
VirD-GM: Introducing a Modelling and Execution Environment for
the Distributed Geometric Machine Machine∗

Vanessa S. Fonseca, Renata H. S. Reiser,
Adenauer C. Yamin, Antonio C. R. Costa, Mauricio L. Pilla

Catholic University of Pelotas, Informatics School

Pos-Graduate Programme in Computer Science

Rua Feliz da Cunha, 412, Centro, Pelotas, Brazil CEP 96.010-000

{vandag, reiser, adenauer, rocha, pilla}@ucpel.tche.br

Abstract

This work describes the integration of the Geometric Machine model (GM) with the execution environment for perva-
sive and grid computing EXEHDA. The model is responsible for the logical structure of the processes and the related
graphic expressions may be constructed in the interface of the Visual Programming Environment of the Geometric
Machine model (VPE-GM), while the middleware EXEHDA carries out its parallel and distributed execution. The
resulting environment, named VirD-GM, is a simple and reliable framework where the performance of several par-
allel programming tasks can be analyzed in an uniform way. The visual environment VPE-GM handles the entire
workflow, from modelling to execution of algorithms of scientific computations, and it is especially useful for partial,
concurrent and non-deterministic programs. The validation of graphic representations together with the control of
process constructors and memory configurations are obtained in the process editor and memory editor, respectively.
This means that graphic representation free from semantic errors in the relationship in the GM process constructors
and their memory configurations can be exported to the execution module in a higher abstraction level.

Keywords: Geometric Machine Model, Parallel Computations, Distributed Computations, Distributed Computing
Environment.

Resumen

Este trabalho descreve a integração do ambiente de programação visual para o modelo de Máquina Geométrica (MG)
com o ambiente de execução para computação pervasiva denominado EXEHDA. O primeiro, refere-se a estrutura
lógica das expressões gráficas representando os processos do modelo MG e o segundo, reponsabiliza-se pela corre-
spondente execução paralela e distribuı́da. Com base nesta integração, o ambiente de execução, denominado VirD-
GM, implementado sobre o middleware EXEHDA, constitui-se numa ferramenta simples e confiável onde o desem-
penho de diversas tarefas da programação paralela podem ser analizadas de forma uniforme, para modelagem de
algoritmos da computação cientı́fica, especialmente algoritmos parciais, concorrentes e não-determinı́sticos. O ambi-
ente de desenvolvimento, denominado VPE-GM, é capaz de prover a validação das representações gráficas, incluindo
o controle e configuração da memória. Significando que a construção gráfica mapeando a relaçao entre construtores
de processos do modelo GM e as correspondentes configurações de memórias estão livre de erros semânticos e podem
ser exportada para o módulo de execução no midlleware EXEHDA.

Palabras clave: Modelo de Máquina Geométrica, Computação Paralela e Distribuı́da, Ambiente de Programação
Distribuı́da.

∗This work has been partially supported by the Brazilian funding agency FAPERGS.



1 Introduction

The development and evolution of parallel and distributed computing is highlighted from the different and comprehen-
sive related areas (High Performance Computing, Grid Computing, Context-Aware Computing, Mobile Computing,
Pervasive Computing). These areas are responsible for the interaction among distinguished computational devices
connected to global network. Recently, the consolidation of this area enabled dynamic resources sharing and per-
vasive environments in order to support physical and logical information mobility according to the user’s profile or
application. The demand for new and powerful computational resources to provide better performance, in a simpler
but accurate way, has been increasing. Despite being a priority to the development of new information technologies
and current applications, many factors which contribute significantly to supply this demand are committed.

In this work, we are concerned about the gap between theoretical models and the technological development.
We present a formal model and related abstractions to support semantic interpretations for parallel and distributed
computing.

The main objetive is the integration of the Geometric Machine model (GM) with the execution environment for
pervasive and grid computing EXEHDA. The model is responsible for the logical structure of the processes and the
related graphic expressions may be constructed in the interface of the Visual Programming Environment of the Geo-
metric Machine model (VPE-GM), while the middleware EXEHDA carries out its parallel and distributed execution.
The resulting environment, named VirD-GM, is a simple and reliable framework where the performance of several
parallel programming tasks can be analyzed in an uniform way. The visual environment VPE-GM handles the entire
workflow, from modelling to execution of algorithms of scientific computations, and it is especially useful for partial,
concurrent and non-deterministic programs.

In addition, mathematical structures and logical approach in the GM model provide concepts and (visual or/and
textual) languages to capture the essence of any parallel and non-deterministic system, in algorithmic and descriptive
terms. Many challenging issues are connected to the design and specification of efficient parallel implementation in
different architectures.

The Geometric Machine (GM) [6] is a model for construction and semantic interpretation of parallel and non-
deterministic computations applied over array structures with shared-memory, performed by multiple processes dis-
tributed over a geometric space. In the construction procedure of such model, an algebraic and structural induction is
considered, the former was concerned with finite character of the basic objects called elementary processes and the
latter is related to the inclusion relation regarding the partial processes in the ordered construction of the GM model.

This paper investigates the main aspects of the GM model related to the construction of a visual programming
environment (VPE-GM), from the formalization of the GM model and specification of a visual programming lan-
guage for the model [10]. The implementation of such environment aims to support the specifications of the lan-
guage VL(D∞) [5]. A bi-dimensional semantic interpretation explores alternatives to simplify the task of designing
parallel and non-deterministic algorithms.

The methodology of development of VPE-GM framework deals with graphic transformations applied over basic
graphic objects of the environment, which are accessed from the interactive interfaces of memory and process editors.
This visual approach is compatible with the inductive construction of the process domain in the GM model and makes
the comprehension of recursive processes easier.

Then, the development of an integrated solution using the adaptive, services-oriented middleware EXEHDA (Exe-
cution Environment for High Distributed Applications) [16] as an execution environment is considered. The resulting
framework has been constructed to be also a didactic tool, providing an environment where parallel and distributed
algorithms for scientific computation can be validated, simulated and executed.

We start in Section 2 with basic concepts of the formal model and its denotation in the correspondent visual
language, showing how traditional textual programming language techniques are combined with the specification
of a visual language to implement the visual programming environment. The status implementation is commented
in Section 3. Then, the parallel abstractions of the GM model and the related execution environment over which
distributed and parallel computations can be improved in their real performance is introduced in Section 4. For that, a
review of the EXEHDA middleware and how it manages the constraints imposed by processes from the VPE-GM are
discussed in Section 5. Finally, related works and concluding remarks are presented in Section 6.

2 Basic concepts of GM model

The Geometric Machine model is an abstract machine, with infinite memory and constant memory access time, that
can be used to analyze the logic and domain-theoretical structures of parallel and non-deterministic algorithms for

2



scientific computations [7, 8, 9].
The GM memory supports a coherence space of states and is conceived as an enumerable set of stored cells that

are labelled by points of a geometric space. In such memory, deterministic machine states are modelled as functions
from memory positions to values. Non-deterministic machine states are modelled as families of deterministic machine
states (with singletons modelling deterministic states) and computation tests are modelled as functions from memory
positions to boolean tests.

Based on the concept of coherence spaces, the ordered structure of the GM model is given by a Coherence Space
of Processes, denoted by D∞. Over this domain, it is possible to obtain interpretation for (possibly partial, recursive,
infinite) processes, operating on arrays of data stored in the GM memory. The GM model gives interpretation for
deterministic process constructions, including two types of parallelism – temporal parallelism, related to the inductive
temporal behavior of processes, and spatial parallelism, with processes operating in a distributed approach of the GM
model.

The model also provides interpretation for the non-deterministic computations and applies the exponential opera-
tors of the coherence spaces in the interpretation of the functional space. Algebraic process constructors are defined
by the functors in the CospLin category of the coherence spaces and linear functions [4].

The ordered structure of this model is constructed by levels, starting from the coherence space of the elementary
processes to the domain D∞, see Figure1. Interpretations are step-wise built following Scott’s methodology [12].
Generalizing, each level is identified by a subspace Dn, which reconstructs all the objects from the level before,
preserving their properties and relations, and drives the construction of the new objects. The relationship between
the levels is expressed by linear functions, called embedding and projection functions, interpreting constructors and
destructors of processes, respectively.

Figure 1: Specifying a parallel process in VL(D∞)

The most basic notion of the GM model is that of elementary processes (processes that modify single memory
positions in a single unit of computational time, uct). The coherence relation among such processes (coherent subsets)
models the admissibility of parallelism. It essentially says that two processes can be performed in parallel if they do

3



not conflict, i.e., if they write distinct subsets of memory positions. In the dual construction, the incoherence relation
models the condition for non-determinism, namely, the conflict of memory accesses. Induced by the flat domain
modelling of the geometric space, the memory position information on the domain of elementary processes can be
lifted to the coherent sets of the constructed domains by a position-function, formally stated in [6].

The completion procedure guarantees the existence of the least fixed point of the recursive equation that general-
izes the definition of Dn, the coherence space D∞, defined by infinite composition of linear functions. The process
representation as objects in D∞ is not intuitive, but it allows the construction of textual (L(D∞)) and visual (VL(D∞))
languages.

Figure 2: Specifying a parallel process in VL(D∞)

3 Visual approach for the GM model

In the visual approach for the GM model, we consider the alphabet and grammar of the visual programming language
VL(D∞) to manipulate visual information. The visual grammar provides a way to generate all diagrams that constitute
the expressions of that visual language, giving an inductive view of the visual language. Two syntactic levels are
determined, an abstract and a concrete graphical level. The former is not concern with the same details as the later.
This means that it does not take into account the choice of icons, symbols, and geometric details (size, position) of
objects. In particular, disregarding geometric constraints on the abstract syntactic level makes its manipulations by
graph transformations simple and powerful. Therefore, it can be used to support applications as well as the future
formal semantic definition of the language. In the next subsections, we consider the approach introduced in [1] to
describe the syntaxes for these two syntactic levels and to define the fundamental structure of the VPE-GM framework.

3.1 Syntax of the VL(D∞) language

In the specification of the VL(D∞) language, typed graphs represent processes interpreted in the GM model, and graph
transformations are used to model process constructors. A process-object is given by two disjoint sets: nodes (visual-
ized as rectangles) and directed arcs (visualized as arrows) from a source node to a target node. Every process-object
is typed over a type graph, which may be labelled by attributes (visualized as rounded rectangles) that attach informa-
tion. The position and format of all instances occurring in a diagram depend on graphical restrictions, represented by
dotted arrows. In addition, an attributed arc connects an attribute node with its current value. Process-attributes may
be specified by abstract data types.

In the following examples of symbols in the specification of the VL(D∞)-alphabet, I and ω are enumerable sets
of labels (memory positions) and indexes (control of interactions), respectively; Σ represents the set of expressions of
the textual language L(D∞).

We start with the specification of the elementary process dk in L(D∞), as shown in Figure 2. Such process
performs the operation d on the cell with position k in the machine memory. In the abstract level, the process-object
representing an elementary process has two attribute symbols, Position and Action, (n act, action name, n pos,
position name). In this case, Position is the attribution of the position type, which is identified by an element of the
I label set. An Action is the attribution of an action type, identified by an element in the Σ expression set. In the
concrete syntax, these attribution links indicate constraints on the format of the text (size, font, color). Constraint links
(incl pos, incl act) force the name of the elementary process to be placed in the center of the diagram.

4



The parallel product is a binary process operator given as a symbol of VL(D∞)−alphabet represented by two
process-objects together with the arcs factor up and factor down. These arcs are the connection links that indicate the
first and the second factors of concurrent processes in the concrete syntax. Graphical constraints are represented by
the inclusion functions includepp name and insertpp, which help to relate parallel processes to the diagram layout.
Figure 2 shows an instance of a parallel product between an elementary process and a sequential process, denoted by
dk and dt · el in the textual language L(D∞).

At the bottom right side of the concrete syntax, memory positions related to the execution of that parallel process
are presented, given by the image set of the position-function:

Υ(‖ dk,dt · el ‖) = {k, l, t} ⊆ I , with k 6= l 6= t.

The construction rules in VL(D∞)−grammar are structured in two steps, called preparation and realization. Each
one is modelled by a subgraph transformation defined over the VL(D∞)−vocabulary in three steps (Figure 3): (i) the
partial objects are introduced; (ii) the memory-position constraint indicated by rectangles named Υ(p)∩Υ(p) = ∅ and
Υ(p) ∩ Υ(p) 6= ∅ are related to concurrent and conflict relations, respectively; (iii) the process constructor is applied
over the partial objects obtained in the preparation step.

Figure 3: Preparation and realization steps of a parallel product.

3.2 Visual programming in the GM model

The construction of a visual programming environment for the GM model aims to improve the access, manipulation
and understanding of the information obtained by performance of parallel computations interpreted in the GM model,
including the interface modelling its processes, text and memory states. As it usually happens in the traditional
programming languages, it is also possible to iterate sequential and concurrent constructions. Its modular structure is
simple, consistent, and adds relevant aspects to visual simulations, including macros for the inference of tasks and the
generation of diagrams by creation/format and specification/content.

Conceived with a didactic approach, this computational framework is implemented as open source and multi-
platform software, using the Python programming language. The development stages of the VPE-GM framework
consisted of the construction and implementation of the memory and process editors, simulator, and related graphic
interfaces, including the external representation modules. Using the visual process editor, the files can be created,
saved, deleted, built, and changed (Figure 4). These functions are implemented by the concept of envelopes, files
created in Python for the internal representation of processes and characterized by the grouping of graphic objects on
the interface of the process editor.

Memory configurations are built in the memory editor. The modelling of the global shared memory by a matrix
structure is represented, generally, by a discrete subset of the Euclidian Geometric Space. The memory value in-
dexation is explicit in the graphic representation, which makes the application and understanding of parallelism and
non-determinism easier. Besides, it allows the visualization of the simulation, see the interfaces in Figure 4.

In the simulator, the computations can be performed in different options in order to present the results of partial
computations and at the same time the validation of the program. Other available options supported are based on
methodology of step by step and the pre-selection of the subset of check points. Then the edited program and memory
configuration are both previously built by their interfaces and saved as an XML file.

Moreover, the visual programming environment provides two modules which carry out the integration of each
editor with the simulator. These modules, named external representation modules, enable a program or a memory as
an XML file. Such files preserve all the features, either of a program or of a memory, described in a compatible way.

5



Figure 4: Snapshots of the interfaces in the VPE-GM.

In addition, the simulator is able to interpret them and check the semantic specifications. Then it defines the necessary
constructions to achieve the simulation or to export such files to the execution environment. In Figure 5, the Python
numerical library was used to make an instance of such construction. In addition, the XML file presents the data related
to the function parameters and some fields (color and dimension) which are used for the graphic representation. Later,
the user should configure the memory which will be used in the simulation in a way that it is compatible with the
program created on the process editor interface. In order to check this compatibility, it is necessary that the memory
shows all the positions referred to graphic construction. If a selected memory was built, the related XML file allows
the visualization of the obtained result as well as the data presentation concerning the memory position and the stored
values.

Figure 5: Operation model in the VPE-GM.

4 Parallel abstractions in the GM model

In this paper, the study of potentialities and exploration of the parallelism, according to the categorization dependent
on the levels of abstraction proposed by [13], are focused on two main objectives: (i) systematize the potentialities

6



for the exploration of parallelism in the GM model; (ii) consolidate the definitions for the process constructors of the
GM model.

Conceived as a low-level model, it makes all the issues of parallel programming explicit. The GM abstraction
model consists of a set of processes labelled by positions of a geometric space, capable of executing independent
program in a synchronized way, connected to a shared memory. All processes can access any location in the unit
of time but they can not access the same location on the same step of computation. The GM model requires very
detailed description, giving the code and memory position for each process as well as ensuring the treatment for
memory conflict by a procedure called position-function. The decomposition, mapping and synchronization should be
specified by the software developer.

The address space is characterized as a multidimensional matrix structure, topologically compatible with the ge-
ometric space. The symmetric processes synchronization enables a better use and flexibility of the computational
resources. In addition, they allow reconfiguration of the system if there is a failure in the process performance.

Characterized as a static RAM memory and parallel memory structure shared by the processors, the model provides
synchronous execution of concurrent data and exclusive write. The uniform memory access of the global memory may
be applied to multiple instruction and multiple data.

Thus, GM machine is conceived as a concrete model, which may provide predictable performance but makes it
hard to construct and design software. Recognizing the importance of abstraction, this work introduces the virtual
approach of the GM model, denoted by VirD-GM, to maintain the portability and the maximum expressiveness to be
efficiently implemented.

The challenge is to use theoretical analysis in order to achieve practical experimentations. For that, the execution
management module in the Vird GM decreases the difficulties in the task of parallel programming, as described in the
following section.

5 Distributed approach to GM model

The evolution and consolidation of D-GM model constitutes an opportunity to introduce an execution environment
over which distributed and parallel computations can be improved in their sequential performance, as presented in
Figure6. The focus of this research, VirD-GM, aims to construct a virtual distributed machine as a support for com-
putations in the GM model. Based on the specification of the GM model, the use of the EXEHDA middleware is
considered to implement this virtual distributed machine. More specifically, the XML files described in the last sec-
tion, are generated and exported by the VPE-MG to the VirD-GM.

Figure 6: Functional Vision of Distributed approach to GM model

The results in [18] indicated that EXEHDA could support the demands of distributed/parallel execution, memory
access, and communication introduced by the VirD-GM model. In that sense, EXEHDA is a pervasive computing
middleware [11, 15, 2, 3] based on contextualized services which assist two perspectives [17]: (i) management and
creation of the distributed environment, by providing services to control the physical medium (resources) where the
processing will take place; and (ii) support for execution of application, by providing the services and abstractions
required for implementing large-scale distributed applications. Middleware services are conceptually organized in
a set of subsystems: data and code pervasive access, uncoupled spatial and temporal communication, large-scale
distribution along with context recognition and adaptation. The integration of these subsystems is shown in Figure 7.

A key abstraction in EXEHDA for supporting VirD-GM computations is the OX (Object eXehda). It consists
of an object, instantiated through the Executor Service, which can be bound to arbitrary (text or binary) execution
attributes [16, 18]. Moreover, these attributes are made available in a distributive way in the system by the OXManager

7



service. On the other hand, the subset of services of the subsystem Data and Code Pervasive Access in EXEHDA
is capable to manage the GM model memory requests related to spatially distribution, conflict of memory access,
synchronization, validation of memory positions and stored values.

The EXEHDA components applyed in the VirD-GM are not only the basic services for supporting distribution,
communication and synchronization, but also the high level issues concerned with the login, the scheduling and the
security services.

Figure 7: Integration of EXEHDA subsystems

6 Conclusion

This paper presents the evolution of GM model research from the domain-theoretic structure of concurrent processes
to the target objective to promote their real distributed computations. Following this methodology, over the visual
approach of the GM model is defined the development environment.

The VPE-GM model is induced by the ordered structured and semantic foundation of the GM model. This work
integrates specification and implementation of parallel programs, considering the basic concepts of the parallelism
proposed in [14].

The VPE-GM is easy to program and understand, and its methodology follows the inductive construction of
ordered structure of the GM model. It supports decomposition of parallel programs and process synchronization.
A possible application is the analysis of the parallel and distributed algorithms of Interval Mathematics based on the
Interval Geometric Machine model, a distributed extension of the GM model [7, 8, 9].

This paper also introduces an ongoing work, named VirD-GM, the virtual approach for the GM model over which
is possible to support real distribution and concurrence. It provides support for implementation of parallel programs
in a higher level of abstraction, using the EXEHDA middleware.

References

[1] BARDOHL, R., AND ERMEL, C. Visual specification and parsing of a statechart variant using genged. In Proc.
Symposium on Visual Languages and Formal Methods (2001), pp. 5–7.

[2] DAVIES, N., FRIDAY, A., AND STORZ, O. Exploring the grid’s potential for ubiquitous computing. IEEE
Pervasive Computing 3, 2 (2004). New York.

[3] DE ROURE, D., JENNINGS, N., AND SHADBOLT, N. Grid Computing: Making the Global Infrastructure a
Reality. Wiley & Sons, New York, 2003, ch. The Evolution of the Grid.

[4] GIRARD, J. Y. Linear logic. In Theoretical Computer Science. 1987, pp. 1–102.

8



[5] PRESTES, D., REISER, R., COSTA, A., AND CARDOSO, M. Extending the geometric machine model to
a visual programming environment. In CLEI2005 XXXI Conferência Latinoamericana de Informática (Cali,
2005), Universidad Javeriana, pp. 1–10. meio digital.

[6] REISER, R., COSTA, A., AND DIMURO, G. First steps in the construction of the geometric machine model. In
TEMA - Tendências em Matemática Aplicada e Computacional, vol. 3. 2002, pp. 183–192.

[7] REISER, R., COSTA, A., AND DIMURO, G. A programming language for the interval geometric machine model.
In Eletronic Notes in Theoretical Computer Science, vol. 84. 2003, pp. 1–12.

[8] REISER, R., COSTA, A., AND DIMURO, G. The interval geometric machine. In Numerical Algorithms, vol. 37.
Kluwer, Dordrecht, 2004, pp. 357–366.

[9] REISER, R., COSTA, A., AND DIMURO, G. The distributed interval geometric machine model. In Lecture Notes
in Computer Science (2005), no. 3732, Springer, pp. 179–188.

[10] REISER, R., COSTA, A., DIMURO, G., AND CARDOSO, M. Specifying the geometric machine visual language.
In IEEE Symposium on Visual Languages and Formal Methods (2003), pp. 1–3.

[11] SAHA, D., AND MUKHERJEE, A. Pervasive computing: a paradigm for the 21st century. IEEE Computer 36, 3
(March 2003), 25–31.

[12] SCOTT, D. The lattice of flow diagrams. In Lecture Notes in Mathematics. Springer Verlag, 1971, pp. 311–372.

[13] SKILLICORN, D. Fundations of Parallel Programming. Cambridge: University Press, New York, January
1994.

[14] SKILLICORN, D. B., AND TALIA, D. Models and languages for parallel computation. ACM Computing Surveys
30, 2 (june 1998), 123–169.

[15] WESNER, S., DIMITRAKOS, T., AND JEFREY, K. Akogrimo - the grid goes mobile. ERCIM News, Special
Themes: Grids - the next generation, 59 (Octobe 2004). New York.

[16] YAMIN, A. C., AUGUSTIN, I., BARBOSA, J., SILVA, L., REAL, R., CAVALHEIRO, L., AND GEYER, C. To-
wards merging context-aware, mobile and grid computing. Journal of High Performance Computing Applications
17, 2 (2003), 191–203.

[17] YAMIN, A. C., AUGUSTIN, I., BARBOSA, J., SILVA, L., REAL, R., AND GEYER, C. A framework for
exploiting adaptation in high heterogeneous distributed processing. In 14th Symposium Computer Architecture
and High Performance Computing (Vitoria).

[18] YAMIN, A. C., AUGUSTIN, I., BARBOSA, J., SILVA, L., REAL, R., SCHAFFER, A., AND GEYER, C. Exehda:
adaptive middleware for building a pervasive grid environment. In Frontiers in Artificial Intelligence and Appli-
cations - Self-Organization and Autonomic Informatics, H. Czap, R. Unland, C. Branki, and H. Tianfield, Eds.,
vol. 135. IOS Press, 2005, pp. 203–219.

9


