
Applying Test-Driven Development and Reverse
Engineering Patterns to Reengineer Legacy

Software Systems

Vińıcius H. S. Durelli1, Simone S. Borges2, and Rosângela A. D. Penteado2

1 Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo (ICMC-USP)

13560-970 – São Carlos – SP – Brasil
{durelli}@icmc.usp.br,

2 Departamento de Computação
Universidade Federal de São Carlos (DC-UFSCar)

13565-905 – São Carlos – SP – Brasil
{simone_borges,rosangel}@dc.ufscar.br

Abstract. Nowadays, software technology is evolving quickly and there-
fore software systems which have been built upon some technologies are
deprecated even before being released and used. Thus, software systems
are in constant evolution in order to adapt themselves to the current tech-
nologies as well as users’ needs. An approach to revitalize software sys-
tems that have already been released is reengineering. In this paper, we
propose an iterative reengineering approach that uses reverse engineer-
ing patterns and test-driven development to cope with issues involved in
migrating from a legacy system to an equivalent software system imple-
mented in more recent technologies. As a preliminary evaluation of the
proposed approach, we contrasted it with an ad-hoc approach during the
reengineering of a legacy system from Smalltalk to Java.

Key words: Reengineering; Test-Driven Development; Refactoring; Reengi-
neering Patterns.

1 Introduction

Software systems undergo many modifications during their life cycle. The act of
either improving or modifying an existing software system without introducing
problems is quite a challenge. Reengineering is aimed at revitalizing software
systems through fixing existing or perceived problems. However, unlike forward
engineering that is supported by a plenty of processes, such as the spiral and wa-
terfall models of software development, no established process for reengineering
is available [1].

Due to the absence of an established reengineering process, patterns and
some techniques which have been in existence for a long time and are recog-
nized and generally accepted can be combined and used within a reengineering
context. Moreover, agile practices have been widely applied in many forward



engineering efforts since their introduction, thus there is interest in determining
the applicability of some agile practices to reengineering projects.

The novelty of our approach is that reverse engineering activities use par-
ticular reverse engineering patterns (drawn from the literature) and forward
engineering activities are performed applying test-driven development. Further-
more, in the context of our approach, reverse and forward engineering activities
are iteratively and incrementally carried out. To assess the effectiveness of the
approach, it was experimented on a legacy system; the results indicates its ef-
fectiveness in terms of quality of the produced code.

In order to describe our approach, the remainder of this paper is structured
as follows. Section 2 and 3 presents background on the main concepts and tech-
niques involved in the proposed reengineering approach: reverse engineering pat-
terns and test-driven development, respectively. Section 4 describes our iterative
reengineering approach and Section 5 presents a case study that describes a
legacy framework reengineered applying the proposed approach. Section 6 con-
cludes the paper with some remarks, limitations of the approach, and future
directions.

2 Reverse Engineering Patterns

Patterns describe a solution to recurring problems. Usually, they are documented
in a literary form which introduces the problem to the reader, describes the con-
text within which it generally occurs, and presents a solution to the underlying
problem.

Reengineering efforts deal with some typical problems and there is no tool or
technique that is able to overcome all those problems. In addition, the process
of reengineering is, like any other process, one in which many techniques have
emerged, each of which entails many trade-offs. Reengineering patterns are well
suited to describing and discussing these techniques; they help in diagnosing
problems and identifying weaknesses that may hinder further development of
the system, and they aid in finding more appropriate solutions to problems
typically faced by developers.

Reverse engineering can be regarded as the initial phase in the process of soft-
ware reengineering. Thus, reverse engineering patterns aim at building higher-
level software models and acquiring more abstract information from the source
code. Significant research has been done to record patterns that occur in reengi-
neering and other contexts [2,3]. The reverse engineering patterns used in our
approach are described in the Section 4.1. The next section outlines the agile
practice called test-driven development.

3 Test-Driven Development

Test-Driven Development (TDD) is one of the core practices that have been
introduced by the Extreme Programming discipline. Essentially, applying TDD
requires writing automated tests before producing functional code. Using TDD,



the implementation of each new functionality starts with the developer writing
a test case which specifies how the program should invoke that functionality and
what its result should be. The recently implemented test fails, thus the developer
implements just enough code to make the test pass. Finally, unless a prior test
is not still passing, the developer reviews the code as it now stands, improving
the code by means of a practice called refactoring.

Refactorings are behavior-preserving program modifications that improve a
software system design and underlying source code [1]. Refactoring as a practice
consists in restructuring software systems by applying a series of refactorings
without altering their observable behavior. In the context of a TDD cycle, refac-
torings are carried out in order to make the introduction of new functionalities
easier, during this process all of the previously written tests act as regression
tests to make sure that the changes have not had any unexpected side effects.

Applying TDD, working software is available at every step and tests validate
that each feature works as expected. The software system being developed using
TDD is built and improved feature by feature, and the tests ensure that it is
still working before the developer move on to next features. Thus, although
its name implies that TDD is a testing technique, it is an analysis and design
practice [4]. It is considered an analysis technique because, during the creation of
the tests, the developer selects what is going to be implemented, defining hence
the functionality scope. Moreover, it is regarded a design technique because,
while each test is implemented, the developer makes decisions related to the
application programming interface (API) of the software system (e.g., classes
and methods names, number of parameters, return type, and exceptions that
are thrown). The fundamental role that reverse engineering patterns and TDD
play in the underlying approach is presented in the following section.

4 Iterative Reengineering Approach

Usually, legacy software systems are complex. Thus, to overcome this complexity,
our reengineering approach deals with parcels of legacy software systems. The
system being reengineered is split into parcels coarse grained, such as layers
and packages, or fine grained such as classes. After subjectively split the legacy
system up into parcels, two types of activities are iteratively done for each parcel
of this legacy system. The first type approaches the recovery of the existing
design – reverse engineering – and the second one is related to implementing and
improving – forward engineering and restructuration – the extracted design.

In order to accomplish reverse engineering activities, some of the patterns
proposed by [3] are applied. During the forward engineering activities, TDD is
applied to implement the information related to the parcel which was reverse
engineered. An overview of the approach is shown in Figure 1. The patterns
applied on this iterative approach consider the available documentation as well as
the source code of the legacy system being reengineered. The reverse engineering
activities as well as the patterns used are described in the next subsection.



4.1 Reverse Engineering Patterns Used in the Approach

In our approach, while performing reverse engineering activities, both the docu-
mentation and the source code are iteratively consulted in order to understand
and to validate information obtained on a software system parcel. The patterns
used in this case are: Read All the Code in One Hour, Skim the Documentation,
and Speculate About Design [2,3]. These patterns have been chosen because they
are well documented and have produced adequate results in our previous stud-
ies. Moreover, although these patterns are presented in the context of a major
reengineering effort, according to their authors, they can also be applied when
the reengineering is done in small iterations.

The main goal of Read All the Code in One Hour pattern is to assess the
source code quality and complexity. This assessment is done by means of brief
but intensive code review. There is an important difference between traditional
code reviews and the ones performed in the context of our approach. The former
is mainly meant to detect errors, while the latter is meant to get a first impression
of the quality of the code and to recover information on how the functionality is
implemented.

Fig. 1. An overview of our iterative reengineering approach.

This pattern originally suggests that all the source code should be read in
an hour. However, in our approach, only the source code related to the parcel
being reengineered is examined. Therefore, there is a reduction in the amount
of relationships among classes that must be comprehended in each iteration. A
drawback of applying Read All the Code in One Hour is that the obtained infor-
mation needs to be complemented with other more abstract representations [3].
Thus, to complement those information another more abstract representations
of the legacy system as, for instance, class and sequence diagrams must be con-
sulted if available.

Skim the Documentation is applied in order to evaluate the relevance of the
available documentation, and it is applied either before or after Read All the



Code in One Hour. In the context of this iterative reengineering approach, it is
applied to select the sections of the documentation which contain more relevant
information on the parcel being reengineered. This information is used to validate
and to complement the low level information acquired by the use of Read all the
Code in One Hour pattern. Figure 2, by means of an activity diagram, represents
the activities which have to be carried out during the reverse engineering of each
parcel.

The mentioned patterns are repeatedly applied for each parcel of the legacy
system being reengineered. All acquired information is verified and summarized
since the documentation may not correspond to the implementation. The pro-
posed approach, because of its inherently iterative nature, enables the developer
to decide when the obtained information is enough to start carrying out reverse
engineering activities.

Some parcels are harder to be comprehended since their documentation does
not contain class diagrams or any other abstract representation of the func-
tionality implemented by such parcels. The Subsection 4.2 describes how class
diagrams which depict the design of the most complex parcels of the legacy
system can be produced.

Fig. 2. Reverse engineering activities.

4.2 Constructing Class Diagrams of Complex Parcels

Class diagrams assist in understanding some parcels of a legacy system. Spec-
ulate About Design pattern can be applied in order to produce these class di-
agrams [3]. This pattern suggests the creation of a hypothetical class diagram
based on suppositions about how the functionality of those parcels has been
implemented. This hypothetical diagram, initially abstract and without any im-
plementation details, is gradually refined and classes, methods and attributes
may be added to it. Hence, the hypothetical diagram becomes closer to what is
implemented by the parcel being considered. If the legacy system has already



class diagrams, this pattern can also be applied, but those class diagrams have
to be verified in order to check their consistency with the implementation.

4.3 Forward Engineering Applying TDD and Refactoring

The information previously obtained is used to implement a parcel which is
equivalent to the existing one. In this step of the reengineering approach, the
implementation of the resulting parcel may contain some improvements in re-
lation to the legacy system equivalent parcel, due to an improvement in the
functionality or some technological difference. Furthermore, some modifications
may be necessary during the integration of the recently implemented parcel
with the already reengineered parcels. If these modifications were not addressed,
problems would be inadvertently introduced. In this approach TDD is adopted
in order to attenuate problems caused by the necessary modifications.

A list of test cases is created based on the information that was obtained
during the reverse engineering activities. After the creation of the list of test
cases, the steps of TDD cycle are performed and the parcel being addressed and
a set of automated tests are implemented. These automated tests can be used
as regression tests and therefore used to verify if problems were introduced in
the source code due to modifications done during the integration of the parcels.
If it is necessary, some refactorings can be done to assist in improving the parcel
code which facilitates the parcel integration.

Since parcels are implemented applying TDD, the creation of an upfront
project may be unnecessary. This way, developers do not need to be concerned
about how some features will be re-implemented when a new programming lan-
guage is chosen.

In order to evaluate the effectiveness of the aforementioned approach and the
seamlessly integration of the techniques included in it, it was used to reengineer
a legacy system which has more than 29 KLOC. The next section outlines how
the reengineering has been conducted using our approach.

5 Case Study: GREN Framework

This case study describes how the GREN framework [5] was reengineered from
Smalltalk to Java. GREN was built based upon a pattern language called Busi-
ness Resource Management (GRN) [6]; a pattern language that contains fif-
teen patterns which belong to the business resource management domain. The
framework architecture consists of three layers: persistence, business (model)
and graphical user interface (GUI). The business layer comprises the implemen-
tation of the GRN patterns, and only code related to this layer was taken into
consideration during the case study. In addition, it is worth to note that only
one of the authors participated in the case study, and his knowledge of the lan-
guages involved can be classified as: advanced and intermediate, regarding Java
and Smalltalk, respectively.



In order to provide evidence of the efficiency of our approach, the first three
GRN patterns implemented in the framework GREN have been reengineered
using an ad-hoc approach to perform reverse engineering activities; and the
information that was obtained during these reverse engineering activities was
implemented using a test-last approach. In contrast to it, other three patterns
have been reengineered applying our proposed approach, thereby using reverse
engineering patterns to support reverse engineering activities and forward reengi-
neering activities applying TDD. The Table 1 shows information related to the
pattern implementations which have been reengineered during the case study.

Table 1. Patterns implemented in the framework GREN that have been reengineered.

Name Number of Classes KLOC (Smalltalk)

Identify the Resources 7 0,652

Quantify the Resources 4 0,339

Rent the Resource 4 0,781

Trade the Resource 5 0,783

Quote the Trade 3 0,350

Check Resource Delivery 2 0,256

Throughout the case study we were interested in investigating whether our
approach produces higher-quality code and reduces the amount of time spent on
reengineering. Nevertheless, in the context of the proposed case study, quality
is simply defined in terms of defect rates from the perspective of the software
developer conducting the reengineering. Thus, the measures we have used to
draw conclusions are: defect density (i.e., the number of defects per line of code)
and the time spent to reengineer each pattern. The effect we expect our approach
to have is formalized into hypotheses as follows.

Null Hypothesis, H0: this hypothesis states that there is no real advantage
in applying our approach, i.e., using TDD does not result in lower defect
rates and the accuracy of the information retrieved by undertaking reverse
engineering applying patterns is not cost-effective.

Alternative Hypothesis, H1: according to this hypothesis, carrying out for-
ward engineering activities using TDD improves the code quality, i.e., the
resulting code has lower defect rates than code generated by a test-last ap-
proach. Moreover, the accuracy of the information drawn from the source
code applying reverse engineering patterns is cost-effective.

After implementing all the functional code, the unit tests were created using
the framework JUnit. The boundaries of each activity performed to reengineer
the first three patterns are distinguishable (e.g., reverse engineering, forward
engineering, testing, and debugging activities). Thus, we were able to stipulate
the time that would be spent in each activity, these estimation as well as the
real time spent reengineering each pattern are presented in Table 2. The results,
gathered during the reengineering of these first patterns, are shown in Table 3.



Table 2. Estimation and real time in minutes spent reengineering the first three pat-
terns

Pattern#1 Pattern#2 Pattern#3

Minutes Estimated Spent Estimated Spent Estimated Spent

Reverse Engineering 240 192 120 116 240 348

Forward Engineering 480 698 300 345 480 557

Testing 120 158 60 45 120 96

Debugging 120 47 60 143 120 98

Total 960 1095 540 649 960 1099

As it can be noticed in Table 2, more time than estimated had to be spent
on the reengineering of all patterns. Moreover, tests have revealed that defect
density of the first pattern code was considerable low (Table 3). However, as
the first pattern’s code had to be changed in order to be integrated with the
other patterns’ code, an increase in defect density of Pattern#2 and Pattern#3
appeared and, therefore, in the amount of time spent in debugging activities.

Table 3. Defect density and lines of Java code of each pattern (1 through 3).

Pattern#1 Pattern#2 Pattern#3

Defect Density KLOC Defect Density KLOC Defect Density KLOC

4,47 1,567 5,67 0,882 6,24 1,443

The other patterns have been reengineered using our approach. Thus, the
time devoted to forward engineering and testing were joined up into one activ-
ity, namely TDD. The Table 4 shows the stipulated times for each activity, as
well as the time spent in carrying them out. The results obtained after reengi-
neering the remaining patterns are very satisfactory, Table 5. Although the time
spent applying reverse engineering patterns was always more than previously
stipulated, the information retrieved by using those reverse engineering patterns
has been shown more accurate than the information obtained from an ad-hoc
approach. In addition to it, forward engineering activities using TDD have shown
to be well suited to deal with the issues involved in translating constructions of
a language into similar constructions of another language. The defect density
presented was very encouraging for almost all patterns. The number of defects
found in the Pattern#6 was very close to the other patterns, namely ranging
from 2 to 5. Nevertheless, its defect density was higher than the other pattern
implementations since it has a reduced number of lines of code. The information
gathered during the case study is summarized in the graphs of Figures 3 and 4,
and by means of such information we were able to reject the null hypothesis.



Table 4. Estimation and real time in minutes spent reengineering the last three pat-
terns

Pattern#4 Pattern#5 Pattern#6

Minutes Estimated Spent Estimated Spent Estimated Spent

Reverse Engineering 240 312 120 255 120 179

TDD (Forward Engineering) 545 509 360 499 300 405

Debugging 120 21 60 23 60 47

Total 905 842 540 777 480 631

Table 5. Defect density and lines of Java code of each pattern (4 through 6).

Pattern#4 Pattern#5 Pattern#6

Defect Density KLOC Defect Density KLOC Defect Density KLOC

2,68 1,498 3,90 0,771 9,13 0,438

Fig. 3. Real time spent in each activity during the case study.

Fig. 4. Defect density rates presented by each pattern.

6 Concluding Remarks

In this paper, we have presented an iterative reengineering approach that con-
sists of selecting a decomposition of the original system in terms of parcels and
reengineering each of the individual parcels using TDD and reverse engineering
patterns. Reverse engineering activities are carried out using patterns, thus there
is reuse of knowledge. During forward engineering, the automated tests created



applying TDD provide the developer with feedback about analysis, design, and
implementation decisions. Furthermore, these test cases can also be used as re-
gression tests when future modifications are necessary. Nonetheless, a drawback
of this practice is that the developer has to maintain both the functional code
and the automated tests. To present evidence of the efficiency of our approach,
we have described a case study where a legacy system was reengineered from
Smalltalk to Java. Although we have tested our approach to reengineer the afore-
mentioned system, with more than 29 KLOC, we believe that our approach does
not scale well for larger applications, i.e., more than 35 KLOC. The evaluation
of the time necessary to perform reverse engineering using the proposed patterns
pointed out that: in order to apply this approach in larger legacy systems, ei-
ther reverse engineering or program comprehension tools must be used instead
of reverse engineering patterns; since applying patterns to accomplish reverse
engineering activities is time-consuming.

According to the results obtained during the presented case study, TDD
seems to be an effective practice to deal with the issues related to incrementally
reengineering legacy systems. In the context of this case study, creating the tests
before implementing the functional code has helped to address the translation
of the up-front design, created by means of the information drawn from reverse
engineering activities, into a suitable design which conforms to the features of the
Java language. Moreover, the assessment of the results indicates that employing
our approach implies in trading productivity for quality, since more time was
generally spent using TDD and reverse engineering patterns than test-last and
an ad-hoc approach.

Several relevant points are not precisely addressed by our approach: (i) the
criteria to be used to define the parcels to be submitted to each iteration of the
approach and (ii) how the documentation, extracted by reverse engineering, can
be used to define test cases in the forward engineering step. We are currently
working on solutions for these limitations and we aim at evaluating the results
from different people or teams conducting reengineering efforts as the described
in the case study, since the described one was conducted by just one developer.

References

1. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Transactions on
Software Engineering 30(2)

2. Demeyer, S., Ducasse, S., Nierstrasz, O.: A Pattern Language for Reverse Engineer-
ing. Proceedings of EuroPLoP 1999 (1999) 189–208

3. Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-Oriented Reengineering Patterns.
Morgan Kaufmann (2002)

4. Beck, K.: Aim, fire. IEEE Software (5)
5. Braga, R.T.V., Masiero, P.: A Process for Framework Construction Based on a

Pattern Language. Computer Software and Applications Conference (2002)
6. Braga, R.T.V., Germano, F.R., Masiero, P.C.: A Pattern Language for Business

Resource Management. Conference on Pattern Languages of Programs 6 (1999)


