Visual Query Systems (VQS),
present a friendlier environment for recovering information, allowing users un-
familiar with text language syntax to formulate their queries in a simple and
intuitive manner [7].

The Visual Query Systems (VQS) use a language to express the queries in
visual format, and a variety of functionalities to favor interaction of the user
with the system [7]. VQS can be seen as an extension of DBMS (Database Man-
agement Systems), allowing data queries to be formulated by less experienced
users.

A VQS can be divided into two parts: external query model, and internal
query model [4]. The external model defines the manner in which the user will
visualize and manipulate the information. The internal model, in turn, is used
to represent the queries elaborated by the user through the external model, in
the query language defined by the implementation environment. For example,
the external query model may use QbE, while the internal model uses SQL. In
this case the user elaborates his query using QbE, and this query is mapped to
SQL, so it can be executed on the DBMS. In order to allow translation between



the external and internal models, a mapping module must exist that promotes
the relationship between the operations and representations of each model [4].

The external model must present great power of expression and a very
friendly query language. The internal model on the other hand, depends on
the DBMS used and the query language it supports. The possibility of using dif-
ferent models allows the environment for interaction with the user to be defined
without considering the implementation aspects.

VQS can be classified into four paradigms: form-based language, diagram-
based language, icon-based language, and hybrid language [4]. Although VQSs
have been used with considerable success in applications that execute in per-
sonal desktop computers, their use in small-screen devices, like cell phones and
smartphones, for example, has not proved adequate [10]. Hence, the investiga-
tion and definition of new paradigms for the construction of VQSs that are more
appropriate for portable devices have become an important research area.

3 Related Work

Massari [10] presents a prototype of a query processing facility that supports the
exploration and query databases from mobile computer based on the manipula-
tion of icons. This prototype is called Query By Icons (QBI). In this approach
the user primarily interact with the system with a pointing device, such as a pen
or a mouse, and compose query by arranging icons. However, this prototype was
not implemented for mobile phones.

In [6] the authors propose a graphical query language called MoSQL to be
the basis of general mobile information systems. This language has an icon-
based interface. That is, the same class of data represented in the database
system corresponds to the same icon. This windows-based interface is suitable
for mobile devices that can be operated by clicking or dragging the mouse, like
notebooks and PDAs. So, it is not suitable for mobile phones.

The paper [2] presents the design of a high-level web-based user interface
using IRE (Information Requirement Elicitation), in the context of “Hospital
database queries” by a mobile web user. The prototype is based on the notion of
Query-By-Object (QBO) approach of building a query using multiple user-level
steps. The Query-by-object (QBO) interface has been studied for Geographic
Data Systems.

In [1] the authors introduce a free-form database query language which was
implemented in a database query system prototype for WAP-enabled mobile
phones. Free-form is a concept which is based on the universal relation [1]. It
can be used to reduce the number of terms needed in a query. Hence, using the
language, any relational query can be formulated without the need to provide
precise inputs. Though, due to imprecise input may lead to many interpretations
in terms of the attributes to be displayed as outputs. Furthermore, the prototype
makes intensive use of menus and the database schema is showed in a very limited
manner (using in a list component).



Polyviou, et al., [12] discussed expressive queries in their work which imple-
ment directory-like interface for query formulation. However, their method is
suitable only to be used with devices that have pen input mechanism. As the
majority of mobile phones lack this type of input mechanism, we believe that a
conventional way of input, i.e., input using normal phones keypad and function
keys, should be considered. Another interesting option to be considered for in-
puts would be voice input. However, as being highlighted in [5], this method has
one major problem of voice recognition which needs further research.

4 Query by Zoom Language

The objective of this section is to present and describe the QbZ (Query by Zoom)
language. QbZ consists of a visual query language based on Semantic Zoom
[11], directed to small-screen devices. The QbZ language follows the standard
organization of visual languages, containing an external model and an internal
model. The external model uses Semantic Zoom as main metaphor, while the
internal model uses the SQL text language.

The basic idea of Semantic Zoom is to allow the user to have control over a
large volume of visual objects [3]. As the user closes in on the information, more
details of said information are exhibited [11]. Control is carried out by using:
Zoom In, whereby the user closes in on the desired information and, depending
on the approximation, there is a level crossing; Zoom Out, whereby the user
backs off from the information; and Pan, where there is a lateral movement at
the same level. Although it is not a recent idea, interfaces based on Zoom have
become more prominent in the construction of visual interfaces for portable
devices [3].

4.1 The External Model

A query in QbZ is represented by a sequence of actions. These actions can be
classified in three categories:

– Visual actions of semantic zoom;
– Query formulation actions;
– Data recovery actions;

In all, QbZ offers 15 operations (or actions), as showed in Figure 1:

– AZ: Activates ZOOM mode. From this point onward the keys of the mobile
device are ready to activate the ZOOM IN and ZOOM OUT modes.

– ZIN : Indicates ZOOM IN. Enlarges the selected screen by “n” times.
– ZON : Indicates ZOOM OUT. Reduces the selected screen by “n” times.
– DZ: Disables ZOOM mode.
– SHIFT UP, SHIFT DOWN, SHIFT LEFT, SHIFT RIGHT: Acti-

vates displacement, displacing the visualization content, changing the part
that will become visible on the portable device screen.



– TABLE SELECTION: Selects a table.
– PROJECTION: Selects columns in the indicated table.
– SELECTION: Selects the lines of the indicated table that satisfy a certain

condition (predicate).
– JOIN MODE: Indicates the start of a joining operation.
– JOIN FIELD ON LEFT and JOIN FIELD ON RIGHT: Indicate the

columns that will make up the joining condition.
– HOLD JOIN: Concludes a joining action.

Fig. 1. Operators of the QbZ External Model.

4.2 The Internal Model

The internal model of the QbZ language uses the SQL text language. Thus, the
queries elaborated using the external model of QbZ must be translated to SQL.

4.3 Translation from the External Model to the Internal Model

A query elaborated from the external model of QbZ corresponds to a sequence
of actions. This sequence of actions can be represented by a graph. In order to
make it easier to understand the process of translating from the external model
to the internal model, we will represent each action that composes the external
model of the QbZ with a symbol. Figure 1 illustrates the actions that compose
the external model of the QbZ language.



The translation process starts by capturing the actions executed by the user
by means of the external model [4]. Next, a graph of QbZ operators is generated
to represent the query elaborated by the user. The next step consists of mapping
the QbZ operator graph to a graph of relational algebra operators. Note that, for
this, the visual actions (operations) of Semantic Zoom are discarded, as are the
data recovery actions that may exist on the QbZ operator graph. To conclude
the translation process the relational algebra operator graph is translated to a
text query in SQL.

4.4 Semantic Zoom Levels

The designed strategy uses three levels of Semantic Zoom: the level 1, which
initially shows information about the database schema; the level 2, appears after
selecting a table and shows information about the selected table, such as: name,
size and type of attributes, etc; and the level 3, displayed after the selection of a
particular attribute, which displays the details related to the selected attribute
and the actions that can be executed from this attribute, as the addition of a
projection or a selection condition. These three levels are exemplified in Figure
2.

4.5 Strategies for User Interface Design

According to [4], the goal of the people working with a VQS is to retrieve the
desired data. This is usually accomplished through the following two main ac-
tivities:

1. Understanding the reality of interest. The goal of this activity is the
precise definition of the fragment of schema involved in the query.

2. Formulating the query. The goal of query formulation is to formally ex-
press the operands involved in the query, with their related operators.

Understanding the reality of interest by the user is a task that previously
was not considered by the query systems. The complexity of this task is directly
related to the size of the database schema and workload. This process of under-
standing the model can be very slow, depending on the knowledge that the user
already has from the model. The developed strategies try to ensure a gradual
construction of the mental model, with the information already caught about
the analyzed data model. All new information captured generate a change in the
mental model trying to make it close to reality [4]. There are three strategies that
can be adopted in order to facilitate this task: Top-down, Browsing and Schema
Simplification [4]. The Browsing technique consists in the study of element to
element in a diagram of entities. Each selected element is checked, the useful
information is acquired by the user and the process continues by neighboring
elements.

Query formulation is the fundamental activity in the process of data retrieval.
For this task, the main techniques that can be used are: Schema Navigation, Sub-
queries and Matching [4]. The query formulation strategy by schema navigation



has the characteristic of concentrating on a concept (or a group of concepts)
and moving from it in order to reach other concepts of interest, on which further
conditions may be specified. Such a strategy differs according to the type of path
followed during the navigation [4].

In the mechanism proposed in this paper we used the technique “Browsing”
to understanding the reality of interest. For the query formulation task was used
“schema navigation”. However, to implement browsing and schema navigation
we propose to use Semantic Zoom.

In the case of Semantic Zoom, the schema is unique, and the concepts are
layered in terms of levels of importance; the schema can be examined at several
levels, so that only objects above a specified importance level are visible. The user
can also graphically edit the schema, so that irrelevant objects can be removed
from the screen. The schema is also unique, but the objects may be examined
at different hierarchical detail levels.

5 Running Example

In order to demonstrate the efficiency of the proposed approach a QbZ proto-
type was implemented, called NanoZoom, using NanoBase as DBMS. NanoBase
provides a relational view for access to data on the JME CLCD/MIDP platform,
allowing the use of DDL/DML clauses, integrity restrictions, as well as several
index structures [8]. NanoZoom was implemented using the JME CLDC/MIDP
platform.

5.1 Example 1

Consider the following task: for each dependent retrieve your ID, your name
and the name of the employee involved. Figure 3 shows the QbZ Expression,
generated by the QbZ external model, to retrieve the requested data. Figure 4
shows the QbZ operator graph, generated by the QbZ internal model, for the
Example 1.

This QbZ graph is translated to a relational algebra expression:

ΠD.Id,D.Name,E.Name(Dependent ./D.Employee=E.Id Employee)

Next, the relational algebra expression is translated to a SQL clause:

SELECT D.ID, D.NAME, E.NAME
FROM DEPENDENT D, EMPLOYEE E
WHRE D.EMPLOYEE = E.ID

Finally, the SQL expression is send to the DBMS and the result is displayed.



6 Conclusions and Future Works

In this article we present QbZ (Query by Zoom), a query language based on
Semantic Zoom, for portable devices. This language makes it easier to locate
and access data stored in the mobile devices. The information recovery in QbZ
system has yet some additional features, such as: visual representation, definition
of detail levels and navigation on the graph scheme, storage of queries for later
use, conversion of a query form visual to textual representation or vice versa,
among others.

As future works we intend to conduct more strict usability tests, use the
TinySVG graphical library in the implementation of the visual interface and
implement other relational operators like sort and aggregation operations.

References

1. R. Ahmad and S. Abdul-Kareem. A free-form database query language for mobile
phones. Communications and Mobile Computing, International Conference on,
3:279–284, 2009.

2. S. Bhalla and M. Hasegawa. A query interface for ubiqitous access to database
resources. In COMAD ’06: Proceedings of Conference on Management of Data,
New Delhi, India, 2006.

3. T. Buering, J. Gerken, and H. Reiterer. User interaction with scatterplots on small
screens - a comparative evaluation of geometric-semantic zoom and fisheye distor-
tion. IEEE Transactions on Visualization and Computer Graphics, 12(5):829–836,
2006.

4. T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query system for
databases: A survey. Journal of Visual Languages and Computing, 1997.

5. E. Chang, F. Seide, H. M. Meng, Z. Chen, Y. Shi, and Y.-C. Li. A system for spoken
query information retrieval on mobile devices. Speech and Audio Processing, IEEE
Transactions on Publication, 10:531– 541, 2002.

6. Y.-H. Chang. A graphical query language for mobile information systems. SIG-
MOD Rec., 32(1):20–25, 2003.

7. B. Czejdo, R. Elmasri, M. Rusinkiewicz, and D. W. Embley. A graphical data
manipulation language for an extended entity-relationship model. Computer,
23(3):26–36, 1990.

8. L. Eloy, V. Arajo, J. M. Monteiro, and A. Brayner. A tiny relation database
manager for the jme cldc/midp platform. Revista Tecnologia, 29(1):7–15, 2008.

9. HTC. Htc x9501. 2008. Available at http://www.htc.com/www/product.aspx.
10. A. Massari and S. W. P. K. Chrysanthis. Supporting mobile database access

through query by icons. In Distributed and Parallel Databases Jour, pages 4–249,
1996.

11. K. Perlin and D. Fox. Pad: An alternative approach to the computer interface. In
Proceedings of SIGGRAPH 93, 1993.

12. S. Polyviou, G. Samaras, and P. Evripidou. A relationally complete visual query
language for heterogeneous data sources and pervasive querying. In ICDE ’05:
Proceedings of the 21st International Conference on Data Engineering, pages 471–
482, Washington, DC, USA, 2005. IEEE Computer Society.



Fig. 2. Semantic Zoom Levels.



Fig. 3. QbZ Expression for the Example 1.

Fig. 4. QbZ Operator Graph for the Example 1.


