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Abstract. The “Towers of Hanoi” is a problem that has beesil wtudied and
frequently generalized. We are interested in theegdization to arbitrary
directed graphs. We examine two different questioasely how many moves
suffice to move n disks from the starting peg te dkestination peg, and under
which conditions we can move specific disks usinty eegal moves to specific
pegs. We show that the minimal number of moves twenn disks can be
substantially less than"2Moreover, under very mild conditions we can
distribute the n disks in completely arbitrary waygr all the available pegs.
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1 Background

A quarter of a century ago, | developed an intdrettte Towers of Hanoi game. This
is a problem that is frequently (ab)used in datactires and algorithms classes to
illustrate the power of recursion. | subsequentlyegalized the game to be played on
graphs; specifically, | assume a finite directed gr&gitV,E) with two distinguished
nodes S and D, there are n disks of different sizesode S such that no larger disk
may lie on top of a smaller disk, and the objectivi® immove the n disks from S to D
subject to the following rules:
1. Only one disk may be moved at a time and onlggkn edge in G.
2. A disk is always placed on top of all the diskstlom node where it is moved
and no larger disk may ever be placed on top ofalendisk.
If the problem can be solved for a given graph Gafbr>1, | call this Hanoi problem
solvable. It turned out that there is a rather elegharacterization of all those graphs
with solvable Hanoi problems [3]. If for a given ghathe associated Hanoi problem
is not solvable, | call it a finite Hanoi problem.
Here is the characterization of all graphs G=(V,Ettpermit solvable Hanoi
problems [3]:
Theorem 0: A Hanoi problem with graph G=(V,E) is solvable iicaonly if there
exist three different nodes u, v, w in V such that:
1. There exists a path in G from S to one of thesthazles u, v, w.
2. There exists a path in G from one of the threeesag v, w to D.
3. There exist paths from u to v, from v to w, arahfrw to u in G.



| subsequently raised the question how many disks candved in finite Hanoi
problems and derived somewhat surprisingly that one ammommodate at least
super-polynomially many disks [5]. Much later it wasowh in [1] that there are
graphs where sub-exponentially many disks can be mdweck specifically, there
exists a constant C such that the number of disks #mabe moved in a finite Hanoi

game is at most Cbelo®(m). Moreover, for eack>0, there exists a constant
C¢>0 such that the number of disks that can be movedrire finite Hanoi game is at

least Gem(0.5)-log2(m),

A related question is how many moves are required.léAthie original Hanoi
problem (the complete graph on three nodes) req@ikdsmoves, it turns out that
significantly fewer moves may be required for somephsawith solvable Hanoi
problems. We note that for very few graphs, the remalh moves required is known;
in [2] an infinite family of graphs is given for whiche minimum number of moves
is derived.

In this paper, | raise the question what might benthemum number of moves for
any graph to move n disks. For the global minimumgcasm of course assume that the
graph is the complete graph, as any graph can be eedtbéuo it. More specifically,
| assume the complete graph G=(V,E) on the followisgt of nodes
V={S,D,A4,...,An} Where S stands for the starting peg, D for theidasbn peg, and
the A are auxiliary pegs, for #1. Obviously, for m=1, we have the original problem.

Another problem of interest relates to the distributas the disks over the pegs.
More specifically, given a directed graph G on nofi¢s...,N;} (not necessarily the
complete graph), we ask how the n disks may be accteduta thet pegs using
only legal moves. In other words, given n disks, undleat conditions can we split
them up intot groups G i=1,....L, such that @J...0G, = {1,...,n} and carry out
legal moves in G such that node d¢bntains exactly all disks in group, Gor all
i=1,...,0.

2. The Number of Moves

Generally, more pegs will result in fewer moves. Thiguge intuitive since there is
more storage for the disks. For example, considefdt@ving graph G=({S,D,A},
{(S,A),(A,D),(D,S)}). One can see that tlamly way (except for redundant, that is,
repetitive moves) to move n disks from S to D is aeWs:
Two-step move, from S to D:
Move the smallest n-1 disks from S to D, a two-step move
Move the largest disk n from S to A.
Move the smallest n-1 disks from D to S, a one-step move.
Move the largest disk n from A to D.
Move the smallest n-1 disks from S to D, a two-step move
Of course, now we have to define how to do a ong-steve, since the above is a
one-step move (from D to S, or in general, from aogento any directly adjacent
node). Here is how to achieve this:
One-step move, from S to A:
Move the smallest n-1 disks from S to D, a two-step move



Move the largest disk from S to A.
Move the smallest n-1 disks from D to A, a two-step move

First we can verify that all the moves are forcedssithe largest disk’'s movements
drive the movement of the smaller disks. As a result,ca® write the minimum
number of required moves in the following recurremektions: Let T(n) be the
minimal number of moves required for a one-step nafve disks, and let Jn) be
the minimum number of moves required for a two-stewanof n disks. Then we
have:

Ti(n) =2T(n-1) +1 and 1) =1
T,(n) = 2T(n-1) + Ty(n-1) + 2 and (1) = 2.

Now consider the graph obtained by replacing theeddgD) in the graph &by a
chain of k edges, for X; specifically, G = ({S,D,AXy,....Xk1}, {(S,A),
(A, X1),(X1,X2),...(Xk1,D),(D,A),(A,S)}). It can now be seen that we camfi’ edges
on the additional pegs so that the number of moveslisced. Specifically,

(1) Move the n-k+1 smallest disks from S to D;

(2) Move the k-1 largest disks to the pegs; X...,X; such that disk n is onX
through disk n-k+2 on ;

(3) Move the n-k+1 smallest disks from D to S;

(4) Move disks n through n-k+2 to D,

(5) Move the n-k+1 smallest disks from S to D.

Clearly, if M(n) is the number of moves required by this algoritlommiove n
disks from S to D, then Steps (1), (3), and (5) negeach M(n-k+1) moves, Step (2)
requires k(k+1)/2 — 1 moves, and Step (4) can be imgi¢ed as follows: Since A
and D are empty, each of the disks n through n-lafke circulated along the ring
A, X1,..., X1, D by moving each disk one peg further, startinthwdisk n-k+2 from
X1 to D, then disk n-k+3 from % to X1, and so on until disk n is on peg D where
it remains. Then the process is repeated for the rémgaka2 disks, until all of them
are on D. One complete loop requires k+1 moves, askl Mimakes no complete
move, disk n-1 makes one, etc., until disk n-k+2clhnakes k-2 complete loops. In
addition, we have to account for the number of moegsiired to get from Xto D,
for all i=1,...,k-1. This requires a total of¥(k K — 2k + 2)/2 moves. Therefore we
obtain

M (n) = 3M(n-k+1) + (K — k)/2 for mek, and M(n) = (rf+n)(k+1)/2 for
1<nzk-1.
Now it is not difficult to verify that M(n) is smaller than j(n) for sufficiently large
n, demonstrating that more pegs result in fewer moves.

We formulate the following
Question 1. For every value mil, find the largest number of moves MAX(m)

required to move n disks, for any graph G with m+8esand with solvable
Hanoi problem.

Clearly, the answer will be a function of n. We kndvat MAX(3) = 3-1. Note
that we compare the two functions MAX(m) and MAX(rof)n asymptotically.

Generally, if one considers the complete graph,ethisr the fairly obvious
expectation that with m auxiliary disks, one shouldexdha number of moves that is



roughly proportional to ™. This can in fact be achieved, as can be seen aw$ollo

Recall that for the original problem, with one diaxiy peg, 2-1 moves for n disks are

minimal. This observation is used in the following dation. Note that in order to

simplify the notation, we assume that the number of disksbe moved is a multiple

of the number of auxiliary pegs m.

Assume the complete directed graph on the nodes {$,D,A} for m>1.

Divide the n disks into m groups @efined as follows: Gcontains the smallest n/m
disks, G contains the next n/m smallest disks, until @ntains the largest n/m
disks.

Move the disks in &from S to A, involving only the three pegs S, D, ang Ahis
takes 2™-1 moves.

Move the disks in &from S to A, involving only the three pegs S, D, ang Ahis
takes 2™-1 moves.

In general, for all i=1,...,m-1, move the disks inf@dm S to A, involving only the
three pegs S, D, and.AThis takes ?™-1 moves, for each i=1,...,m-1.

Move the disks in G from S to D, involving only the pegs S, D, ang.Ahis takes
2"M.1 moves.

For all j=m-1,m-2,...,2,1, move the disks if f@m A to D, involving only the three
pegs S, D, and;AThis takes %1 moves for each j.

Adding all the moves up yields (2m-1}{21) moves. Since of all the edges in the
complete graph, we really need only the 2m edgesdem S and the ;/and the 2m
edges between the; And D, plus the 2 edges between S and D, we camislo t
process on a planar graph with m+2 nodes and 4m+@sedpnsequently we can
state:

Lemma 1: For any nz2, there exists a planar graph with m+2 nodes and 4dg2s

where one needs no more than (2m-1J%2) moves to move n disks from S to D.
In other words, we need at most order of Histhoves.

Just as in the case of finite Hanoi problems whefarits out that far more disks can
be accommodated than | expected, a similar situatiostsewith the number of
moves. We will show below that we can in fact moveisks in a graph with m+2
nodes with a number of moves proportional fe2t°™m.

For this result, we need the complete graph on thes®={S,D,A,...,An}. Again,
we define m groups of disks together with their moeets:
(3;) For each i=1,2,...,m-2,m-1, the group Ensist of the nlargest disks,
excluding all disks in G1G.; O...0G;. The disks in Gare moved from S
to A using the m-i+3 pegs S, DyA.., A.
(2) The group G consists of the largest,rdisks. The disks in Gare moved
from S to D, using only the 3 pegs S, D, angd A
(3) Finally, for each j=m-1,m-2,...,2,1, the disks irogp G are moved from A
to D, using the m-j+3 pegs S, DnA.., A;.
Clearly, the number of moves required to achieyeqExactly the number of moves
required to achieve (3): Simply execute the moveskwands and in reverse order,
replacing every occurrence of S by D.



Let us now compute the number of moves that sufiaatry out these steps. We use
Lemma 1 to see how many moves are sufficient. Thughéofirst group, Gwith ny
disks, to be moved from S to;Ausing pegs S, D, A...,A;, Lemma 1 gives the
number of moves as (2m-1)%2-1). In general, for @with n disks using pegs S, D,
Am..., A, Lemma 1 gives the number of moves as (2(m-i+1)-1§¥%2%-1). Let us
now choose the following values for thg note that until now they had been
unspecified:
nm:=p for some integer p;4u:=2p; Nn.2:=3p; in general p;:=(i+1)p for i=1,...,m-1.

Then we obtain as the total number of moves for the(4fe

(2m-1)e(2Y™ - 1) + ... + (2(M-i+1)-1)(2 ™V 1) + . + 3422 1) =

(2m-1)¢(Z2 - 1) + ... + (2(m-i+1)-1)e(2- 1)+ ... + 3+(2- 1) =

(m?-1)+(2” - 1).

Adding the number of moves for step (2) and thosestigp (3) (which is the same
as for step (1)), we get (Zr)+(?° - 1). Since n = f+...+ n;=p*me¢(M+1)/2, we have
(2n?-1)+(2* - 1) moves for n = peme(m+1)/2 disks, or on the orde nfs2"°™™m
moves for n disks on m+2 pegs. Thus, we can summarize:

Proposition 2: Moving n disks from S to D in a complete graph onde®

{S,D,A4,...,An} can be achieved in O{@2"°™™) moves.

Proposition 2 establishes an upper bound on the mimomaber of moves. There
is no assurance that this is the best result. Thuspmraufate the following
Question 2: For every value mil, find the smallest nhumber of moves MIN(m)
required to move n disks in the complete graph witl2 medes, for m3.

Again, MIN(m) is a function of n. We know that MINE"™1. Here | would
expect that for larger m, MIN(m) will be strictly smeil

3. TheDistribution of Disks

Given a directed graph G, a natural question is alevfing: What groups of disks
can be accumulated on the nodes of G? | will foexdusively on solvable Hanoi
problems here; it is probably quite difficult to comg with a reasonable
characterization in the case of finite Hanoi protdem

In view of Theorem O, it is necessary that the camat of this theorem hold,
namely there are three different nodes, u, v, ansueh that there is a path from S to
one of them, there is a path from one of them torid, taere exist paths from u to v,
from v to w, and from w to u. If we now stipulate thiazere exists a path from one of
u, v, or w to each of the nodes {N.,N;} of G, then we can choose our groups@
i=1,...,L completely arbitrarily, subject only to the stipigat that GO...0G, =
{1,...,n}, and carry out legal moves in G such that@dyl contains exactly all disks
in group G, for all i=1,...£. The proof consists of the observation that eack dis
with 1<d<n can circulate from u to v to w and back to u beeathe smaller disks
1,...,d-1 can also be circulated. Thus, disk d can benphto peg N for any kk<t,
since there exists a path from one of the three nadék. tNote however that this
condition is sufficient but not necessary. This is lseafor certain choices of the



groups G it might be possible to leave some on S even thélgte is no path from
the distinguished nodes u, v, and w to S. Moreowevjew of the result in [1], there
can be sub-exponentially many disks that can be gglibnto a subgraph giving rise
to a finite Hanoi problem without having a pathrfrany distinguished node to any
node in that subgraph. However, it can be seenitheach of these exceptions, the
number of disks that can be involved is bounded frioova by a function of the
number of nodes.

A similar characterization holds if we want to staithmthe nodes initialized with
groups of disks, node;Molding group G for i=1,...£, and ask whether the total
number n of disks can be moved, using legal move$etaestination peg D (which
is of course one of the nodes in{N.,N.}). Again, we can state that if in addition to
the conditions of Theorem 0, each nodehids a path to one of the distinguished
nodes u, v, or w, then the problem can always be sol@&de again, there are
exceptions, namely if there is a path from a nodéoND that does not involve any of
the distinguished nodes. However, once again, thisoeibnly possible for a limited
number of disks, limited by a function of the numberf nodes in G.

4. Conclusion

Although the Tower of Hanoi problem was first publishied.893, it still retains its
ability of raise new questions. We have exposed twihege questions. Specifically,
we asked what is the minimum number of moves requaeddve n disks in a given
graph with m auxiliary pegs. We have shown that thimlmer is no more than
O(n«2"™™m): however, we believe that this can be reducedaRéhat the original
problem stated that the world would come to an emceahe 64 disks have been
successfully moved from S to D. Since with three pénjs, requires -1 moves,
which is greater than 18«1 even assuming just 10 nanosecond per move, this
would take over 5700 years. However, if just two enpegs were acquired, using
Proposition 2 the number of moves could be reduceeltmb34,000, and with three
more pegs to below 4000, with obvious significant lingtions for the end of the
world! We have also posed the opposite problem, namheiermining what graphs
required the largest number of moves.

Then we turned to the problem of distributing, \egdl moves, the n disks over the
nodes of a general directed graph. We have showrexcapt for a bounded number
of disks, there is a simple characterization of ttaplys for which this is possible for
arbitrary n. This bound depends only ©rin a similar vein, moving the n disks to the
destination peg starting with the disks arbitradigtributed over the various nodes in
G is also always possible, except for a bounded numbédisks, provided a very
simple property holds for the graph. In [4], a numbfrestrictions in terms of the
nodes and edges are discussed (specifically, disksdiffeent “colors” and certain
nodes and edges will accommodates only certain cplamns) it is expected that the
characterizations of graphs that permit arbitraryrithistion of disks over their nodes
will be somewhat more challenging.
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