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Abstract. This paper presents initial results of a research effort that merges two 

approaches on Quality Management. On one hand, while working with process 

improvement initiatives involving defect causal analysis, the researcher were 

faced with the problem of measuring inter-rater reliability for a defect 

classification taxonomy in a software development organization. On the other 

hand, the researchers were looking for ways to guide defect correction effort by 

using information retrieval and natural language processing to cluster defect 

reports. This paper presents the results of applying the later approach to the 

inter-rater reliability problem. The results  indicate that the machine learning 

approach scores at rates only achieved by senior members of the organization. 
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1 Introduction 

Causal analysis lies at the core of process improvement initiatives. From Deming 

Process Improvement Cycle[1] to CMMI[2], causal analysis is a fundamental tool 

used to find root causes of production defects and to initiate process improvement 

proposals[3]. Being such an important tool for process improvement, it has recently 

been argued [4, 5] that CMMI has no requirement for causal analysis at lower 

maturity levels. CMMI is therefore, missing a fundamental tool for process 

improvement. This year, the CMMI steward, the Software Engineering Institute at 

Carnegie Mellon, has announced that its upcoming update to the CMMI will include 
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requirements for causal analysis at maturity level 3[6]. These will likely result in a 

number of lower maturity organizations to strive for a cost effective alternative to 

achieve causal analysis capabilities within their processes if they want to retain their 

maturity level rating. 

Even though it is not explicitly defined by any process improvement model (for 

instance ISO 9001:2000 or CMMI), most causal analysis implementations are based 

on the analysis of defects[7, 8]. Previous research has already established the value of 

the information that a software development organization can learn from their 

defects[7-9], nevertheless, the analysis of each individual defect can be tedious, error 

prone, and time consuming[10]. As a result, most organizations rely on defect 

taxonomies. In its most basic form, organizations would classify defects in order to 

establish a priority for tackling defects at correction time. This basic classification 

will take the form of Low-Medium-High[11, 12]. A classification taxonomy which 

has been extensively used in conjunction with defect causal analysis[13-15] is IBM’s 

Orthogonal Defect Classification[13]. 

A common ground for all these approaches is their reliance on manual 

classification of defects by groups of individuals, usually the testers who discover the 

defect and/or developers who correct them, in order to produce a set of classified 

defects. For an organization to trust the validity of its classified defect database it 

must ensure that classifiers are sufficiently trained to produce consistent 

taxonomies[14]. 

We present in this paper the result of the fusion of two research initiatives for the 

improvement of testing effectiveness. On one hand, we were interested in defect 

taxonomies and defect classification from a process improvement perspective [14, 

16]. On the other hand, we explored classifying defects using machine learning 

techniques [10, 17]. 

The remainder of this paper briefly describes both research approaches and 

presents the findings of our joint venture. The following section describes  the two 

research initiatives. Section 3 details our research objectives while section 4 presents 

the results we have obtained so far. Finally, in Conclusion and future work, we 

conclude the paper and present our goals for future research. 

2 Related work 

This section presents a summary of the two research projects and the results we 

have obtained prior to this joint research effort. The research described in section 2.1 

focuses on return of investment of process improvement techniques, more specifically 

in how training can be used to enhance the return of investment of process 

improvement techniques. 

The research described in Section 2.2, focuses on improving the effectiveness of 

the software testing and defect removal process. More importantly it shows how the 

application of technology can improve the performance of the defect correction 

process.  
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By merging the two approaches we are in fact proposing an approach that takes 

two of the sides of the people-tools-process triangle. 

2.1 Impact of training on developers’ classification ability 

As we described in [14, 16, 18], we implemented a process that takes a project’s 

defect data and uses it as input to the training department. Our hypothesis is that given 

the right set of conditions, training should be more cost effective than process 

improvement. In short, in the described process, developers classify defects found 

during different phases and activities of the project’s life cycle (inspections, peer 

review, and testing). At every delivery milestone, the developers are asked to conduct 

causal analysis meetings. The objective of these meetings is to answer the question of 

what they would have needed to know in order to prevent injecting the defects into 

the code again. This knowledge is stored in the Defect Tracking System and the 

Training department uses the information as input to plan new training interventions. 

This process combines organizational training with defect classification and causal 

analysis.  

This led to a search for case studies which showed that Causal Analysis has already 

been implemented at maturity level 3 organizations [4, 5]. As a result, in [14] we 

investigated further the problem of defect classification and the impact of training in 

the classification ability of the individual. In that work, we described how an 

organization must invest in training in order to assure that defects are classified 

consistently across the organizations’ development project. We show an experiment 

with four subjects and evaluate their classification ability by applying the Cohen’s[19] 

and Fleiss’[20] Kappa for inter-rater reliability. Both Kappa’s test the agreement level 

between independent classifiers. Cohen’s Kappa is used for testing the level of 

agreement between two subjects, while Fleiss’ Kappa is used for testing groups. 

The following tables present our results, which will be used as the baseline to 

evaluate the results of the experiment presented in this paper. Table 1 shows the 

significance levels for the results of both Kappa’s. 

 

Cohen’s 

Kappa 

Significance 

< 0 Poor Agreement 

0.00 – 0,20 Slight Agreement 

0,21 – 0,40 Fair Agreement 

0,41 – 0,60 Moderate Agreement 

0,61 – 0,80 Substantial Agreement 

0,81 – 1 Almost Perfect Agreement 

Table 1. Kappa significance table for Cohen and Fleiss 

Table 2 shows the result the four subjects obtained with the Fleiss’ Kappa. Subject 

letters represent the seniority of each of them within the organization. E, stands for an 

expert in the classification taxonomy. The expert was involved in the development of 
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the taxonomy. C1-C3, are developers who have received training in the taxonomy, 

and O represents an outsider, a new hire of the organization. 

 

Subject Group K agreement 

E-C1-C2-C3 0,53 

E-C1-C2-C3-O 0,44 

Table 2. Fleiss’Kappa clasification results 

We concluded that agreement is just moderate, and that the outsider has no substantial 

impact in the overall group classification ability. 

2.2 Applying Natural language processing to defect classification 

In [10], we presented an method that relies on Natural Language Processing (NLP) 

and Information Retrieval (IR) to generate defect clusters on defect reports from  the 

Mozilla Foundation’s Bugzilla
1
 defect tracking system. Defect clustering is the 

unsupervised classification of patterns (usually represented as a vector of 

measurements, or a point in a multidimensional space) into groups (clusters) based on 

similarity. Typically, clustering involves the following steps[21]: 

1. Data Representation 

2. Definition of a similarity measure appropriate to the domain 

3. Clustering 

4. Assessment of output 

A lot of effort was spent on finding a suitable representation of the defect reports in 

Bugzilla. In the experiment, we chose a vectorial representation [17, 22] of the most 

significant fields of the defect. In addition to this, the textual descriptions of defects 

had to be preprocessed before it could be used as an input for the clustering algorithm. 

Preprocessing of the defects reports included transforming the English language into 

vectorial maps and removing stop words for the English language2. The last 

preprocessing step includes the lemmatization, which is the transformation of each 

morphological variation of a word into its base form (i.e., go, going, went, gone are all 

lemmatized to go). 

We selected to cluster the reports based on their describing the underlying the same 

bug. Clustering was performed using the K-means algorithm[23]. In particular, we 

used the K-means implementation in WEKA, a JAVA toolkit for machine learning 

algorithms
3
. 

Clustering accuracy was calculated by dividing the corrected clustered defects by 

the total number of defects. Table 3 summarizes our best results (a full discussion of 

accuracy results can be found in [10]) 

                                                           
1 bugzilla.mozilla.org 
2 Standard list of English language STOP words ftp>//ftp.cs.cornell.edu/pub/smart/English.stop 
3 WEKA www.cs.waikato.ac.nz/ml/weka/ 
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Input field 

Accuracy 

Max (seed) Min (seed) average 

Description 48% (33) 7,3% (175) 29% 

Summary 60% (825) 34% (275) 44% 

Table 3. K-means classification of Bugzilla Hot Bug List Results 

3 Automatic defect classification 

The objective of this work is to evaluate if processing defects by means of NLP 

can match or outperform results achieved by the organization in section 2.1. In order 

to achieve the objective, we take the clustering machine described earlier and turn it 

into a classification machine. We then apply it to a sample of defects that came from 

the organization. 

Our first challenge was to train the machine to process the Spanish language as in 

the previous section the dataset was based on defects from the Mozilla project which 

were written in English. As it proved to be hard to find preprocessing tools for 

Spanish, such as lemmatizers, we decided to use the words as they were. That is, we 

have treated each word as a token without reducing it to their base form. The subject 

organization uses a custom defect tracking system. Defects were exported in a Coma 

Separated File so as to use them as input to the analyzer. A defect report in the 

organization has a short title, from which individual defects are identified, a rich text 

description field, were the testers provide the steps for reproducing the defect, and a 

field that determines the category of the taxonomy in which the defect has been 

classified. Remaining fields like priority, project name, and version number are 

internal fields that are used for tracking purposes. 

Table 4 shows the results we have obtained. We have used three models to 

represent the defect reports: using only the title field of the report, descriptions only, 

and both title and description fields. Each results has been validated by applying 

Fleiss Kappa against the classification of each defect in the sample dataset, using both 

the 10-fold cross validation technique (which in our dataset stands for about 34 

defects) and a training-test method (66%-34% split). 

When analyzing this result, it must first be observed that we have used a sample 

consisting of 236 defects. Nevertheless, these results are impressive when compared 

with the experimental results presented in section 2.1. Using the Naïve Bayes method, 

agreement scored similarly or worse that the experimental group. Decision Trees 

clearly outperforms the group, and ranks in the highest confidence interval for the 

Kappa’s. A broader defect sample will probably allow us to make conclusions about 

which field would better serve as a predictor. For instance, in the 10xfold validation 

method, all field scored equal, which is not the case when using the training-test 

method. 
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Input Field Classification algorithm Validation 

Method Naïve Bayes Decision Trees 

Title 0.58/0.47 0,94/0.92 10x Fold 

Description 0.48/0.31 0.94/0.92 

Title+Description 0.48/0.34 0.94/0.92 

Title 0.61/0.50 0.92/0.91 66-34% Split 

Description 0.44/0.28 0.81/0.77 

Title+Description 0.44/0.25 0.81/0.80 

Table 4. Results from Automatic classification by Natural language Processing. Both accuracy 

and Kappa values are shown (accuracy/Kappa). 

4 Conclusion and future work 

The results we have presented are promising results for our research. First of all, 

with a 90% confidence on the classification, a software organization can do without 

training and rely entirely on automatic defect classification to classify its defects 

database. This is extremely important when defects are used as input for causal 

analysis. In a software factory like the organization we are working with, with 4-5 

concurrent development projects, we favor reliable and consistent classification to 

correct classification of each defect. A 90% confidence rating would give the 

organization reasonable grounding to base its causal analysis decisions on the results 

of this tool. On the downside, it can be argued that completely relinquishing the 

classification knowledge to an automatic classifier can have a long term issue. For 

instances, the organization´s staff might eventually lose the learning feedback gained 

when classifying defects. Nevertheless, this is one of the many interesting lines of 

future research we can explore. 

In the near future, our future efforts will include the validation of these initial 

results with a broader defect dataset. Another important line of future research is to 

apply defect clustering[10], which is the unsupervised classification of patterns into 

groups. The objective being to evaluate how process improvement based on defect 

clusters performs compared to process improvement based on taxonomies that were 

developed in alignment with the organizational business goals[24]. 

Practical application can also include the use of defect clustering together with 

contextual information from the organization and standard estimation techniques as a 

proxy to estimate remaining defect density in delivered software. As mentioned in 

[10], clustering can also be used to prioritize which defects to address/fix first. 

Our next step will involve further development of the clustering algorithm, 

including an improved front end in order to make it more usable for third parties so 

we can obtain a bigger defect sample that would confirm our results. We are also 

rallying the support of a target software factory to try out our proposed method. 
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