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Abstract. This paper presents a technique for handling inconsistencies in 
symbolic classifiers. Very often, ensemble-based techniques are used to 
improve performance and classification accuracy. However such methods 
compromise the knowledge understandability and decisions explanation 
because the knowledge is partitioned among the classifiers. Furthermore, the 
classifiers generated from data samples are likely inconsistent, demanding a 
complex ensemble combination strategy. On the other hand, knowledge 
integration techniques are used to merge symbolic classifiers into an 
understandable and global classifier, merging and selecting good classification 
rules from the local models. In this paper Paraconsistent Logic concepts are 
used to gather concepts from local models, generating a global ruleset with 
good accuracy avoiding data exchange and rules evaluations, saving a lot of 
computational resources. Whenever local models are gathered together the rules 
are ordered using Paraconsistent Logic operators and other ones are used for 
classification of new instances. We could observe good results in the 
experiments performed on a number of benchmark datasets.  

Index terms – Symbolic Classifiers, Paraconsistent Logic, Distributed Data 
Mining 

1   Introduction 

Several studies have been conducted to permit the analysis of large volumes of data 
generated daily in research centers, commercial and industrial organizations, etc. Such 
methods are usually based on distributed data mining. Data oriented distributed 
mining [12] constitute a noticeably important class of methods. Those methods 
basically split data into smaller subsets which are individually processed, yielding 
local classifiers. Later, those classifiers are merged into a unique global classifier. As 
a result, subsets are likely to include inconsistent concepts, causing the system to 
generate classifiers which represent opposite standpoints. Inconsistencies may either 
be introduced by the sampling method chosen or be inherent to databases distributed 
across several sites (for instance, databases from a shop chain). 



The method proposed in this work uses knowledge acquired by algorithms for 
induction of rules of type “IF (conditions) THEN class”, where the former 
(conditions) contains conjunctions of conditions derived from pairs attribute-value 
and the latter (class) contains the class assigned to a set of examples which satisfy the 
conditions exposed in the first part of the rule. 

In a distributed data mining context, when models built by distinct classifiers are 
merged, inconsistent global knowledge may arise if mutually exclusive rules, 
extracted from different partitions of data, predict a common class. Consider, for 
instance, that an algorithm has discovered the following rule from partition A: IF age 
> 25 THEN class = man, whereas the following rule has been discovered from 
partition B: IF age < 12 THEN class = man. As the classifiers have been built upon 
data from the same application domain, such contradiction is not acceptable. 
Inconsistencies may also occur in the second part of the rule: for instance, if a 
classifier A has the rule “IF age > 15 THEN class = man” and the classifier B has the 
rule “IF age > 12 THEN class = woman”, a contradiction between the concepts man 
and woman may be assumed, since a test instance whose attribute “age = 21” would 
be classified as both “man” and “woman”. In this case, either a rule or classifier 
weighing technique should be used for selecting the final class. 

The goal of this work was developing a methodology, based on Paraconsistent 
Logics [6], for supporting the acquisition of better interpretations of sets of rules 
where situations such as the ones described in the previous paragraph may occur 
without jeopardizing the performance of the system. The use of formalisms from 
Paraconsistent Logics allows the assignment of annotated evidential factors to rules 
which represent, respectively, belief (how much the rule is expected to be true) and 
disbelief (how much the rule is expected to be false) degrees. The evidential factors 
were used as the decision criterion for selecting the rule which satisfies the conditions 
in test instances and is the closest to the logic state true of Paraconsistent Logics. 

2 Paraconsistent Logic  

Contradictory information may be important for both reasoning and decision making 
processes. Their removal might cause negative impact on the search for solutions for 
some problems. The existence of inconsistent information in computational systems 
[6] can be easily recognized once, in several applications, inconsistencies are inherent 
to the problem. 

According to Enembreck [8], there are basically two ways of handling data 
inconsistencies: i) providing the learning algorithm with ability for adequately 
handling contradictory information during the learning process in order to generate 
consistent and reliable concepts; or ii) applying a reasoning method which permits 
reliable inference to the knowledge acquired by an ordinary learning algorithm: 
transforming the knowledge base so it becomes consistent, generating a new 
knowledge base out of consistent data from the original base, or applying uncertainty 
handling techniques which permit reasoning over inconsistent data. In this work, the 
last option was chosen. Such choice enables reasoning over any set of IF-THEN-like 
rules, what makes the method independent of symbolic learning algorithm. 



Furthermore, it is possible to infer conclusions out of sets of rules coming from 
different locations, originated in distinct databases, even in cases for which there are 
variations in distribution. The inference model proposed is based on the 
Paraconsistent Logics model [7] [3]. 

As opposed to Classical Logics, Paraconsistent Logics permits representing and 
performing inferences over contradictory information and also distinguishes situations 
where an arbitrary proposition is indeed false from another where there is not enough 
evidence to determine a conclusion. It allows contradictory information p and ¬p to 
be simultaneously present and provides mechanisms for reasoning over information 
with such characteristics. The conclusion drawn is that either there is not enough 
information or they are contradictory. 

Paraconsistent Evidential Logics (PEL) [3] is a formalism derived from 
Paraconsistent Logics. The truth-values used in PEL are composed of two evidential 
factors which belong to a lattice { } { }10|10| ≤≤ℜ∈×≤≤ℜ∈ xxxx . Evidential 
factors belief and disbelief are associated to every knowledge item in a system or, in 
this case, to each rule in a subset. The belief degree represents the weight associated 
to the truth of the evidence whereas disbelief indicates the weight associated to the 
falsehood of the evidence. Both factors belong to the interval [0.0, 1.0], i.e., infinite 
values may be associated to the premises in the system. Therefore, it is possible to 
define an infinite lattice ≤��= ,ττ , so that: 

=τ { } { }10|10| ≤≤ℜ∈×≤≤ℜ∈ xxxx  

The lattice τ  has a maximum point [ ]0.1,0.1  which represents maximum 
inconsistency and indicates a statement would be considered both true and false 
simultaneously. A statement is true if it is represented by the evidential factors 
[1.0,0.0], since their evidences indicate complete truth and falsehood unknown. On 
the other hand, false is represented as [0.0,1.0], indicating unknown truth and 
complete falsehood. Besides being able to represent an inconsistent state, PEL, as 
opposed to Classical Logics, is also able to represent the value unknown or non-
determined – [0.0, 0.0]. In this case, there is no information at all about truth or 
falsehood. The difference between falsehood and non-determination may provide 
important information about inferences in knowledge bases and the decision-making 
process. For example, consider a system which assesses a person’s involvement in a 
crime. If the answer retrieved by the system is no ([0.0,1.0]), the person is said not to 
be involved with the crime and, therefore, innocent. However, no conclusion is 
possible with an answer ([0.0,0.0]) and more information is needed for further 
judgments. In conventional logic systems, such distinction may not be obtained 
directly as the only two possible interpretations are true and not true. The retrieval of 
an answer not true does not allow one to know whether it is associated to falsehood or 
to lack of knowledge about the truth-value of the statement related (closed-world 
assumption). 



3 Related Work 

A similar work has been developed by Simone Ferreira [10], who proposed a method 
for dealing with the inconsistent rules problem in distributed mining. Her method 
assumes that n subsets of rules generated are independent for n subsets of data, what 
might result in inconsistent rules. Rules are inconsistent whenever they share the same 
conditions while predicting distinct classes. The methodology proposed by Ferreira 
uses Paraconsistent Logics for determining the most adequate rule for classifying a 
new example. Each rule belonging to the first subset is compared against the n subsets 
of data available. The belief degree is obtained by dividing the number of examples 
correctly covered by the rule (where the attribute values in the example satisfy the 
conditions of n rules, which share the same target class) by the number of examples 
covered (where the attribute-values in the example satisfy the conditions of a rule). 
Conversely, the disbelief degree is obtained by dividing the number of examples 
incorrectly covered by the rule (where the attribute values satisfy the conditions of n 
rules while predicting distinct classes) by the number of examples covered (where the 
attribute-values in the example satisfy the conditions of a rule). 

After assigning both belief and disbelief degrees to each rule, the subsets are 
checked for rules which share a common set of conditions. When both set of 
conditions and target class are identical in a pair of rules, the algorithm returns their 
supreme1; on the contrary, if sets of conditions are equal and classes are distinct, then 
the rule whose multiplication value (an operation which multiplies the truth degree by 
the determination degree) is greatest will be selected. Unfortunately, such technique is 
not realistic since it requires the existence of completely opposite concepts (equal set 
of conditions and distinct classes) for the occurrence of inconsistencies. 

According to Chan [4], algorithms for induction of rules usually build classifiers 
with high precision rates; even so, several factors reduce the quality of the learning 
process. For instance, the use of one algorithm only against distinct distributions from 
the training set may generate classifiers with distinct accuracy rates and the natural 
distribution of classes may not result in good performance. 

Hall et al. [13] built a unique model of rules for a distributed data set. The model is 
obtained by means of meta-learning techniques, where all rules sets are merged into 
one set only. Hall defined that conflicting and low performance rules need to be 
removed because the final model requires as much accuracy as a model generated 
from all training sets available would exhibit. A research on a number of distributed 
mining techniques is found in [9]. 

Although interesting, such techniques generate large information flow among 
processors responsible for the execution of the learning algorithm and also require a 
high number of calculations, as the evaluation of a rule requires access to all 
validation instances in all processors involved. In addition, the majority of those 
techniques apply only to non-ordered sets of rules. As described by Prati [14], the sets 
of rules may be defined as non-ordered rule sets and ordered rule sets. For ordered 
sets, the order of application of rules is fundamental since an instance needs to be 
evaluated iteratively from the first rule on until one which covers the example is 

                                                           
1 Supreme: maximum value obtained from the comparison of belief and disbelief degrees in 

two rules which are merged if and only if their classes are identical. 



found. The example needs to be classified exclusively by that rule, even though others 
might cover it. With non-ordered rule sets, all rules might be applied to a single 
example in order to find measurements to assessing them, as the order of the rules is 
irrelevant. This work presents a technique which handles ordered sets of rules, once 
most symbolic learning algorithms yield knowledge in this format. 

4 Methodology 

Researches indicate that there may be a great number of causes for uncertainty in both 
information and AI systems, such as the existence of inaccurate or inconsistent 
information. Inconsistencies may arise, for instance, when information from 
distributed sources is amalgamated so inferences may be performed. 

Aiming to provide adequate reasoning for such situations, this work proposes the 
application of Paraconsistent Evidential Logics [3] [6] [7] to distributed mining. The 
first stage for the development of a method on top of the Paralog_e language [1] is 
database preparation and mining, as depicted in Fig 1. 

 
 

 
Fig. 1. Obtain rules using the classic data mining process (Step 1), Transform this rules to 
Paralog_e rules (Step 2), Calculation the two-value evidential annotation (Step 3), Join and 
order rules sets (Step 4) and Classification (Step 5). 
 

Distinct sets of rules are retrieved with the application of the algorithm RIPPER [5] 
on distinct subsets of data. RIPPER is available in WEKA [11] and applies to ordered 
rule sets, therefore allowing a single example to be classified by more than one rule. It 
uses incremental pruning criteria to minimize misclassification and yield high quality 
rules even in noisy domains. The second step consists in mapping the rules obtained 
in the previous step to the format required by Paralog_e [1], which is an inference 
engine based on evidential logic programming and is able to perform inferences over 
annotated rules. Belief and disbelief degrees are assigned to each rule. 

Thus, all rules of type IF (conditions) THEN (class) are represented as Paralog_e 
rules, whose format is Head ← Body. Head represents the conclusion of the rule and 
contains its class along with evidential factors belief and disbelief, associated to that 
rule. Body is composed of conjunctions, represented by “&”, of conditions. The set of 
conjunctions consists in the conditions which integrate the rule. Each condition 



contains an evaluator predicate which allows further application when test instances 
are submitted to inference. To illustrate the procedure of mapping rules to the 
Paralog_e format, the following rule represented in the RIPPER [5] format has been 
created from a hypothetical database: 

 
(tear_production = normal) and  
(astigmatism = yes) and  
(spectropy = hypermetropy) => class=none (2.0/1.0) 

 
Upon submitting the rule above to transformation, the following output is returned: 
 

           class(‘none’):[2.0,1.0] <-- 
evaluator(tear_production, V_0):[1.0,0.0] & 
V_0 = normal & 
evaluator(astigmatism, V_1):[1.0,0.0] & 
V_1 = yes & 
evaluator(spectropy, V_2):[1.0,0.0] & V_2 = hypermetropy. 

 
It is important to notice, at this stage, that the evidential factors associated do not 

correspond to the interval [1.0,0.0] yet; those values will be modified later in the next 
stage. In the third stage, as demonstrated in Fig 1, the evidential factors are modified 
according to a linear rule weighing function, which consists in an arithmetic 
progression. Such update occurs locally, i.e., before amalgamation of the sets of rules. 

The positive evidential factor (c) (belief degree) is updated with the value which 
results of the linear weighing function of the subset of rules. The negative evidential 
factor (d) (disbelief degree) is the complement of the linear weighing function of the 
subset of rules (d = 1 – c). The common difference of the arithmetic progression is 
obtained with Equation 1. 

subsetinrulesofnumber
r

____
1=             (1) 

The belief degree assigned to the ith rule corresponds to the arithmetic progression 
of i with common difference r from the last rule to the first. The last rule is 
characterized by c = r whereas the first one invariably exhibits c = 1.0.  

In Paraconsistent Logics, the values of both belief and disbelief degrees are 
independent of one another; they are not complementary. Since belief (c) and 
disbelief (d) obtained thus far are complementary, they need to be modified in order 
to be comparable to the absolute truth, denoted by the ordered pair (1.0, 0.0). Value1 
and value2 are determined out from belief and disbelief degrees as follows: 

� value1 is named Certainty Degree and is derived from the difference between 
the belief degree and the disbelief degree in the rule, (value1 = c – d); 

� value2 is the result of the multiplication of the disbelief degree of the rule by 
2, (value2 = 2 x d). 
The certainty degree value1 specifies the certainty associated to the truth of the 

proposition. Nevertheless, value2 has been empirically defined as twice the disbelief 
degree associated to the rule. We believe all rules would produce greater error rates 
(therefore, greater disbelief degrees) in case they were evaluated over distinct subsets. 



As there are no clues on the extent of that propagation, the disbelief has been doubled 
for empirical usage. 

After calculating evidential factors, the subsets of rules are merged into one unique 
set (Fig. 1). At this stage, rules are sorted according to the least Euclidian distance – 
according to Equation 2 – to the evidential factors (1.0, 0.0) which represent truth. 
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where xi is the ordered pair composed of (value1, value2) in a rule and xj is (1.0,0.0). 
The smaller the distance between (value1, value2), which represent the evidential 

factors of the rule, and the logical state which represents the truth (1.0,0.0), the more 
the rule approaches the truth in quantitative terms. 

In the very last stage, every instance test is mapped to a set of facts which are 
tested against the knowledge base formed by the set of rules. By representing the rules 
as Horn clauses, it is possible to verify whether their conditions are true when applied 
to the test instance provided. The Paralog_e language works in a way analogous to 
the Prolog language, using a SLD Resolution procedure to determine truth or 
falsehood for each condition in a rule. 

Next, a query Q is triggered for each class belonging to the database domain. The 
answers are the evidences obtained for each class. Because there is a query for each 
class in the domain, the decision criterion selects the rule capable of covering the 
example whose evidential factors yield the smallest Euclidian distance to the logical 
state truth – ordered pair (1.0, 0.0). To evaluate the method based on the Paralog_e 
language, the selected class is compared against the class which labels the test 
example; if they are equal, the classification is correct. 

5 Experiments and Results 

Ten public databases, collected at the directory of databases for machine learning and 
data mining, maintained by the University of California [2], have been used in the 
experiments. 

Each base used in the experiments was randomly split into training and test sets. 
The training set received 80% of the examples from the original base, whereas the test 
set included the remaining 20%. The training set was further split into 10 training 
partitions, where each sample had 10% of the instances with replacement. Therefore, 
each rule set was generated in partitions with (0,8 × 0,1) × 100 = 8% of the original 
data. Such percentage has been carefully chosen for the probability of conflicts to be 
increased, once the learning algorithm uses only a subspace of the tuple set. Each 
classifier generated in a partition is evaluated over the 20% test examples remaining. 
That procedure was iteratively repeated 10 times for each database. 

The characteristics of each base utilized, as well as the number of instances 
present, the existence or absence of missing values in the examples included in the 
base, amongst other things, have been detailed in Table 1. 



Table 1. Characteristics of databases used. 

 Database #Example. 
Missing 
Values #Attr. 

#Nominal 
Attributes 

#Numeric 
Attributes #Class 

Class 
Distribution 

1 Zoo 101 no 17 16 1 7 unbalanced 
2 Audiology 226 yes 69 69 – 24 unbalanced 
3 Monk 1 432 no 6 6 – 2 unbalanced 
4 Monk 2 432 no 6 6 – 2 unbalanced 
5 Soybean 683 yes 35 35 – 19 unbalanced 
6 Vehicle 846 no 18 – 18 4 unbalanced 
7 Tic-Tac-Toe 958 no 9 9 – 2 unbalanced 
8 Vowel 990 no 13 3 10 11 balanced 
9 Car 1728 no 6 6 – 4 unbalanced 

10 Segment 2310 no 19 – 19 7 balanced 
 
The characteristics of the bases used are highly diverse, such as: domain, number 

of examples, presence or absence of missing values in the examples and the total 
number of attributes. In Table 1, the column Number of Attributes does not include 
the target-attribute associated to the example and the column Class Distribution 
characterizes a non-uniform distribution of instances in relation to the associated 
class. The overall average of the results obtained with Paralog_e has been compared 
against the overall average of results obtained with the algorithm RIPPER along all 
ten iterations using 80% of training examples (see Table 2). On average, the 
Paralog_e method outperformed the RIPPER method in 7 out of 10 experiments 
carried out. 

 
Table 2. Comparison of results among Paralog_e method and RIPPER algorithm. 

Database Paralog_e (%) Ripper (%) Percentual Difference 
between Methods 

Relation 
#Attr/#Examples 

Audiology 48,69 ± 2,94 32,65 ± 3,88 1,49 0,305 
Zoo 61,43 ± 4,73 49,14 ± 4,14 1,25 0,168 

Soybean 63,06 ± 7,59 51,21 ± 2,32 1,23 0,051 
Vowel 43,89 ± 4,35 33,29 ± 1,14 1,32 0,013 

Segment 87,87 ± 3,83 82,83 ± 1,43 1,06 0,008 
Monk2 63,70 ±10,83 60,48 ± 2,25 1,05 0,014 
Vehicle 52,35 ± 4,12 52,24 ± 2,18 1,00 0,021 
Monk1 55,23 ± 5,66 55,50 ± 4,25 1,00 0,014 

Tic-Tac-Toe 65,22 ± 0,94 67,76 ± 2,27 0,96 0,009 
Car 58,24 ± 4,45 71,98 ± 1,36 0,81 0,003 

 
Upon analyzing the bases which presented the most significant difference between 

the average results of the two methods applied, we concluded that the reason why the 
Paralog_e method had a better performance may be related to the total number of 
attributes in the base. For instance, in base Audiology (see Table 2), composed of 69 
attributes, Paralog_e had an accuracy rate of 48,69% whereas RIPPER had 32,65%. 
In percentage terms (performance of Paralog_e divided by performance of RIPPER), 
the result is 1,49% in favor of Paralog_e. 

Considering the results obtained with base Zoo, present in Table 2, the relation 
(number of attributes / number of examples) is 0,168. In this case, it is possible to 
notice that the proposed method outperforms local classifiers generated by RIPPER. 

It is important to consider that, according to Freitas [12], in induction algorithms, 



the Cartesian product of variables and the number of values that the attributes may 
assume increase exponentially the tuple space and, consequently, the rules space to be 
searched. Despite that, the number of attributes as well as their possible values, 
contributed to the generation of more expressive sets of rules, possibly composed of a 
greater number of conditions. Thus, those rules possibly better represent the 
characteristics of the database, covering specific regions of the tuple space and 
generating fewer intersections among rules. When the subsets of rules are analyzed 
individually, the intersections and inconsistencies are ignored and as a result too many 
misclassifications occur. Nonetheless, the proposed method is capable of recognizing 
that situation and selecting the rule most adequate to classify the instance. 

It should also be noticed that as the number of attributes decreases, the tuple space 
is drastically reduced. The databases Tic-Tac-Toe and Car are densely populated (in 
terms of number of instances). Thus, the act of sampling data does not cause a strong 
impact on the performance of the local symbolic classifiers. On the other hand, when 
those classifiers are merged, the system is not able to identify the best rule, what 
results in misclassifications. Therefore, we believe that the technique introduced in 
this work is indicated to mining distributed data sets which represent partial views of 
the tuple space. 

6 Discussions 

This paper introduced a method for integration of symbolic classifiers based on 
Evidential Paraconsistent Logics. The method is capable of reliable decision-making 
merging a set of classifiers based on rules, even when contradictory information is 
present. 

In the distributed data mining domain, several data-oriented approaches use meta-
learning [4] [15] and sampling, splitting the databases into smaller subsets, which are 
processed individually and later all classifiers are amalgamated into a global one. A 
drawback of such approach is that the existence of inconsistent across the rule sets 
may jeopardize performance and generate classifiers with contradictory views. 

The aim of the proposed method was handling possible inconsistencies, arising 
from the merge of N subsets of rules which resulted from data segmentation, avoiding 
large communication flow among processors, decreasing processing time and, more 
importantly, ensuring an acceptable accuracy rate. The use of Paraconsistent Logics 
permitted assigning evidential factors belief and disbelief to the rules, indicating the 
degree of importance of a rule in relation to all subsets. By sorting the set of rules, 
they could be compared against the logical state which represents absolute truth, 
thereby resulting in a decision criterion for selecting candidate rules. 

The analysis of results made it possible to identify that the relation between the 
number of attributes which constitute the database and the number of instances may 
have a significant impact on the performance of the method. Noticeably, the method 
exhibits better performance when the relation between the number of attributes and 
the number of instances is high (the tuple space is large), because the local models 
produced cover distinct regions of the tuple space. 



In spite of the good results observed, more experiments and research need to be 
carried out to improve the method. One could work on identifying the best rules for 
classification, designing a pruning method in order to improve the comprehensibility 
of the final model. The technique needs yet be evaluated with different symbolic 
learning algorithms so as to determine the impact of their bias on the final model. It is 
known that, for instance, some algorithms are more stable than others. The system 
needs also adaptation for dealing with non-ordered sets of rules and evaluations with 
different percentages of training and test data. 
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