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Abstract. The “Towers of Hanoi” is a problem that has been well studied and 
frequently generalized. We are interested in the generalization to arbitrary 
directed graphs. We examine two different questions, namely how many moves 
suffice to move n disks from the starting peg to the destination peg, and under 
which conditions we can move specific disks using only legal moves to specific 
pegs. We show that the minimal number of moves to move n disks can be 
substantially less than 2n. Moreover, under very mild conditions we can 
distribute the n disks in completely arbitrary ways over all the available pegs. 
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1   Background 

A quarter of a century ago, I developed an interest in the Towers of Hanoi game. This 
is a problem that is frequently (ab)used in data structures and algorithms classes to 
illustrate the power of recursion. I subsequently generalized the game to be played on 
graphs; specifically, I assume a finite directed graph G=(V,E) with two distinguished 
nodes S and D, there are n disks of different sizes on node S such that no larger disk 
may lie on top of a smaller disk, and the objective is to move the n disks from S to D 
subject to the following rules: 

1. Only one disk may be moved at a time and only along an edge in G. 
2. A disk is always placed on top of all the disks on the node where it is moved 

and no larger disk may ever be placed on top of a smaller disk. 
If the problem can be solved for a given graph G for all n≥1, I call this Hanoi problem 
solvable. It turned out that there is a rather elegant characterization of all those graphs 
with solvable Hanoi problems [3]. If for a given graph the associated Hanoi problem 
is not solvable, I call it a finite Hanoi problem.  

Here is the characterization of all graphs G=(V,E) that permit solvable Hanoi 
problems [3]: 
Theorem 0: A Hanoi problem with graph G=(V,E) is solvable if and only if there 

exist three different nodes u, v, w in V such that: 
 1. There exists a path in G from S to one of the three nodes u, v, w. 
 2. There exists a path in G from one of the three nodes u, v, w to D. 
 3. There exist paths from u to v, from v to w, and from w to u in G. 



I subsequently raised the question how many disks can be moved in finite Hanoi 
problems and derived somewhat surprisingly that one can accommodate at least 
super-polynomially many disks [5]. Much later it was shown in [1] that there are 
graphs where sub-exponentially many disks can be moved. More specifically, there 
exists a constant C such that the number of disks that can be moved in a finite Hanoi 
game is at most C•m0.5•log2(m). Moreover, for each ε>0, there exists a constant 
Cε>0 such that the number of disks that can be moved in some finite Hanoi game is at 

least Cε•m(0.5-ε)•log2(m). 
A related question is how many moves are required. While the original Hanoi 

problem (the complete graph on three nodes) requires 2n-1 moves, it turns out that 
significantly fewer moves may be required for some graphs with solvable Hanoi 
problems. We note that for very few graphs, the number of moves required is known; 
in [2] an infinite family of graphs is given for which the minimum number of moves 
is derived. 

In this paper, I raise the question what might be the minimum number of moves for 
any graph to move n disks. For the global minimum, we can of course assume that the 
graph is the complete graph, as any graph can be embedded into it. More specifically, 
I assume the complete graph G=(V,E) on the following set of nodes 
V={S,D,A1,…,Am} where S stands for the starting peg, D for the destination peg, and 
the Ai are auxiliary pegs, for m≥1. Obviously, for m=1, we have the original problem. 

Another problem of interest relates to the distribution of the disks over the pegs. 
More specifically, given a directed graph G on nodes {N 1,…,Nℓ} (not necessarily the 
complete graph), we ask how the n disks may be accumulated on the ℓ pegs using 
only legal moves. In other words, given n disks, under what conditions can we split 
them up into ℓ groups Gi, i=1,…,ℓ, such that G1∪…∪Gℓ = {1,…,n} and carry out 
legal moves in G such that node Ni contains exactly all disks in group Gi, for all 
i=1,…,ℓ. 

2.   The Number of Moves 

Generally, more pegs will result in fewer moves. This is quite intuitive since there is 
more storage for the disks. For example, consider the following graph G0=({S,D,A}, 
{(S,A),(A,D),(D,S)}). One can see that the only way (except for redundant, that is, 
repetitive moves) to move n disks from S to D is as follows: 

Two-step move, from S to D: 
Move the smallest n-1 disks from S to D, a two-step move. 
Move the largest disk n from S to A. 
Move the smallest n-1 disks from D to S, a one-step move. 
Move the largest disk n from A to D. 
Move the smallest n-1 disks from S to D, a two-step move. 

Of course, now we have to define how to do a one-step move, since the above is a 
one-step move (from D to S, or in general, from any node to any directly adjacent 
node). Here is how to achieve this: 

One-step move, from S to A: 
Move the smallest n-1 disks from S to D, a two-step move. 



Move the largest disk from S to A. 
Move the smallest n-1 disks from D to A, a two-step move 

First we can verify that all the moves are forced since the largest disk’s movements 
drive the movement of the smaller disks. As a result, we can write the minimum 
number of required moves in the following recurrence relations: Let T1(n) be the 
minimal number of moves required for a one-step move of n disks, and let T2(n) be 
the minimum number of moves required for a two-step move of n disks. Then we 
have: 

 T1(n) = 2T2(n-1) + 1  and  T1(1) = 1 
 T2(n) = 2T2(n-1) + T1(n-1) + 2  and  T2(1) = 2. 
Now consider the graph obtained by replacing the edge (A,D) in the graph G0 by a 

chain of k edges, for k≥2; specifically, G1 = ({S,D,A,X1,…,Xk-1}, {(S,A), 
(A,X1),(X1,X2),…(Xk-1,D),(D,A),(A,S)}). It can now be seen that we can “park” edges 
on the additional pegs so that the number of moves is reduced. Specifically,  

(1) Move the n-k+1 smallest disks from S to D;  
(2) Move the k-1 largest disks to the pegs Xk-1, …,X1 such that disk n is on X1 

through disk n-k+2 on Xk-1;  
(3) Move the n-k+1 smallest disks from D to S;  
(4) Move disks n through n-k+2 to D,  
(5) Move the n-k+1 smallest disks from S to D. 
Clearly, if Mk(n) is the number of moves required by this algorithm to move n 

disks from S to D, then Steps (1), (3), and (5) require each Mk(n-k+1) moves, Step (2) 
requires k(k+1)/2 – 1 moves, and Step (4) can be implemented as follows: Since A 
and D are empty, each of the disks n through n-k+2 can be circulated along the ring 
A,X1,…,Xk-1, D by moving each disk one peg further, starting with disk n-k+2 from 
Xk-1 to D, then disk n-k+3 from Xk-2 to Xk-1, and so on until disk n is on peg D where 
it remains. Then the process is repeated for the remaining k-2 disks, until all of them 
are on D. One complete loop requires k+1 moves, and disk n makes no complete 
move, disk n-1 makes one, etc., until disk n-k+2 which makes k-2 complete loops. In 
addition, we have to account for the number of moves required to get from Xi to D, 
for all i=1,…,k-1. This requires a total of (k3 – k2 – 2k + 2)/2 moves. Therefore we 
obtain 

Mk(n) = 3Mk(n-k+1) + (k3 – k)/2 for n≥k, and Mk(n) = (n2+n)(k+1)/2 for 
1≤n≤k-1. 
Now it is not difficult to verify that Mk(n) is smaller than T2(n) for sufficiently large 
n, demonstrating that more pegs result in fewer moves. 

 
We formulate the following  

Question 1: For every value m≥1, find the largest number of moves MAX(m) 
required to move n disks, for any graph G with m+2 nodes and with solvable 
Hanoi problem. 

 
Clearly, the answer will be a function of n. We know that MAX(3) = 3n-1. Note 

that we compare the two functions MAX(m) and MAX(m’) of n asymptotically. 
 
Generally, if one considers the complete graph, there is the fairly obvious 

expectation that with m auxiliary disks, one should achieve a number of moves that is 



roughly proportional to 2n/m. This can in fact be achieved, as can be seen as follows. 
Recall that for the original problem, with one auxiliary peg, 2n-1 moves for n disks are 
minimal. This observation is used in the following derivation. Note that in order to 
simplify the notation, we assume that the number of disks n to be moved is a multiple 
of the number of auxiliary pegs m. 
Assume the complete directed graph on the nodes {S,D,A1,…,Am} for m≥1.  
Divide the n disks into m groups Gi defined as follows: G1 contains the smallest n/m 

disks, G2 contains the next n/m smallest disks, until Gm contains the largest n/m 
disks. 

Move the disks in G1 from S to A1, involving only the three pegs S, D, and A1. This 
takes 2n/m-1 moves. 

Move the disks in G2 from S to A2, involving only the three pegs S, D, and A2. This 
takes 2n/m-1 moves. 

In general, for all i=1,…,m-1, move the disks in Gi from S to Ai, involving only the 
three pegs S, D, and Ai. This takes 2n/m-1 moves, for each i=1,…,m-1. 

Move the disks in Gm from S to D, involving only the pegs S, D, and Am. This takes 
2n/m-1 moves. 

For all j=m-1,m-2,…,2,1, move the disks in Gj from Aj to D, involving only the three 
pegs S, D, and Aj. This takes 2n/m-1 moves for each j. 

 
Adding all the moves up yields (2m-1)(2n/m-1) moves. Since of all the edges in the 

complete graph, we really need only the 2m edges between S and the Ai and the 2m 
edges between the Ai and D, plus the 2 edges between S and D, we can do this 
process on a planar graph with m+2 nodes and 4m+2 edges. Consequently we can 
state: 
Lemma 1: For any m≥2, there exists a planar graph with m+2 nodes and 4m+2 edges 

where one needs no more than (2m-1)•(2n/m-1) moves to move n disks from S to D. 
In other words, we need at most order of m•2n/m moves. 
 
Just as in the case of finite Hanoi problems where it turns out that far more disks can 
be accommodated than I expected, a similar situation exists with the number of 
moves. We will show below that we can in fact move n disks in a graph with m+2 
nodes with a number of moves proportional to m2•2n/O(m•m). 
 
For this result, we need the complete graph on the nodes V={S,D,A1,…,Am}. Again, 
we define m groups of disks together with their movements: 

(1i) For each i=1,2,…,m-2,m-1, the group Gi consist of the ni largest disks, 
excluding all disks in Gm∪Gm-1 ∪…∪Gi+1. The disks in Gi are moved from S 
to Ai using the m-i+3 pegs S, D, Am,…, Ai.  

(2) The group Gm consists of the largest nm disks. The disks in Gm are moved 
from S to D, using only the 3 pegs S, D, and Am. 

(3j) Finally, for each j=m-1,m-2,…,2,1, the disks in group Gj are moved from Aj 
to D, using the m-j+3 pegs S, D, Am,…, Aj. 

Clearly, the number of moves required to achieve (1) is exactly the number of moves 
required to achieve (3): Simply execute the moves backwards and in reverse order, 
replacing every occurrence of S by D. 
 



Let us now compute the number of moves that suffice to carry out these steps. We use 
Lemma 1 to see how many moves are sufficient. Thus, for the first group, G1 with n1 
disks, to be moved from S to A1, using pegs S, D, Am,…,A1, Lemma 1 gives the 
number of moves as (2m-1)•(2n1/m-1). In general, for Gi with ni disks using pegs S, D, 
Am,…, Ai, Lemma 1 gives the number of moves as (2(m-i+1)-1)•(2ni/(m-i+1)-1). Let us 
now choose the following values for the ni; note that until now they had been 
unspecified: 
nm:=p for some integer p; nm-1:=2p; nm-2:=3p; in general nm-i:=(i+1)p for i=1,…,m-1. 

Then we obtain as the total number of moves for the step (1): 
(2m-1)•(2n1/m - 1) + … + (2(m-i+1)-1)•(2ni/(m-i+1) - 1) + … + 3•(2nm-1/2 - 1)  =  
(2m-1)•(2p - 1) + … + (2(m-i+1)-1)•(2p - 1)+ … + 3•(2p - 1)  =  
(m2-1)•(2p - 1). 

Adding the number of moves for step (2) and those for step (3) (which is the same 
as for step (1)), we get (2m2-1)•(2p - 1). Since n = n1+…+ nm=p•m•(m+1)/2, we have 
(2m2-1)•(2p - 1) moves for n = p•m•(m+1)/2 disks, or on the order of m2•2n/O(m•m) 
moves for n disks on m+2 pegs. Thus, we can summarize: 
Proposition 2: Moving n disks from S to D in a complete graph on nodes 

{S,D,A1,…,Am} can be achieved in O(m2•2n/O(m•m)) moves. 
 
Proposition 2 establishes an upper bound on the minimal number of moves. There 

is no assurance that this is the best result. Thus, we formulate the following  
Question 2: For every value m≥1, find the smallest number of moves MIN(m) 

required to move n disks in the complete graph with m+2 nodes, for m≥3. 
 
Again, MIN(m) is a function of n. We know that MIN(3)=2n-1. Here I would 

expect that for larger m, MIN(m) will be strictly smaller. 

3.   The Distribution of Disks 

Given a directed graph G, a natural question is the following: What groups of disks 
can be accumulated on the nodes of G? I will focus exclusively on solvable Hanoi 
problems here; it is probably quite difficult to come up with a reasonable 
characterization in the case of finite Hanoi problems. 

 
In view of Theorem 0, it is necessary that the conditions of this theorem hold, 

namely there are three different nodes, u, v, and w, such that there is a path from S to 
one of them, there is a path from one of them to D, and there exist paths from u to v, 
from v to w, and from w to u. If we now stipulate that there exists a path from one of 
u, v, or w to each of the nodes {N1,…,Nℓ} of G, then we can choose our groups Gi for 
i=1,…,ℓ completely arbitrarily, subject only to the stipulation that G1∪…∪Gℓ = 
{1,…,n}, and carry out legal moves in G such that node Ni contains exactly all disks 
in group Gi, for all i=1,…,ℓ. The proof consists of the observation that each disk d 
with 1≤d≤n can circulate from u to v to w and back to u because the smaller disks 
1,…,d-1 can also be circulated. Thus, disk d can be moved to peg Nk, for any 1≤k≤ℓ, 
since there exists a path from one of the three nodes to Nk. Note however that this 
condition is sufficient but not necessary. This is because for certain choices of the 



groups Gi, it might be possible to leave some on S even though there is no path from 
the distinguished nodes u, v, and w to S. Moreover, in view of the result in [1], there 
can be sub-exponentially many disks that can be split out onto a subgraph giving rise 
to a finite Hanoi problem without having a path from any distinguished node to any 
node in that subgraph. However, it can be seen that in each of these exceptions, the 
number of disks that can be involved is bounded from above by a function of the 
number of nodes. 

 
A similar characterization holds if we want to start with the nodes initialized with 
groups of disks, node Ni holding group Gi, for i=1,…,ℓ, and ask whether the total 
number n of disks can be moved, using legal moves, to the destination peg D (which 
is of course one of the nodes in {N1,…,Nℓ}). Again, we can state that if in addition to 
the conditions of Theorem 0, each node Ni has a path to one of the distinguished 
nodes u, v, or w, then the problem can always be solved. Once again, there are 
exceptions, namely if there is a path from a node Nk to D that does not involve any of 
the distinguished nodes. However, once again, this will be only possible for a limited 
number of disks, limited by a function of the number ℓ of nodes in G. 

4.   Conclusion 

Although the Tower of Hanoi problem was first published in 1893, it still retains its 
ability of raise new questions. We have exposed two of these questions. Specifically, 
we asked what is the minimum number of moves required to move n disks in a given 
graph with m auxiliary pegs. We have shown that this number is no more than 
O(m2•2n/(m•m)); however, we believe that this can be reduced. Recall that the original 
problem stated that the world would come to an end once the 64 disks have been 
successfully moved from S to D. Since with three pegs, this requires 264-1 moves, 
which is greater than 18•1018; even assuming just 10 nanosecond per move, this 
would take over 5700 years. However, if just two more pegs were acquired, using 
Proposition 2 the number of moves could be reduced to below 34,000, and with three 
more pegs to below 4000, with obvious significant implications for the end of the 
world! We have also posed the opposite problem, namely determining what graphs 
required the largest number of moves. 

 
Then we turned to the problem of distributing, via legal moves, the n disks over the ℓ 
nodes of a general directed graph. We have shown that except for a bounded number 
of disks, there is a simple characterization of the graphs for which this is possible for 
arbitrary n. This bound depends only on ℓ. In a similar vein, moving the n disks to the 
destination peg starting with the disks arbitrarily distributed over the various nodes in 
G is also always possible, except for a bounded number of disks, provided a very 
simple property holds for the graph. In [4], a number of restrictions in terms of the 
nodes and edges are discussed (specifically, disks have different “colors” and certain 
nodes and edges will accommodates only certain colors), and it is expected that the 
characterizations of graphs that permit arbitrary distribution of disks over their nodes 
will be somewhat more challenging. 
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