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Abstract. Complex task solving can be carried out by decomposing the original 
problem into more specific and simpler parts. Several authors have shown that 
those cases where incremental learning may occur can be successfully solved 
through the incremental layered evolution paradigm. This paper is focused on 
the presentation of a new mechanism, which allows improving controllers 
based on neural networks obtained through layered evolution. Its functioning is 
based on the combination of an evolving strategy capable of generating 
minimal structure neuronal networks through a tournament selection 
mechanism. The proposed method has been applied to the generation of a 
controller allowing a robot to find a ball, correctly stand behind it and hit it 
towards a specific place. Tests performed both in the simulated environment 
and upon the real robot have given quite satisfactory results.  

Keywords: Evolving Neural Networks, Layered Evolution, Evolutionary 
Robotic. 

1   Introduction 

Evolutionary Algorithms have proved to be highly useful to solve control 
problems. However, when dealing with complex tasks, it is difficult to find a good 
solution in reasonable time. Several researches have demonstrated that certain 
complex tasks may be solved by using layered evolution [1][2]. 

A complex task refers to one whose solution is not simple but involves learning a 
strategy to achieve the expected objective. Problems like prey capture and target 
reaching belong to this category [3]. In these cases, it is hard to set in advance the 
controller to be used, and here is where layered evolution becomes important. This 
process consists in decomposing the original problem into simpler parts, called 
subtasks, thus allowing for a gradual learning of the expected response [4].  

On the other hand, unless we count with the necessary initial information to solve 
each subtask, it is ideal to count with some mechanism that allows carrying out the 
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adaptation as automatically as possible. In this way, different solutions combining 
techniques of Incremental Evolution with Evolving Neural Networks have been 
developed with the aim of providing an adaptation mechanism that minimizes the 
needed previous knowledge to obtain an acceptable performance giving raise to 
controllers made up of several networks [5]. Another aspect to take into account is the 
way of determining which neural network should be run at each instant of time [6][7]; 
thus, there are several alternatives ranging from the use of an ad-hoc design decision 
tree [8] to mechanisms automatically organizing the structure [9].  

2   Objective 

This research is based on works previously carried out in the fields of layered 
evolution [10] [11] through neuroevolving algorithms and proposes an alternative 
which allows obtaining improvements in the proposed solutions. 

The purpose of this paper is to present a new evolution-based strategy through 
which controllers for solving each part of the problem can be efficiently obtained. The 
adaptation process not only allows achieving the expected behavior but also 
automatically determines the needed minimal structure for each controller. 

This paper is organized as follows: Section 3 specifies the proposed strategy in 
detail; Section 4 describes the problem to solve; Section 5 presents some 
implementation aspects; Section 6 summarizes the results obtained; and Section 7 
shows the conclusions together with some working future lines.  

3   Proposed Strategy  

The adaptation strategy proposed in this paper permits to obtain a controller 
formed by as many recurrent neuronal networks as defined subtasks. Each network is 
obtained through a layered evolution based on the dependency established among 
subtasks. The method used to carry out this adaptation process not only allows 
achieving the expected behavior but also automatically determines the needed 
minimal structure for each case.  

Earlier studies [12] have shown that NEAT (NeuroEvolution of Augmenting 
Topologies) has enough capacity to solve this type of situations. However, the 
computation time used to obtain the proper neuronal network to solve each subtask 
may be excessive. In Subsection 4.1 a brief summary of the most significant features 
of the first method has been included. 

Hence, this paper proposes to carry out the evolution in two parts; the first one by 
the NEAT method and the second one by a Binary Tournament applied to all 
individuals in a population. The following pseudocode specifies this process. 
Be C=[c1,c2,..,cn] the list of controllers to obtain 
ordered according to their dependencies.  
Let Oi be the target of controller ci with i=1:n 
For each controller ci, with i of 1 a n.  
  Generate a random initial population.  
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  Evolve using NEAT for a minimal number of  
  generations.  
  While (a minimal number of generations is not  
  achieved) and (objective Oi is not accomplished)  
    Carry out tournaments between pairs of individuals  
    randomly selected from the whole population.  
    The number of pairs corresponds to 45% of the  
    population size. 
    The new population will be made up of a 10% of the  
    individuals with best fitness from the previous  
    populations (elitism).  
      The winners of the binary tournaments.  
      The new individuals obtained when applying  
      uniform mutation to the arcs of the networks of  
      each of the winners of the tournament.  
  End While 
End For 

3.1 NeuroEvolution of Augmenting Topologies 

NEAT implementation has proved to be a highly effective Neuro-Evolution 
method in several domains [13]. It addresses three problems commonly found in 
Neural Network systems: 1) how to crossover topologically disparate chromosomes, 
2) how to protect new topological innovation, and 3) how to keep topologies as 
simple as possible throughout evolution [14]. This is accomplished through historical 
markings, speciation, and incremental complexification. 

First, each genome in NEAT includes a list of connection genes, each of which 
referring to two node genes being connected. In order to perform crossover, the 
system must be able to tell which genes match up between any two individuals in the 
population. For this reason, NEAT keeps track of the historical origin of every gene. 
Two genes that have the same historical origin represent the same structure (though 
possibly with different weights) since they were both derived from the same ancestral 
gene from some point in the past. Tracking the historical origins requires very little 
computation. Whenever a new gene appears (through structural mutation), an 
innovation number is incremented and assigned to that gene. Thus, the innovation 
numbers represent a chronology of every gene in the system, and allow crossover of 
diverse networks without extensive topological analysis. With historical markings the 
problem of having to match different topologies [15] is avoided. 

Second, NEAT networks are speciated so that individuals compete primarily 
within their own niche. In this way, topological innovations are given time to 
optimize their structures before they have to compete with the entire population. Also, 
networks share the fitness of their species [16] to prevent one species from taking 
over the entire population. 

Third, NEAT networks are built from a minimal configuration and complexified 
incrementally to ensure that solutions of minimal complexity are searched first. This 
procedure has two advantages: First, it minimizes topology bloat and second, it 
improves the efficiency of evolution by complexifying the search space only as 
needed. For more details about NEAT, see Stanley and Miikkulainen [14]. 
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4   Problem Description.  

The method proposed in this paper has been applied to the generation of a 
controller allowing a Khepera II robot to find a ball in a play field and put it in the 
goal area. The play takes place in a rectangular field from which neither the ball nor 
the robot can come out and finishes when the robot is able to make a goal. 

Figure 1 shows the field where the play takes place. Two independent runs 
followed by the robot to reach the position allowing it to hit the ball toward the goal 
or interest area are illustrated. 

4.1   Problem Decomposing into Simpler Subtasks 

This play can be decomposed into three subtasks. Each task is carried out by a 
different neuronal network obtained by evolution: 

• Search: The purpose of this neuronal network is to provide the robot with the 
capacity to explore the field until locating the position of the ball and then come 
closer to it. 

• Position: This neuronal network is responsible for adequately positioning the 
robot. Since the Khepera II used does not have any additional support to “hook” the 
ball, it is fundamentally significant that it remains correctly in line with the ball and 
the goal area. 

• Hit: the purpose of this neuronal network is to hit the ball as strongly as 
possible so as to put it inside the goal area. 

4.2. Layered Learning 

Once the subdivision of tasks is carried out, a dependence order is established 
among them, which indicates the training sequence. Figure 2 shows these 
dependencies for the proposed problem. 

Each rectangle represents a subtask and the arrows indicate the dependencies 
among them. A subtask could be learnt once the rest of the subtasks on which it 
depends have been learnt as well. 

 

Search 

Position 

Hit 

 
 

Fig. 2. Dependence layer order. 

 
 

Fig. 1. Simulated Environ. 
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This is called layered learning based on the dependence existing in the order of 
learning of different subtasks. From another point of view, it could be regarded as a 
structure having an initial layer made up of those subtasks which do not need others to 
be learnt. Then, in the following layer, those subtasks that can be learnt from previous 
ones are placed, and so on.  

Notice that this learning does not show how to solve the whole problem, but the 
way of learning to carry out each of the expected subtasks. 

4.3. Problem Solving 

Once the networks are obtained, a decision tree is in charge of selecting the 
network that should be used at each instant. In this way, a single controller is obtained 
based on specific controllers for each subtask. Figure 3 shows the decision tree used 
to solve the game. 

 
Fig. 3. Decision tree used to solve the problem. 

5. Implementation Aspects 

The Khepera robot used in all the trials only has one K213 vision camera capable 
of distinguishing a 64 pixel line corresponding to the grey shades located in its 
angular vision. For this reason, the rectangular walls of the closed rectangular 
environment used were painted in black, the ball in white and the goal area in grey. 
The collisions are detected through the proximity sensors. 

The controller of each subtask is commanded by a neuronal network made up of 72 
linear input neurons, two non-linear output neurons, and an additional bias neuron 
which can connect itself to any other neuron with the exception of an input neuron. 
The inputs to the network are linearly scaled to the range [0, 1] from the values 
captured by the sensors where the first 8 values correspond to the proximity sensors 
and the remaining 64 correspond to the k213 camera. The outputs of the network are 
scaled between [-1, 1] to control the speed of the motors driving each of the robot 
wheels to fit the simulator requirements. The final architecture to be used is 
determined following NEAT application. 

 
Can see the ball? 

Have a good position? Search the ball 

Get good position Hit the ball 

Yes No 

Yes No 
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To establish the fitness of an individual, the performance of its controller is 
measured starting from 4 different positions. Since the trials have been carried out in a 
rectangular area, each one starts with the robot at a different corner. The ball position 
also changes in each case. Finally, the fitness value of an individual is given by the 
average of the results of the four trials the individual underwent. The following 
pseudocode shows the algorithm used. 
for each individual of the population  
  for i = 1 : 4  
    Locate the individual in position i 
    Carry out 500 iterations with the current  
    controller.  
    Calculate the individual fitness at this stage 
    represented by Eval as the addition of the fitness  
    of each generation. If during this evaluation the  
    robot collides, the trial is interrupted and the  
    current Eval value is returned with what is  
    gathered up to this point.  
  end for 
Calculate the individual fitness as an average of the 4 
previous trials.  
end for 

There follows a detail of how the corresponding fitness has been calculated. 

5.1. Search Module 

To measure the score achieved in each trial the following evaluation function is 
used. 
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××−×+=
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where: 
• camerai is position i in the value array corresponding to the k213 camera. It 

is the interval value [0,1] corresponding to the grey scale where 0 represents  black 
and 1 white. 

• vectori is position i in the scalar value array with normal distribution. This 
vector aims at increasing the importance of the central pixels.  

• Mleft and Mright are values in the interval [-1, 1] corresponding to the left and 
right motor speeds, respectively. These are the network outputs. 

• Sir is the maximum value of the proximity sensors in the interval [0, 1]. 
The term (camerai x vectori) gets its highest value when the robot gets as close as 

possible to the ball and the ball is located as close as possible to the center of the 
camera vision angle. The term pushes the controller to maximize its movement since 
the highest value is obtained when the robot goes forward at maximum speed. Finally, 
the term forces the robot to move away from the obstacles to increase its score. 
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5.2. Position Module  

In order to measure the controller’s score during each trial, the next evaluation 
function is used: 

( ) ( ) ( )[ ]( )∑
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goalballirrightleftrightleftposition distdistSMMMMsectorsEval  (2) 

where 
• Mleft, Mright y Sir coincides with 5.1. 
• sectors is a value proportional to the area covered by the agent during the 

training. 
• distball is a value in the interval [0,1] indicating distance to the ball. 
• distgoal is a value in the interval [0,1] indicating distance to the goal area. 
The term ( )rightleft MM −−1  refers to the robot's rotation. If the robot is 

spinning on its axis, the speeds of the motors are opposite. The higher the rotation, the 
lower the value of this term. The controller needs to minimize this effect in order to 
increase its score.  

To obtain controllers capable of covering long distances, the environment was 
divided into a grid of 100 x100 equal sectors, and the coefficient sectors were used to 
measure the territory which the robot covered throughout the test. 
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In summary, the robot’s run is weighed in (2) along 500 steps and scaled 
proportionally to the number of covered sectors. 

5.3. Module to hit the ball 
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where: 
• camerai is position i in the value array corresponding to the k213 camera. 
• vectori is position i in the scalar value array with normal distribution. 
•  Mleft and Mright are values in the interval [-1, 1] corresponding to the left and 

right motor speeds, respectively. These are the network outputs. 
• Sir is the maximum value of the proximity sensors in the interval [0, 1]. 
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6. Results 

In order to determine the efficiency and efficacy of the proposed method the 
following alternatives have been taken into account. 

a) Controller based on feedforward neuronal networks: In each case, 
neuronal network structure used was the most efficient feedforward architecture that 
could be manually defined. Training was carried out through a binary tournament. 

b) Controller obtained using NEAT only: this way of determining controller 
does not require any previous knowledge of neuronal network architecture since it has 
the capacity to determine it during adaptation. 

c) Controller obtained by combining NEAT and tournament selection: this 
alternative is the proposal of this paper and corresponds to what has been detailed in 
Section 3. 

In this case, 30 independent runs of the process needed to obtain the whole 
controller were carried out. This implies that in each run the correspondent 
controllers, applying 100 generations for each one, were generated.  

In order to measure the capacity of each method to generate the controller, 30 trials 
were taken into account to choose the individual that better solved the subtask of 
hitting the ball for each one. 

With these three controllers, 40 trials, considering the number of times in which 
the robot was able to make a goal were carried out. Figure 4 shows the success 
percentage out of the 40 runs mentioned above. 

 

 
 
Fig. 4. Average success 
of the best individual. 

 
Fig. 5. Number of goals 
in the last generation. 

 
Fig. 6. Average 
evolution time. 

 
If the behavior of each controller population is analyzed, regarding the number of 

goals each controller has made, it can be noted that the NEAT + Tournament behavior 
is quite superior. Figure 5 shows the amount of success of the whole population in the 
last generation. 

Regarding computation time, figure 6 shows the average evolution time of the 
different methods. It is clearly seen that while NEAT evolution time is closer to two 
hours, NEAT + Tournament has a 1 ½ hour average. These time measurements 
correspond to the algorithm execution in 2.4 GHz Pentium 4 machines. 
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In order to measure the improvement introduced by the method proposed in this 
paper, the behavior of the best controllers obtained with NEAT and NEAT + 
tournament was analyzed every 10 generations of the evolution process, using them to 
hit the ball 100 consecutive times, trying to introduce it in the goal area.   

Figure 7 shows the average values corresponding to the goals made by the 
controllers in the previously indicated generations during 30 independent runs. 

As it can be seen, NEAT + tournament behavior is clearly superior to the standard 
method during the second half of the evolution process. 
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Fig. 7. Average goals for generation. 

7. Conclusions and Future Working Lines. 

A new strategy that allows improving the behavior of  controllers obtained by 
applying layered evolution, thus considerably reducing computation time without 
markedly affecting the final controller quality has been presented. Its functioning is 
based on applying an evolution process in two parts; the first one is commanded by 
NEAT and the second one by a Binary Tournament applied to all individuals of the 
population. 

Its application in solving a concrete problem has been tried both in the simulated 
environment and on the real robot with quite satisfactory results. 

Different experiences carried out with NEAT have permitted to establish that  20% 
maximum generations are enough to obtain a population with a basic behavior upon 
which it is feasible to apply tournaments, thus optimizing execution time. 

At present, work is being done on the possibility of installing a mini population of 
controllers in the robot and that this population evolves along its useful life [17]. To 
this aim, different genetic operators are being studied [18]. 
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