
Automatic Defect Classification: An Experience Applying

Natural Language Processing

Santiago Matalonga.
1
 Eng., Tomás San Feliu. Phd.

2
, Vasile Rus. Phd.

3

1Cuariem 1141, 11100. Montevideo Uruguay. Facultad de Ingeniería, Universidad ORT
2Campus de Montegancedo. Boadilla del Monte. España. Facultad de Informática, Universidad

Politécnica de Madrid.
3373 Dunn Hall, Memphis TN. Department of Computer Science, University of Memphis

smatalonga@uni.ort.edu.uy

tomas.sanfeliu@upm.es

vrus@memphis.edu

Abstract. This paper presents initial results of a research effort that merges two

approaches on Quality Management. On one hand, while working with process

improvement initiatives involving defect causal analysis, the researcher were

faced with the problem of measuring inter-rater reliability for a defect

classification taxonomy in a software development organization. On the other

hand, the researchers were looking for ways to guide defect correction effort by

using information retrieval and natural language processing to cluster defect

reports. This paper presents the results of applying the later approach to the

inter-rater reliability problem. The results indicate that the machine learning

approach scores at rates only achieved by senior members of the organization.

Keywords: Defect Classification, Natural Language Processing, Defect Causal

Analysis, Process Improvement

1 Introduction

Causal analysis lies at the core of process improvement initiatives. From Deming

Process Improvement Cycle[1] to CMMI[2], causal analysis is a fundamental tool

used to find root causes of production defects and to initiate process improvement

proposals[3]. Being such an important tool for process improvement, it has recently

been argued [4, 5] that CMMI has no requirement for causal analysis at lower

maturity levels. CMMI is therefore, missing a fundamental tool for process

improvement. This year, the CMMI steward, the Software Engineering Institute at

Carnegie Mellon, has announced that its upcoming update to the CMMI will include

mailto:smatalonga@uni.ort.edu.uy
mailto:tomas.sanfeliu@upm.es
mailto:vrus@memphis.edu

2 Santiago Matalonga.1 Eng., Tomás San Feliu. Phd.2, Vasile Rus. Phd.3

requirements for causal analysis at maturity level 3[6]. These will likely result in a

number of lower maturity organizations to strive for a cost effective alternative to

achieve causal analysis capabilities within their processes if they want to retain their

maturity level rating.

Even though it is not explicitly defined by any process improvement model (for

instance ISO 9001:2000 or CMMI), most causal analysis implementations are based

on the analysis of defects[7, 8]. Previous research has already established the value of

the information that a software development organization can learn from their

defects[7-9], nevertheless, the analysis of each individual defect can be tedious, error

prone, and time consuming[10]. As a result, most organizations rely on defect

taxonomies. In its most basic form, organizations would classify defects in order to

establish a priority for tackling defects at correction time. This basic classification

will take the form of Low-Medium-High[11, 12]. A classification taxonomy which

has been extensively used in conjunction with defect causal analysis[13-15] is IBM’s

Orthogonal Defect Classification[13].

A common ground for all these approaches is their reliance on manual

classification of defects by groups of individuals, usually the testers who discover the

defect and/or developers who correct them, in order to produce a set of classified

defects. For an organization to trust the validity of its classified defect database it

must ensure that classifiers are sufficiently trained to produce consistent

taxonomies[14].

We present in this paper the result of the fusion of two research initiatives for the

improvement of testing effectiveness. On one hand, we were interested in defect

taxonomies and defect classification from a process improvement perspective [14,

16]. On the other hand, we explored classifying defects using machine learning

techniques [10, 17].

The remainder of this paper briefly describes both research approaches and

presents the findings of our joint venture. The following section describes the two

research initiatives. Section 3 details our research objectives while section 4 presents

the results we have obtained so far. Finally, in Conclusion and future work, we

conclude the paper and present our goals for future research.

2 Related work

This section presents a summary of the two research projects and the results we

have obtained prior to this joint research effort. The research described in section 2.1

focuses on return of investment of process improvement techniques, more specifically

in how training can be used to enhance the return of investment of process

improvement techniques.

The research described in Section 2.2, focuses on improving the effectiveness of

the software testing and defect removal process. More importantly it shows how the

application of technology can improve the performance of the defect correction

process.

Automatic Defect Classification: An Experience Applying Natural Language Processing

3

By merging the two approaches we are in fact proposing an approach that takes

two of the sides of the people-tools-process triangle.

2.1 Impact of training on developers’ classification ability

As we described in [14, 16, 18], we implemented a process that takes a project’s

defect data and uses it as input to the training department. Our hypothesis is that given

the right set of conditions, training should be more cost effective than process

improvement. In short, in the described process, developers classify defects found

during different phases and activities of the project’s life cycle (inspections, peer

review, and testing). At every delivery milestone, the developers are asked to conduct

causal analysis meetings. The objective of these meetings is to answer the question of

what they would have needed to know in order to prevent injecting the defects into

the code again. This knowledge is stored in the Defect Tracking System and the

Training department uses the information as input to plan new training interventions.

This process combines organizational training with defect classification and causal

analysis.

This led to a search for case studies which showed that Causal Analysis has already

been implemented at maturity level 3 organizations [4, 5]. As a result, in [14] we

investigated further the problem of defect classification and the impact of training in

the classification ability of the individual. In that work, we described how an

organization must invest in training in order to assure that defects are classified

consistently across the organizations’ development project. We show an experiment

with four subjects and evaluate their classification ability by applying the Cohen’s[19]

and Fleiss’[20] Kappa for inter-rater reliability. Both Kappa’s test the agreement level

between independent classifiers. Cohen’s Kappa is used for testing the level of

agreement between two subjects, while Fleiss’ Kappa is used for testing groups.

The following tables present our results, which will be used as the baseline to

evaluate the results of the experiment presented in this paper. Table 1 shows the

significance levels for the results of both Kappa’s.

Cohen’s

Kappa

Significance

< 0 Poor Agreement

0.00 – 0,20 Slight Agreement

0,21 – 0,40 Fair Agreement

0,41 – 0,60 Moderate Agreement

0,61 – 0,80 Substantial Agreement

0,81 – 1 Almost Perfect Agreement

Table 1. Kappa significance table for Cohen and Fleiss

Table 2 shows the result the four subjects obtained with the Fleiss’ Kappa. Subject

letters represent the seniority of each of them within the organization. E, stands for an

expert in the classification taxonomy. The expert was involved in the development of

4 Santiago Matalonga.1 Eng., Tomás San Feliu. Phd.2, Vasile Rus. Phd.3

the taxonomy. C1-C3, are developers who have received training in the taxonomy,

and O represents an outsider, a new hire of the organization.

Subject Group K agreement

E-C1-C2-C3 0,53

E-C1-C2-C3-O 0,44

Table 2. Fleiss’Kappa clasification results

We concluded that agreement is just moderate, and that the outsider has no substantial

impact in the overall group classification ability.

2.2 Applying Natural language processing to defect classification

In [10], we presented an method that relies on Natural Language Processing (NLP)

and Information Retrieval (IR) to generate defect clusters on defect reports from the

Mozilla Foundation’s Bugzilla
1
 defect tracking system. Defect clustering is the

unsupervised classification of patterns (usually represented as a vector of

measurements, or a point in a multidimensional space) into groups (clusters) based on

similarity. Typically, clustering involves the following steps[21]:

1. Data Representation

2. Definition of a similarity measure appropriate to the domain

3. Clustering

4. Assessment of output

A lot of effort was spent on finding a suitable representation of the defect reports in

Bugzilla. In the experiment, we chose a vectorial representation [17, 22] of the most

significant fields of the defect. In addition to this, the textual descriptions of defects

had to be preprocessed before it could be used as an input for the clustering algorithm.

Preprocessing of the defects reports included transforming the English language into

vectorial maps and removing stop words for the English language2. The last

preprocessing step includes the lemmatization, which is the transformation of each

morphological variation of a word into its base form (i.e., go, going, went, gone are all

lemmatized to go).

We selected to cluster the reports based on their describing the underlying the same

bug. Clustering was performed using the K-means algorithm[23]. In particular, we

used the K-means implementation in WEKA, a JAVA toolkit for machine learning

algorithms
3
.

Clustering accuracy was calculated by dividing the corrected clustered defects by

the total number of defects. Table 3 summarizes our best results (a full discussion of

accuracy results can be found in [10])

1 bugzilla.mozilla.org
2 Standard list of English language STOP words ftp>//ftp.cs.cornell.edu/pub/smart/English.stop
3 WEKA www.cs.waikato.ac.nz/ml/weka/

Automatic Defect Classification: An Experience Applying Natural Language Processing

5

Input field

Accuracy

Max (seed) Min (seed) average

Description 48% (33) 7,3% (175) 29%

Summary 60% (825) 34% (275) 44%

Table 3. K-means classification of Bugzilla Hot Bug List Results

3 Automatic defect classification

The objective of this work is to evaluate if processing defects by means of NLP

can match or outperform results achieved by the organization in section 2.1. In order

to achieve the objective, we take the clustering machine described earlier and turn it

into a classification machine. We then apply it to a sample of defects that came from

the organization.

Our first challenge was to train the machine to process the Spanish language as in

the previous section the dataset was based on defects from the Mozilla project which

were written in English. As it proved to be hard to find preprocessing tools for

Spanish, such as lemmatizers, we decided to use the words as they were. That is, we

have treated each word as a token without reducing it to their base form. The subject

organization uses a custom defect tracking system. Defects were exported in a Coma

Separated File so as to use them as input to the analyzer. A defect report in the

organization has a short title, from which individual defects are identified, a rich text

description field, were the testers provide the steps for reproducing the defect, and a

field that determines the category of the taxonomy in which the defect has been

classified. Remaining fields like priority, project name, and version number are

internal fields that are used for tracking purposes.

Table 4 shows the results we have obtained. We have used three models to

represent the defect reports: using only the title field of the report, descriptions only,

and both title and description fields. Each results has been validated by applying

Fleiss Kappa against the classification of each defect in the sample dataset, using both

the 10-fold cross validation technique (which in our dataset stands for about 34

defects) and a training-test method (66%-34% split).

When analyzing this result, it must first be observed that we have used a sample

consisting of 236 defects. Nevertheless, these results are impressive when compared

with the experimental results presented in section 2.1. Using the Naïve Bayes method,

agreement scored similarly or worse that the experimental group. Decision Trees

clearly outperforms the group, and ranks in the highest confidence interval for the

Kappa’s. A broader defect sample will probably allow us to make conclusions about

which field would better serve as a predictor. For instance, in the 10xfold validation

method, all field scored equal, which is not the case when using the training-test

method.

6 Santiago Matalonga.1 Eng., Tomás San Feliu. Phd.2, Vasile Rus. Phd.3

Input Field Classification algorithm Validation

Method Naïve Bayes Decision Trees

Title 0.58/0.47 0,94/0.92 10x Fold

Description 0.48/0.31 0.94/0.92

Title+Description 0.48/0.34 0.94/0.92

Title 0.61/0.50 0.92/0.91 66-34% Split

Description 0.44/0.28 0.81/0.77

Title+Description 0.44/0.25 0.81/0.80

Table 4. Results from Automatic classification by Natural language Processing. Both accuracy

and Kappa values are shown (accuracy/Kappa).

4 Conclusion and future work

The results we have presented are promising results for our research. First of all,

with a 90% confidence on the classification, a software organization can do without

training and rely entirely on automatic defect classification to classify its defects

database. This is extremely important when defects are used as input for causal

analysis. In a software factory like the organization we are working with, with 4-5

concurrent development projects, we favor reliable and consistent classification to

correct classification of each defect. A 90% confidence rating would give the

organization reasonable grounding to base its causal analysis decisions on the results

of this tool. On the downside, it can be argued that completely relinquishing the

classification knowledge to an automatic classifier can have a long term issue. For

instances, the organization´s staff might eventually lose the learning feedback gained

when classifying defects. Nevertheless, this is one of the many interesting lines of

future research we can explore.

In the near future, our future efforts will include the validation of these initial

results with a broader defect dataset. Another important line of future research is to

apply defect clustering[10], which is the unsupervised classification of patterns into

groups. The objective being to evaluate how process improvement based on defect

clusters performs compared to process improvement based on taxonomies that were

developed in alignment with the organizational business goals[24].

Practical application can also include the use of defect clustering together with

contextual information from the organization and standard estimation techniques as a

proxy to estimate remaining defect density in delivered software. As mentioned in

[10], clustering can also be used to prioritize which defects to address/fix first.

Our next step will involve further development of the clustering algorithm,

including an improved front end in order to make it more usable for third parties so

we can obtain a bigger defect sample that would confirm our results. We are also

rallying the support of a target software factory to try out our proposed method.

Automatic Defect Classification: An Experience Applying Natural Language Processing

7

5 Bibliography

1 Deming, W.E.: ‘Out of the Crisis’ MIT Press, 2000, 1 st edn.

2 Chrissis, M.B., Konrad, M., and Shrum, S.: ‘CMMI : guidelines for process

integration and product improvement’ Addison-Wesley, 2007.

3 Card, D.N.: ‘Defect-causal analysis drives down error rates’, IEEE Software,

1993, 10, (4), pp. 98-99

4 Buglione, L.: ‘Strengthening CMMI Maturity Levels with a Quantitative

Approach to Root-Cause Analysis’. Proc. R5th Software Measurement European

forum, 2008, Milan. pp.

5 Buglione, L., and Abran, A.: ‘Introducing Root-Cause Analysis and

Orthogonal Defect Classification at Lower CMMI Maturity Levels ’. Proc.

MENSURA, 2006, Spain. pp. 29

6 CMMI Version 1.3 Product Suite. Available at

http://www.sei.cmu.edu/collaborating/spins/021009webinar.html, accessed 3/03/2008

7 Card, D.N.: ‘Learning from Our Mistakes with Defect Causal Analysis’,

IEEE Software, 1998, 15, (1), pp. 7

8 Card, D.N.: ‘Managing Software Quality with Defects’. Proc. Proceedings of

the 26th International Computer Software and Applications Conference on Prolonging

Software Life: Development and Redevelopment, 2002. pp. 472-474

9 Mizukami, D.: ‘Analyzing Defects Can Tell a LOT About a Company’. Proc.

SEPG Conference 2007, March 26 - 29, 2007 2007 pp. Pages

10 Rus, V., Sajjan, S.G., and Mohammed, S.: ‘Automatic Clustering of Defect

Reports’. Proc. International Conference on Software Engineering and Knowledge

Engineering. , July 2008 2008, Redwood City, USA. pp. 291-296

11 Diane, K., and Terry, S.: ‘A case study in the use of defect classification in

inspections’. Proc. Proceedings of the 2001 conference of the Centre for Advanced

Studies on Collaborative research, Toronto, Ontario, Canada2001 pp. Pages

12 Microsoft Solution Framework for CMMI Process Guideance Available at

http://msdn2.microsoft.com/en-us/teamsystem/aa718802.aspx

13 Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., and Ray,

B.: ‘Orthogonal Defect Classification-A Concept for In-Process Measurements’,

IEEE Computer, 1992, 18, (11)

14 Matalonga, S., and SanFeliu, T.: ‘Linking Return on Training Investment

with Defects Causal Analysis’. Proc. 20th Conference of Software Engineering

Theory and Practice, July 1-3 2008, Redwood City. pp. 42-47

15 Kelly, D., and Shepard, T.: ‘A case study in the use of defect classification in

inspections’. Proc., 2001. pp.

16 Matalonga, S., and San Feliu, T.: ‘Defect Driven Organizational training’.

Proc. Europe SEPG 2008, 2008, Munich. pp.

17 Rus, V., and Shiva, S.G.: ‘A general framework for quantitative software

testing’. Proc. First International Workshop on advances and Innovations in software

Testing, 2007, Memphis, USA. pp.

http://www.sei.cmu.edu/collaborating/spins/021009webinar.html
http://msdn2.microsoft.com/en-us/teamsystem/aa718802.aspx

8 Santiago Matalonga.1 Eng., Tomás San Feliu. Phd.2, Vasile Rus. Phd.3

18 Matalonga, S., and Feliu, T.S.: ‘Using defect data to drive Organizational

Training efforts’. Proc. International Conference on Software Engineering Theory and

Practice, July 7-10 2008, Orlando, Florida. pp. 61-68

19 Cohen, J.: ‘A Coefficient of Agreement for Nominal Scales’, Educational

and Psychological Measurement, 1960, 20, (1), pp. 37

20 Fleiss, J.L.: ‘Measuring nominal scale agreement among many raters’,

Psychological Bulletin, 1971, 76, (5), pp. 378-382

21 Jain, A.K., Murty, M.N., and Flynn, P.J.: ‘Data clustering: a review’, ACM

computing surveys, 1999, 31, (3)

22 Runeson, P., Alexandersson, M., and Nyholm, O.: ‘Detection of duplicate

defect reports using natural language processing’. Proc. 29th international conference

on Software Engineering, 2007, Minneapolis, USA. pp. 499-510

23 Kaufmann, M.: ‘Data Mining Practical Machine Learning Tools and

Techniques’, 2005

24 Freimut, B., Denger, C., and Ketterer, M.: ‘An industrial case study of

implementing and validating defect classification for process improvement and

quality management’, Software Metrics, 2005. 11th IEEE International Symposium,

2005, pp. 10

