
A Semantic-Based Scheduling Approach for Soft
Real-Time Systems

Leo D. Ordinez
Universidad Nacional del Sur - CONICET, Dpto. de Ing. Eléctrica y Computadoras,

Bahía Blanca, Argentina, 8000
lordinez@uns.edu.ar

and

David R. Donari
Universidad Nacional del Sur - CONICET, Dpto. de Ing. Eléctrica y Computadoras,

Bahía Blanca, Argentina, 8000
ddonari@uns.edu.ar

and

Diana G. Sanchez
Universidad Nacional del Sur, Dpto. de Ing. Eléctrica y Computadoras,

Bahía Blanca, Argentina, 8000
sanchezd@criba.edu.ar

and

Martín L. Duval
Universidad Nacional del Sur - CIC, Dpto. de Ing. Eléctrica y Computadoras,

Bahía Blanca, Argentina, 8000
mduval@uns.edu.ar

Abstract
In this paper a semantic classi�cation of soft real-time tasks is introduced. The classi�cation is done by the
results that the tasks produce and it is used to propose a scheduling algorithm. The algorithm is called SIDS
and it is based on the usage of server mechanisms. The priority of a server is managed accordingly to the
result that its associated tasks produce. Along with the formal presentation of the algorithm and the proofs
of its properties, a case study and some performance evaluations are included in the paper.

Keywords: real-time, scheduling, semantic, server, importance.



1 Introduction
The demand of performance improvements of soft real-time tasks and the coexistence with others of hard
real-time, have established that the use of reservation mechanisms for scheduling is an optimal choice to
overcome such situation. The soft part of this kind of applications usually have a reactive and sporadic
behaviour in time due to its strong interaction with the environment. In general, the temporal �ow of these
systems is dynamically directed by the tasks, which request service to the operating system by means of
interrupts. Besides the sporadic behaviour action/data, this applications have certain common characteristics
like power-aware modes and best-e�ort politics with high resource utilization [9].

Several papers [2, 3, 4] face up to this subject stating as a higher objective than the scheduling itself,
keeping certain Quality of Service (QoS). In a way, temporal scheduling is used not with the aim of satisfying
temporal constraints, but with the aim of achieving certain global performance of the system. In the server
based approaches cited before every task is treated indistinctly without taking account of the function it
develops or the results it produces. However, in many situations, specially the ones that involve interaction
with the physical world by sensing devices, this feature is known and can be used in the scheduling. An
example of such situation is a sensor network, where sensors report their measurements, which can be signif-
icant or not to the global system status. Nonetheless, this is not the only case of use: any application where
tasks dynamically, because of their results produced or their function developed, change their importance
with respect to the rest of the tasks in the system, is suitable of using the algorithm proposed here.

In this paper, a hierarchical scheduling method is presented. The algorithm is called SIDS (Semantic
Importance Dual-Priority Server) and it is based on the usage of servers and on the results produced by the
tasks. This last topic extends the semantic aspect of a real-time task in the sense of considering not only
temporal constraints, but also the importance of the function it develops.

The main idea behind SIDS is to establish a threshold on the results produced by the di�erent tasks.
That threshold is used to make a partition on the complete set, obtaining two disjoints subsets: one of
IMPORTANT tasks and one of NOT IMPORTANT tasks. The algorithm is intended for giving higher
priority to important tasks and lower to not important.

1.1 Related Work
The ideas proposed in this paper can be split up in three well-de�ned groups: �rst, resource reservation
mechanisms and scheduling of di�erent kind of tasks; second, scheduling of dynamically changing tasks
based on their operation mode or semantic aspect; and �nally, real-time scheduling of sensor networks. This
last topic mostly applied to one of the possible applications of the method proposed.

Concerning with scheduling in general, Davis et al. [6] proposed the Dual-Priority Scheduler (DPS) to
improve the response time of non-real-time tasks in real-time systems. DPS is based on three priority bands:
Upper, Middle and Lower. This scheduler is similar to the one proposed here in that there is a dual-priority
treatment of tasks. However, DPS was conceived to improve the performance of non-real-time task and
it is principally based on �xed priority disciplines. On the other hand, [13] proposed the IRIS scheduler,
which is an enhancement to the CBS algorithm [2]. The improvement is done by the introduction of a hard
reservation in the resource reservation mechanism implemented by the CBS. The IRIS scheduler di�ers with
SIDS in that it does not perform any distinction between tasks. In this sense, such distinction would have to
be done manually by the usage of two servers: one specially dedicated to important tasks and the other to
not important ones. This implementation imposes a dynamical migration of tasks between the two servers.

With respect to tasks that change their relevance during operation (also called modes of operation), in
[10] a characterization of the importance of tasks and a scheduling algorithm based on that characterization
is presented. The algorithm was based on Rate Monotonic and it proposed a period adjustment of tasks
based on the importance of that task previously de�ned by the user. While SIDS deals with that importance
by a threshold on the results produced. An extensive study of mode change protocols for �xed-priority
disciplines can be found in [14]. In that paper, Real et al. proposed a method for minimizing the promptness
of a mode change. However, when dealing with �xed-priority (that is the case of the method proposed in
[14]), the actual delays of a mode change a�ect more to the higher priority tasks than to the lower ones.
On the contrary, when a discipline of dynamic priorities (that is the case of SIDS) is used delays are more
uniformly distributed. Moreover, mode change protocols do not perform any distinction of tasks beyond the
mode in which they are running. While SIDS has only account of the result a task produces to establish its
importance within the system. In this case, a task that should be important because the mode indicates so,

2



when working with SIDS it may not be, due to its result produced. Hence, the system is more �exible and
its behaviour resembles more accurately the reality.

Finally, real-time scheduling of sensor networks is a new trend that is gaining a great impact. Several
works [5, 8, 12, 15] discuss this subject and try to apply the concepts of real-time theory to sensor networks.

1.2 Speci�c Contributions
In contrast with the previously analyzed works, SIDS presents a series of particular characteristics that di�er
from those of that papers:

• To have in mind the function that the task develops at scheduling time.

• To provide a �exible mechanism for the scheduling of reactive tasks.

• To keep an acceptable QoS of the whole system.

• To obtain a good trade-o� among temporal constraints, resource usage and global performance of the
application.

The rest of the paper is organized as follows: in section 2, the task and server models are introduced; in
section 3, the description of SIDS and the demonstrations of its properties are presented; an application of
the algorithm to a practical case is done in section 4; a series of simulation results are exposed in section 5;
and the paper �nishes with the presentation of conclusions.

2 System Model
Most of the real-time tasks that interact with the environment through sensors are assumed to receive a
value from those sensors and produce a result based on them. With the objective of taking into account this
aspect of a real-time task, a parameter µ, named the threshold, is introduced. The µ threshold is established
by the system developer at design time. So, it is based on the expected values of that result. If the result
obtained exceeds the threshold, the task associated to that sensor is said to be IMPORTANT and it is
associated, at least for one instance, to the set of IMPORTANT tasks. On the contrary, when the result
is below that threshold the task is NOT IMPORTANT and, analogously to the previous case, it will belong
to the NOT IMPORTANT set. It is worth mentioning, that the classi�cation of a task is done once an
execution is completed. In a formal way:

Ji,j ∈
{

IMPORTANT if δi,j−1 ≥ µi

NOT IMPORTANT if δi,j−1 < µi

where δi,j is a magnitude whose domain establishes an order relationship and it is based on the results
produced by the task.

In this paper, the task model chosen is one of soft, independent and preemptible tasks. As this tasks are
soft, their temporal characterization is not exact and is usually described by probability functions. In this
sense, a task τi is composed by a series of jobs, being Ji,j the j-Th job of task i, which arrives at a rate Ti,
where this value is the minimum interarrival time. At the same time, each task is also characterized by a
worst case execution time Ci. The time at which a job arrives to the system is known as the activation time
ai,j and the deadline of that job is obtained as follows: di,j = ai,j + Ti. In addition to temporal features,
the new introduced µi parameter is had. As a result, the semantic aspect of a real-time tasks is extended
to consider the results it produces when interacting with the physical world. So, a real-time task τi can be
semantically described by a tuple (Ci, Ti, di, µi).

A server is a software abstraction where, in a general case, several tasks are encapsulated. This is also
known as the isolation property. Each server has a portion of the actual processor available bandwidth,
so if a task tries to use more bandwidth than the one of its associated server, then the server is delayed
and consequently the task is also delayed. Accordingly, when using a resource reservation mechanism based
on servers, the schedulability analysis problem of the entire system is reduced to the one of estimating the
schedulability of each server alone.

In a temporal characterization a SIDS server s has a budget Qs, which is the maximum time available for
execution of its tasks; an actual available budget cs; a period Ps; a deadline ds and a postponement factor
αs, which is used to impose a delay on the NOT IMPORTANT tasks.

3



3 The Algorithm
In this section, the algorithm used to schedule several SIDS will be formally presented, along with a series of
properties that will be stated and proved. The main idea behind the algorithm is to postpone the execution
of not important tasks, so that portion of the bandwidth can be used by other important tasks that belong
to the same or to another server.

3.1 De�nition and Functioning
A SIDS is an abstraction used to encapsulate tasks. That encapsulation provides a method (see Algorithm
1) to guarantee a fair scheduling of those tasks within the whole system. Even more, a SIDS limits the task's
available portion of the processor to its own bandwidth. In the same line of reasoning, a system is composed
by a certain number of SIDS, whose access to the processor is given by a higher level scheduling policy. If
the chosen policy is Earliest Deadline First (EDF) [11], the SIDS with the closer deadline to the actual time
is the one with the highest priority. At this point is where the newly introduced postponement factor plays
a fundamental role. The fact of postponing the deadline of a SIDS with only a NOT IMPORTANT task
makes it lose priority among the others.

On the other side, the imposition of a hard reservation makes that dynamic bandwidth distribution
among the servers even more fair. In the case of SIDS, the hard reservation is introduced by means of
di�erential waiting for replenishment of the SIDS' budget. Considering this, a SIDS can be in one of four
states at each moment of time:

Active: There is at least one job ready to be executed and cs > 0.

Idle: There are no pending jobs to be executed.

Short_Wait: The execution budget was exhausted and there is at least one IMPORTANT job waiting to
complete its execution.

Long_Wait: Identical to the previous case, but there are no IMPORTANT pending jobs and there is at
least one NOT IMPORTANT job waiting to execute.

In Figure 1(a) the di�erent possible transitions between states is shown.

LONG_WAIT

SHORT_WAIT

ACTIVE

AI or ANAI

ANLW

SW

SL

SW

LW

IIN

IDLE

(a) State model of SIDS.

Ready

Short_Wait

Long_Wait

Inactive

SYSTEM

Important

Not_Important

SIDS

(b) Di�erent levels of queues in the SIDS ap-
proach.

Figure 1: Logical aspects of SIDS.

As was mentioned before, SIDS proposes a hierarchical scheduling architecture. In this sense, there are
two levels of queues: �rst, the system queues; and second, the ones internal to a SIDS. Having this in mind
and from the previous state model, in Figure 1(b) the di�erent queues necessary in each part of the system
are shown.

SIDS is based on a simple set of rules, which are described following this convention: AI is for Active
Important; AN is for Active Not Important; WS is for Wait Short; WL is for Wait Long; SL is for Stop

4



Long Wait; IIN is for Inactive Important/Not Important and DB is for Decrement Budget. In this sense,
the rules are also numbered to distinguish the situation in which they are applied; for example, in the case
of rule AI, there are three di�erent moments in which it is applied keeping in all cases the same spirit. To
sum up, the rules previously described can be thought like a family of rules, where, despite the situation,
each instance of the family performs the same task each time.

AI: SIDS has enough budget to execute jobs and there are IMPORTANT pending ones. A transition to
ACTIVE state is performed.

AN: SIDS has enough budget to execute jobs and there are NOT IMPORTANT pending ones. A transition
to ACTIVE state is performed.

SW: When the SIDS' budget is exhausted and there are IMPORTANT pending jobs it waits for at most
one period for its replenishment. A transition to WAIT_SHORT state is performed.

LW: When the SIDS' budget is exhausted and there are NOT IMPORTANT pending jobs it waits for a
multiple αs of its period for replenishment. A transition to WAIT_LONG state is performed.

SL: If a SIDS is in WAIT_LONG state and an IMPORTANT job arrives, it cuts down the waiting to,
at most, one period from the activation time of that job. A transition to WAIT_SHORT state is
performed.

DB: When a SIDS executes a job for one time unit, it decrements it budget accordingly.

IIN: When a job �nishes and there are not pending ones, the SIDS goes to IDLE state.

With all, a more formal scheme than the rules previously shown is presented in Algorithm 1. Auxiliary
functions used in the algorithm are grouped in Table 1.

update_SIDS_IMPORTANT(){ update_SIDS_NOT_IMPORTANT(){
cs ← Qs cs ← Qs
dk ← ak + Ps dk ← ak + αsPs
k← k + 1} k← k + 1}

postpone_IMPORTANT(){ postpone_NOT_IMPORTANT(){
rs ← dk + Ps} rs ← dk + αsPs}

Table 1: Auxiliary functions used in Algorithm 1

3.2 Properties
In general, the execution time demanded by a task τi in the interval [t1, t2] is given by:

Di(t1, t2) =
∑

(t1≤ai,j)∧(t2≥di,j)

Ci,j (3.1)

where ai,j , di,j and Ci,j are the activation time, the deadline and the worst case execution time of the j-Th
job of τi, respectively.

From equation 3.1 and the de�nition of SIDS, three possible relations are deduced between the intervals
[t1, t2] and [ak, dk]:

(1) t2 − t1 < dk − ak

(2) t2 − t1 = dk − ak

(3) t2 − t1 > dk − ak

According to the de�nition of SIDS and due to the hard reservation condition, it can be stated that
there can be just one interval [ak, dk] for each period Ps of the server. Then, from the relations between the
interval [ak, dk] and the period Ps and between the intervals [t1, t2] and [ak, dk], case (1) can not be given
and from (2) and (3) come out the following de�nition for a SIDS s.

5



Algorithm 1 Algorithm SIDS
When a job Jj arrives in t = ak and the SIDS is IDLE do

Enqueue it
if Jj ∈ IMPORTANT then

if t ≥ dk − cs
Ps
Qs

then {Become ACTIVE}
update_SIDS_IMPORTANT() −→ Rule AI.1

else if (dk ≥ t) and (cs = 0) then {Go to WAIT_SHORT}
postpone_IMPORTANT() −→ Rule SW.1

else {Become ACTIVE}
The job is served with the current budget and deadline −→ Rule AI.2

end if
else

if t ≥ dk − csαs
Ps
Qs

then {Become ACTIVE}
update_SIDS_NOT_IMPORTANT() −→ Rule AN.1

else if (dk ≥ t) and (cs = 0) then {Go to LONG_WAIT}
postpone_NOT_IMPORTANT() −→ Rule LW.1

else {Become ACTIVE}
The job is served with the current budget and deadline −→ Rule AN.2

end if
end if

end When
When a job Jj arrives in t and the SIDS is either ACTIVE or in WAIT_SHORT do

Enqueue it
end When
When a job Jj arrives in t = ak and the SIDS is in WAIT_LONG do

Enqueue it
if Jj ∈ IMPORTANT then {Go to SHORT_WAIT}

rs ← min{ak + Ps, rs} −→ Rule SL
end if

end When
When a job Jj served by SIDS Ss executes for 1 unit of time do

cs ← cs − 1 −→ Rule DB
end When
When SIDS Ss is executing Jj and cs = 0 do

if Jj ∈ IMPORTANT then {Go to SHORT_WAIT}
postpone_IMPORTANT() −→ Rule SW.2

else {Go to LONG_WAIT}
postpone_NOT_IMPORTANT() −→ Rule LW.2

end if
end When
When (there are IMPORTANT pending jobs) and (t ≥ rs) do {Become ACTIVE}

ak ← t −→ Rule AI.3
update_SIDS_IMPORTANT()

end When
When (there are NOT IMPORTANT pending jobs) and (t ≥ rs) do {Become ACTIVE}

ak ← t −→ Rule AN.3
update_SIDS_NOT_IMPORTANT()

end When
When a job Jj finishes do

Classify the task from its produced result
if (There is at least one pending job) and (there is enough budget) then {Remain ACTIVE}

Depending on the kind of pending jobs −→ Rule AI.2 or Rule AN.2
else {Go IDLE}

−→ Rule IIN
end if

end When

De�nition 3.1 (Maximum demand bound function). The maximum demand bound function of a SIDS
with only IMPORTANT tasks is given by:

DsMAX (t1, t2) = (
⌊

t2
Ps

⌋
−

⌊
t1
Ps

⌋
)Qs (3.2)

Based on the distinction done by the algorithm between IMPORTANT and NOT IMPORTANT tasks,
analogously to the previous de�nition, the following is obtained.

De�nition 3.2 (Minimum demand bound function). The minimum demand bound function of a SIDS with
only NOT IMPORTANT tasks is given by:

DsMIN
(t1, t2) =

⌊
t2 − t1
αsPs

⌋
Qs (3.3)

Theorem 3.1 (Isolation Theorem). A SIDS with parameters (Qs, Ps, αs) uses a bandwidth Us of, at least,
Qs

αsPs
and, at most, Qs

Ps

6



Proof. For space limitations the proof is not included here. However, it can be found in [7].

Theorem 3.2 (Schedulability Property). Given a set of tasks with total utilization factor UT and a set of
SIDS servers with total utilization factor USIDS (considering only the upper bound limit), then the whole set
is schedulable by Earliest Deadline First (EDF) if and only if

UT + USIDS ≤ 1

Proof. The proof is based on the isolation theorem and for space limitations is not included here. It can be
found in [7].

Theorem 3.3 (Hard Schedulability Property). Given a hard important real-time task τi with parameters
Ci, di and Ti, then it is schedulable by a SIDS with parameters Qs and Ps, such that Ci ≤ Qs and Ti = Ps,
if and only if it is schedulable by EDF.

Proof. Since task τi is hard, the di�erence between its job's activations is given by its period (or minimum
interarrival time), which is equal to the period of the SIDS. In particular, ak+1−ak ≥ Ps considering jitter or
the case that the task is aperiodic. As a consequence of this and because τi ∈ IMPORTANT , the deadline
generated by the SIDS algorithm is dk = ak + Ps; which is, in fact, the same deadline of the task (according
to [11]). Besides, the restriction of Ci ≤ Qs gives the server enough budget to complete the execution of
every job without postponing its deadline. Moreover, the SIDS will never go to a wait state because each
time a job arrives is served by rule AI.1. This can be easily proved arguing that Ps ≥ Qs and considering
dk = ak + Ps.

Property 3.1 (Compatibility Property). In the absence of NOT IMPORTANT tasks the algorithm behaves
like IRIS-HR.

Proof. If there are only IMPORTANT tasks, the rules that can actually be applied are: AI.1 SW.1, AI.2,
DB, SW.2, AI.3 (related to important jobs) and IIN, which correspond directly to 1.i, 1.ii, 1.iii, 2, 3, 4 and
5 from the IRIS-HR presented in [13].

Property 3.2 (Maximum Deadline Value). The highest value that can be assigned to a SIDS deadline is
given by:

dMAX = ds−1 + 2αsPs

Proof. This property follows directly from the application of rules related to NOT IMPORTANT tasks and
without any interruption due to IMPORTANT ones. Particularly, there are two possible combinations of
rules:

1. Rules: AN.1, LW.2 and AN.3.

2. Rules: LW.1 and AN.3.

In both cases, there is a long wait involved, which takes up to αsPs units of time from the deadline; and
then a deadline postponement of the same amount. Hence, the new deadline is 2αsPs units of time from the
previous one.

4 Case Study: an Industrial Boiler
In this section, the application environment of the method proposed is strengthened by a detailed real-world
example of an implementation over a sensor network. Apart from this �eld of application, the method can
be used in every system that �ts the characteristics of the one proposed here. The aim of this section is to
show how the determination of the di�erent parameters of the SIDS based on a real application is made and
to point out speci�c situations of its functioning.

The system to be analyzed is basically composed of an industrial boiler, which vaporizes water for
certain particular processes of a plant. This transformation requires the water to circulate through a heater
exchanger heated by a gas burner. There are some important issues related to the good functioning of the
boiler which strictly operative. On the other side, there are a several constraints related to the safety of the
plant, whose control is in charged of an electronic security system that governs the operation of the boiler.
This system can not be manipulated once it is installed and generally responds to international standards.

7



On top of that system, the boiler is monitored by two sensor networks supplied by exhaustible power
sources (batteries). One of them called Risk Control Sensor Network (RCSN), oriented to risk control and
the other called Performance Boiler Sensor Network (PBSN), reporting data useful to the management
system.

The RCSN checks for con�icts in strategic points that could have a signi�cant impact on the security
of the plant. The detection of an incident in any of those points determines (by a cause-e�ect matrix) the
necessary actions to overcome such situation.

In an industry, a PBSN focuses on the incorporation of process data to the management system. In this
sense, �eld information translates into pro�ts taking (i.e. better performance, lower consumptions, higher
production) when having account of such data.

(a) Risk Control Sensor Network. (b) Performance Boiler Sensor Network.

Figure 2: P&IDs of the boiler with the two sensor networks.

In Figure 2(a) and Figure 2(b), the sensor networks installed (RCSN and PBSN) are put together in a
P&ID. Each instrument/equipment has a unique alphanumeric code to distinguish it from others. This code
(TAG) conforms to the ANSI/ISA S5.1 [1] standard.

Both networks (RCSN and PBSN) send their respective information to a central node which acts as
a coordinator of the communications and stores the information received from the nodes. In this sense,
it is worth pointing out some particular situations of the functioning of the system. The situations to be
described as follows di�er in a mode of operation, in that are not pre-established. They are just a common
combination of important/not important tasks that determine a particular state of the system.

Start-Up: It involves a transient particular state of the system. This state is very di�erent from the normal
behaviour and the future stability or not of the boiler depends strongly in the tracking done in this
stage.

Normal Operation: This is referred to the normal operation of the system. All magnitudes are stable and
there are not any con�icts.

Financial audit: In unpredictable dates, a detailed monitoring of certain data from the PBSN can be
required to build a speci�c data base for the audit. In those cases, the sensors of that network will be
prioritized over the ones of the other network.

Plant shutdown: When, due to enlargement or maintenance reasons, the boiler is shut down there will be
no need of collecting data from any of the sensor networks.

In other words, the previously described situations are just speci�c states that, according to the results
produced by the nodes, can be categorized in that way. For example, during a �nancial audit the only
important tasks are the ones associated to sensors FIT28, IIT28, PIT28 and TIT28. In this manner, a usual
classi�cation of the tasks within the system is shown in Table 2 along with a temporal characterization of
each one of them, these parameters (Ci and Ti) are expressed in tenth of seconds.

8



TAG Start Up Normal Op. Audit Shut down Ci Ti

US28 I I NI NI 1 5
FS28 NI NI NI NI 3 20
TAHH NI I NI I 1 5
PAHH NI I NI I 1 5
AIT28 NI I NI NI 2 5
ES28 I I NI NI 1 10
PS28 I I NI NI 1 15
LS28 NI NI NI NI 1 15
FIT28 I NI I NI 5 10
IIT28 I NI I NI 3 10
PIT28 NI NI I NI 3 10
TIT28 NI NI I NI 3 10

Table 2: Classi�cation of tasks corresponding to di�erent states of the system.

In the application previously explained, there will always be a prioritizing of task from one network over
the other one, independently of the instance in which the process is. In this way, each task can be classi�ed
in IMPORTANT or NOT according to the function it develops. For this reason and having account of the
temporal constraints involved in the whole system, this application can be considered a typical case to be
analyzed by the SIDS.

It is assumed to have only one SIDS, whose budget Qs and period Ps are speci�ed in such a way that they
guarantee the execution of all important tasks (in the worst case) plus one not important one. In particular,
Qs is set to serve four tasks (audit operation) plus the execution of one not important. So, from Table 2

Qs = 14 (from important tasks) + 3 (from the worst case of not important tasks) = 17

In the same manner, the period of the SIDS is given by: Ps = 60. Obtaining a total utilization factor of:
Us = 0.28. On the other side, the postponement factor αs is set to 3.

SIDS functioning will be analyzed in two particular situations:

1. The system is operating in a Financial Audit instance, when US28 and ES28 change their state, this
is, both make a transition to 1 (active). As a consequence, two eventual requests for service are
produced. The Server evaluates them as NOT IMPORTANT. The state of the SIDS queues is as
follows: IMPORTANT: FIT28, IIT28, PIT28 and TIT28; NOT_IMPORTANT: US28 and ES28. Two
di�erent situations will be considered:

(a) Qs = 17 when the last job of IIT28 is executed:
The server will attend the request consecutively (in the same ordered they appear in the queues).
First, will stay in the ACTIVE state to serve requests from PIT28 and TIT28. Then, it will
remain in ACTIVE state (by rule AN.2 ) servicing the NOT IMPORTANT jobs. It is assumed
than there will not be any additional request from IMPORTANT tasks. The process is over when
all the tasks were served. As can be easily seen the available budget is enough to serve all the
tasks: CPIT28 = 3, CTIT28 = 3, CUS28 = 1, CES28 = 1.

(b) Qs = 0 when the last job of FIT28 is completed its execution:
When this action is �nished, Qs = 0 and there are pending jobs. The server was in ACTIVE state
prior to the exhaustion of its budget, hence rule SW.2 is applied and goes to the SHORT_WAIT
state. The SIDS is tied to a waiting of only one period (Ps) to get its budget recharged (Qs =
17). In this instance, rule AI.3 is applied and the server goes to ACTIVE state serving all the
request like in the case previously shown. In particular, ES28 will be delayed for an amount of
Ps + CIIT28 + CPIT28 + CTIT28 + CUS28 = 70 tenth of second.

2. The boiler is operating in a normal operation instance. The server is in LONG_WAIT, Qs = 0 and
there are NOT IMPORTANT pending jobs (FIT28 and TIT28). These jobs would be postponed, in
this case, for 180 seconds. If at second 100, TAHH appears (already quali�ed as IMPORTANT in its
previous instantiation), rule SL will be applied. Hence, the SIDS evolves to the SHORT_WAIT state,
where it waits for a budget replenishment. When the waiting �nishes: Qs = 17, the AI.3 rule is applied

9



and the server goes to ACTIVE state. Then, the execution of TAHH is completed and SIDS continues
executing the rest of pending jobs.

The previously analyzed cases pretend only to show the mechanism implemented by the SIDS algorithm.
The particular situations shown were presented to evaluate the behaviour of the algorithm. Apart from that,
there exist many conclusions regarding the real application associated that can be stated. One of them can
be the postponement time to serve US28 in situation 1.(a), in this case, that time is would be negligible to
the real-world example proposed. However, the objective of this section was to reduce the gap between the
formal presentation of the algorithm and its possible implementation in a real system.

5 Performance Evaluations
In this section, the SIDS will be contrasted with the IRIS-HR when dealing with tasks that change their
importance during runtime. The decision of choosing IRIS-HR was done because it resembles better than the
mode change protocols, the dynamic aspect of the system. The objective of the comparison is to reinforce
the contributions made by the method proposed. In speci�c terms, two di�erent situations will be shown: in
the �rst one, the property of extending the semantic aspect of a task makes the server giving more priority
to the relevant tasks than to the irrelevant ones. The second situation shows how the sever bandwidth is
adapted to the requirements of the system. In this sense, the used bandwidth is dynamically adjusted close
to the requirements of the IMPORTANT tasks, without jeopardizing the execution of the minimal NOT
IMPORTANT tasks. Hence, the QoS of the all system is kept untouched.

5.1 Simulation Setting Up
In the case of the �rst experiment, sets of three tasks were randomly generated following an uniform distri-
bution of the worst case execution time and deadline. The task sets were deliberately generated to cover a
range of utilization factors from 0.1 to 1, whose importance was randomly chosen. This is, the system could
have in an instance the 3 tasks as IMPORTANT and in the next one all NOT IMPORTANT. The SIDS'
parameters were set up to Qs

Ps
= 0.5 and αs = 2, as a consequence 0.25 ≤ Us ≤ 0.5. In the same manner,

the IRIS-HR was adjusted to a middle point of the bandwidth of the SIDS. Hence, IRIS-HR parameters
were �xed to obtain a utilization factor of UIRIS = 0.375. An average of 3000 jobs of the each task set were
generated.

In the second experiment, the set of tasks was extended to �ve, establishing that there will always be
3 IMPORTANT and 2 NOT IMPORTANT. The worst case execution time and deadline of each task were
generated like in the previous experiment, as well as the range of utilization factors. The load of each range
was evenly split up between the two subsets. The SIDS' parameters, in this case, were set up to Qs

Ps
= 1 and

αs = 2, as a consequence 0.5 ≤ Us ≤ 1. In order to simulate the semantic distinction of tasks with the IRIS-
HR approach, two servers were implemented, one for IMPORTANT tasks and one for NOT IMPORTANT
ones. In this case, both servers were set up to Qs

Ps
= 0.5.

5.2 Comparative Analysis
5.2.1 First Experiment
The objective of this experiment is to emphasize the semantic aspect of a task when the SIDS gives a higher
priority to IMPORTANT tasks and lower to NOT IMPORTANT. This �rst experiment has account of the
deadline missed by each of the methods. Results are shown in Figure 3.

In Figure 3(a) can be seen that the execution of SIDS has a lower lost of deadline in the complete
range of utilization factors. Particularly, the di�erence with IRIS-HR is increased when the system load is
below its bandwidth. In this sense, the decision of considering the relevant tasks with the highest priority,
makes that SIDS execute them correctly in a greater percentage than IRIS-HR. Concerning with NOT
IMPORTANT tasks, SIDS misses more deadlines than IRIS-HR (see Figure 3(b)). However, this is not
directly proportional to the case of IMPORTANT tasks because the SIDS bandwidth is regulated according
to the amount of tasks it has. This is, the lost of deadlines from NOT IMPORTANT task is related to the
correct service of IMPORTANT ones.

10



(a) Deadline missed from IMPORTANT tasks. (b) Deadline missed from NOT IMPORTANT tasks.

Figure 3: Using the semantic aspect of tasks at scheduling time.

Figure 4: SIDS and IRIS-HR bandwidth consumption at di�erent system loads.

5.2.2 Second Experiment
The aim of this experiment is to show the bandwidth used by the servers when the load of the system
is increased. The results are depicted in Figure 4 and there can be seen how the SIDS does not use
its whole available bandwidth. This is because the semantic distinction of tasks makes its bandwidth to
regulated in runtime. While IRIS-HR uses all the bandwidth it has, even when the tasks associated are
NOT IMPORTANT.

6 Conclusions and Future Works
In this paper, a method for classifying tasks according to their semantic aspect and a scheduling algorithm
based on that classi�cation was proposed. The Semantic Importance Dual-Priority Server was intended
for overcoming a common situation of many systems that work in real-time. The fact of having tasks that
change their importance within the system based on their results produced was proved that can be used at
scheduling time. The proposed algorithm was formally demonstrated and proved. Moreover, an extensively
explained case study was presented. There, SIDS was put on approval when facing the design of a real
system. On the other hand, a series of simulation results were exposed. The analysis was comparative
with respect to IRIS-HR and re�ected how the distinction of tasks is done more accurately by SIDS than
by the other method. In the same way, the bandwidth used by SIDS was lower than the bandwidth used
by IRIS-HR with the same set of tasks. This is, the SIDS served the IMPORTANT tasks and some NOT
IMPORTANT ones. While IRIS-HR tried to serve everyone.

The future works are closely related to this last topic and involves using the bandwidth left aside to
save energy or provide a fault tolerant mechanism. Furthermore, �nding a mathematically proved optimal
postponement factor would leave a greater bandwidth free to be used for other purposes.

Acknowledgement. The authors wish to thank Dr. Rodrigo Santos for his contributions to this paper.

11



References
[1] Isa - the instrumentation, systems, and automation society. http://www.isa.org, April 2007.

[2] Abeni, L., and Buttazzo, G. Integrating multimedia applications in hard real-time systems. In
Proceedings of the 19th IEEE RTSS (Madrid, Spain, 1998), IEEE Computer Society.

[3] Abeni, L., and Buttazzo, G. Hierarchical qos management for time sensitive applications. In
Proceedings of the IEEE RTAS (Taipei, Taiwan, 2001), IEEE Computer Society.

[4] Aldea, M., Bernat, G., Broster, I., Burns, A., Dobrin, R., Drake, J., Fohler, G., Gai, P.,
Harbour, M., Guidi, G., Gutierrez, J., Lennvall, T., Lipari, G., Martinez, J., Medina, J.,
Palencia, J., and Trimarchi, M. Fsf: A real-time scheduling architecture framework. In Proceedings
of the 12th IEEE RTAS (San Jose, California, 2006), IEEE Computer Society.

[5] Caccamo, M., and Zhang, L. Y. The capacity of implicit edf in wireless sensor networks. In
Proceedings of the 15th ECRTS (Porto, Portugal, 2003), IEEE Computer Society.

[6] Davis, R., and Wellings, A. J. Dual priority scheduling. In In Proceedings of the 16th IEEE RTSS
(Pisa, Italy, 1995), IEEE Computer Society.

[7] Donari, D., Duval, M., Ordinez, L., and Sánchez, D. Semantic importance dual-priority server:
Properties. Tech. rep., Dpto. de Ing. Eléctrica y Computadoras - Universidad Nacional del Sur, 2007.
http://www.ingelec.uns.edu.ar/rts/publications.htm.

[8] He, T., Stankovic, J. A., Lu, C., and Abdelzaher, T. Speed: A stateless protocol for real-
time communication in sensor networks. In Proceedings of the International Conference on Distributed
Computing Systems (Providence, Rhode Island, USA, 2003), IEEE Computer Society.

[9] Kopetz, H. Time triggered architecture. ERCIM News, 52 (2003), 24�25. Online Edition, visited
4/2007.

[10] Kosugi, N., Mitsuzawa, A., and Tokoro, M. Importance-based scheduling for predictable real-
time systems using mart. In Proceedings of the 4th International Workshop on Parallel and Distributed
Real-Time Systems (Washington, DC, USA, April 1996), IEEE Computer Society, pp. 95�100.

[11] Liu, C. L., and Layland, J. W. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM 20, 1 (1973), 46�61.

[12] Lu, C., Blum, B. M., Abdelzaher, T. F., Stankovic, J. A., and He, T. Rap: A real-time
communication architecture for large-scale wireless sensor networks. In Proceedings of the 8th IEEE
RTAS (Washington, DC, USA, 2002), IEEE Computer Society.

[13] Marzario, L., Lipari, G., Balbastre, P., and Crespo, A. Iris: A new reclaiming algorithm for
server-based real-time systems. In Proceedings of the 10th IEEE RTAS (Toronto, Canada, 2004), IEEE
Computer Society.

[14] Real, J., and Crespo, A. Mode change protocols for real-time systems: A survey and a new proposal.
Real-Time Systems 26, 2 (2004), 161�197.

[15] Sánchez, D. G., Cayssials, R., Orozco, J. D., and Urriza, J. M. Técnicas de diagramación de
tiempo-real en redes de sensores. In Proceedings of the 32a CLEI (Santiago de Chile, Chile, 2006).

12


