
Checking OCL Expressions Using Colored Petri Nets

Marta E. Calderón
Universidad de Costa Rica, Escuela de Ciencias de la Computación e Informática

San Pedro, Costa Rica
mcaldero@ecci.ucr.ac.cr

Abstract

This paper describes an approach to checking OCL expressions of a UML-based system model using CPN state space
tools. The OCL is the part of the UML standard used to specify invariant conditions that must always hold for a system
model. An approach to transforming a UML-based system model into a CPN model is taken as basis. Some CPN state
space functions traverse all nodes of a state space and can be used to demonstrate that a condition holds. In particular,
when a UML-based system model is transformed into a CPN model, CPN traversing functions can be used to
demonstrate that an OCL expression holds. OCL expressions are transformed into CPN state space functions. These
functions list all nodes in which the OCL expression does not hold. Using this information, software engineers can
verify the UML-based system model and detect the presence of defects causing the OCL expression violation. Function
results depend on the CPN model initial marking. Two OCL expression examples are presented to show how
transformation and checking are done.

Keywords: Software Engineering, OCL, UML, Colored Petri Nets

1. INTRODUCTION
The Unified Modeling Language (UML) is a visual modeling language that can be used to capture functional
requirements and decisions to be taken in software systems that need to be constructed [3]. UML has become an
industry wide standardized notation for object–oriented development [3, 8]. Many systems models have been specified
using UML notation. The Object Constraint Language (OCL) is the part of the UML standard used to specify invariant
conditions through expressions. Invariant conditions must always hold for a system model [13]. OCL is a language
used to provide more detail of UML specifications using an unambiguous language.
A UML-based system model is not an executable specification. However, several approaches have been suggested in
terms of transformation of an UML-based system model to its corresponding Colored Petri Nets (CPN) model for
analyzing dynamic properties of a UML-based system model. In [4], a transformation which uses the UML use case
and sequence models to generate a hierarchical CPN is described. In [1, 9], statecharts and the collaboration model are
used to generate a CPN model. These transformation approaches do not consider the relationships among use cases.
The relationship between use cases is fundamental to provide a basis for the execution sequence for a large-scale UML
model when it is mapped into a hierarchical CPN.
In [10, 11], the description of a transformation approach using the use case diagram, the collaboration model and the
class model is presented. In [2, 12], a prototype tool supporting automation of this transformation approach is
described. Tool support allows software engineers to apply model transformation to large-scale distributed systems and
check dynamic behavior properties such as deadlock using the state space tools provided by a CPN tool [5, 6].
Transforming an UML-based system model into a CPN model also opens the possibility of checking whether an OCL
expression associated with the UML-base system model holds. In this paper, an approach to checking OCL expressions
using CPN state space tools is described. This study is limited to OCL expressions which express invariants and,
therefore, return a Boolean value. The transformation approach from a UML-based system model to a CPN model
described in [11] is taken as basis for this study, because objects instantiated from UML classes with attributes are
transformed into CPN places. The CPN Tools developed at the University of Aarhus are used to show results.
This paper is organized as follows. Section 2 describes the transformation approach from an UML-based system model
to a CPN model described in [11]. Section 3 describes a transformation approach for checking OCL expressions using
CPN state space tools. Section 4 describes two examples of OCL expression checking. Finally, Section 5 concludes this
paper.

 2

2. TRANSFORMATION OF A UML MODEL
Details of the process of transforming a UML–based system model consisting of the use case model, the class model
and the collaboration model into a hierarchical CPN model are taken from [11]. The hierarchical structure of the CPN
model is useful for reducing the complexity of a plain CPN model for large–scale systems. However, the UML-based
system model does not have a hierarchical structure. The use case model shows the relationships between use cases
using use case dependencies through “include” and “extend,” but these relationships are planar rather than hierarchical.
Therefore, it is necessary to transform a UML-based system model into a hierarchical model. To achieve this, two
relationships are defined:

Relationship 1: Each use case in the use case model is realized by the collaboration model.
Relationship 2: An object in the collaboration model is instantiated from a class in the class model.

To address scalability, a large scale UML based system model is transformed into a hierarchical CPN model organized
in three layers: a use case layer, an object layer, and an operation layer. Figure 1 shows an overview of the hierarchical
structure of a CPN model derived from a UML model. The use case layer ((b) in Figure 1) is the highest level of the
CPN model and is derived from the use case model. A use case is transformed into a transition, for example, the
UseCase1 transition in Figure 1. A transition is created for each actor participating in the UML model, for example, the
transition Actor in Figure 1.
Message communication occurring between an actor transition and a use case transition is derived from the
collaboration model that describes message communication between the actor and objects (P1 in Figure 1). Messages
occurring between two use case transitions (P2 in Figure 1) are defined by relationships between use cases.

Actor

UseCase1

UseCase2

Input

Output

Object1

Object3Object2

P1

P2

P3 P4

P5

Use Case Layer

Object Layer

Operation Layer

b) CPN Modela) UML Model

Use Case Model

Use Case2

Use Case1

Object1

Object3Object2

M3

M4

M2

Collaboration
Model

Class
Model

M1

OperationA

OperationB

Class

attribute: Type

OperationA

OperationB

Figure 1. Overview of CPN Model Mapped from UML–based System Model (taken from [11], p. 41)

According to relationship 1 above, a use case in the use case model is realized by a collaboration diagram in the
collaboration model. The collaboration diagram is supported by objects. Therefore, a transition of the use case layer in
the CPN model (e.g., UseCase2 in (b) of Figure 1) is decomposed into a set of object transitions on the object layer

 3

(e.g., Object1, Object2, and Object3 in (b) of Figure 1). Similarly, as actors both provide input to and receive output
from the system, an actor transition in the use case layer (e.g., Actor in (b) of Figure 1) is decomposed into input and/or
output transitions in the object layer (e.g., Input and Output transitions in (b) of Figure 1).
If an object in a collaboration model is an instance of a class with attributes defined in the UML class model, then the
object is decomposed into both a transition and a place in the object layer. The attributes of the object will be stored in
the place. Additionally, if the object with attributes participates in several collaboration diagrams, it is important to
maintain consistent information in the CPN model. Therefore, a place to represent the attributes should also be present
in the use case layer, so that all the use cases supported by the same object refer to the same place and have access to
the same information values.
In the operation layer of the CPN model, an object transition on the object layer (e.g, Object3 in Figure 1) is
decomposed into operation transitions (e.g., operationA and operationB). This can be done due to two facts. First, an
object in the collaboration model is instantiated from a class in the class model, as stated above in relationship 2.
Second, an object provides operations to other objects.
Colorsets in the CPN model are derived from the UML class model. A colorset is created for each message class and its
attributes. The message classes are captured from message communication occurring between objects in the UML
collaboration model. Each message class is a type of message that is transformed into a colorset. Colorsets are also
created for classes that have attributes defined in the UML class model. Variables are declared for all colorsets. All the
colorsets and their variables are specified in the declaration area of the CPN model.
This approach to model transformation from a UML-based model to a CPN model addresses the scalability of model
transformation. A large scale UML-based system model is usually a very complex, flat structure. The transformation
into a hierarchical CPN model reduces the complexity of plain UML-based system models in the case of a large-scale
system. Additionally, the dynamic behavior of the transformed UML-based system model can be validated using
analysis tools provided by CPN tools such as the CPN Tools[5]. The individual scenarios of each use case can be
checked using CPN Tools simulation options, and dynamic behavior properties can be checked using the space state
(also called occurrence graph) and strongly connected component graphs generated by CPN Tools [5].

3. OCL EXPRESSION CHECKING
OCL expressions can be associated with a classifier such as a class in a class diagram [7]. The classifier becomes the
context within which the invariant must hold. If a class with attributes is the context of an OCL expression, the
expression may refer to constraints about the attribute values of an object instantiated from the class. This is the kind of
OCL invariants analyzed in this study.
According to the transformation model described on Section 2, if an object in a collaboration model is instantiated from
a class with attributes defined in the UML class model, then the object is decomposed into both a transition and a place
in the object layer. If the object supports more than one use case, a place representing its data is created in the use case
layer in order to keep data consistency [11]. This information is very important in order to establish an approach for
checking OCL expressions using CPN, because it makes possible to relate the context of an OCL expression to a place
in a CPN model.
The state space tool provided by CPN Tools allows a user to define non-standard queries to investigate properties of a
CPN [5]. Some functions provided by the state space tool, such as PredAllNodes, traverses the nodes of the state space
generated. This powerful feature is useful to prove that constraints always hold in a system model. State space queries
can reference contents of one or more places and are independent of the rest of the CPN model. In particular, checking
that an OCL expression holds is done transforming it into a CPN function or set of functions referencing the place
created to represent the object (and its data) derived from the context class of the OCL expression. CPN function
arguments are specific to a place, depending on the colorset assigned to it. Therefore, if the same constraint needs to be
checked for two different places, it is necessary to change query arguments, but the function logic is reusable.
Understanding the CPN state space instruction PredAllNodes is fundamental for the transformation of an OCL
expression to a non-standard CPN query. PredAllNodes lists all state space nodes satisfying a specified Boolean
predicate function [5]. The predicate function is evaluated for each node in the state space. In order to know in which
state space nodes the OCL expression does not hold, the checking approach followed is the comparison of the results of
two functions (see Figure 2). The first function returns a multiset (a set allowing repeated elements) representing the
ideal situation in which the OCL expression holds for every state space node. The second function returns a multiset
reflecting what actually happens, detecting state space nodes in which the OCL expression does not hold. The second
function logic depends on the OCL expression. Both multisets have the same number of elements, which is guaranteed
using the same input argument for both functions. The input argument depends on the OCL expression.
For each state space node, the two multisets are compared, resulting in a Boolean value returned. If the two multisets
differ from each other, the OCL expression does not hold (see Figure 2). After analyzing all state space nodes,
PredAllNodes displays the list of nodes in which the OCL expression does not hold. Using this information, a software

 4

engineer can verify the UML-based system model and detect the presence of defects causing the OCL expression
violation. Checking results depend on the CPN model initial marking.

Figure 2. Comparison Approach to Checking OCL Expressions

The construction of the function detecting whether the OCL expression holds is a programming exercise depending on
the OCL expression itself and the place name and colorset. OCL expressions may define maximum or minimum values
allowed, relationships between values of two or more attributes, uniqueness constraints, or existence of at least one
attribute value, among others. It is not possible to generalize a function or set of functions useful for all types of OCL
expressions, but it is possible to generalize them for one type of expression. Section 4 describes two examples in which
an OCL expression is transformed to a set of CPN functions and checked to show whether the OCL expression holds or
not.

4. EXAMPLES
The OCL expression checking approach is described using two examples. The first one shows how to check a
minimum value constraint and the second one a uniqueness constraint.

4.1 Minimum Value Constraints
Suppose that in the class model of a UML-based system there is a class called Company with two attributes: name, and
numberOfEmployees. An OCL expression indicating that the number of employees in every object instantiated from
class Company must always be greater than 50 is as follows:

context company inv:
 self.numberOfEmployees > 50

When the UML-based system model is transformed into a CPN model, a place called company is created in the object
layer to store attribute data of an object company instantiated from class Company. In this case, there is a colorset
called company assigned to the place called company. This is a compound colorset consisting of the product of two
simple colorsets: companyName and numberOfEmployees. CPN colorset and variable declarations are shown in Figure
3. Colorsets and variables are created when the UML-based system model is transformed into the CPN model.
Additional variables may be required when creating CPN code required to check an OCL expression.

Figure 3. CPN Declarations for Constraint Checking

Once colorsets are known, a set of CPN state space functions for checking that an OCL expression holds is constructed.
The CPN state space function PredAllNodes is used. The predicate function is built to extract the nodes in which the
number of employees for at least one company is less than 51 (see Figure 4). The predicate function consists of
comparing the results of two functions: returnsFalse' and numberOfEmployeesLess51'. Both functions are called

 5

extended functions because they take advantage of the possibility of extending a function to each element in a multiset
[5]. This is achieved using the predeclared function ext_col, as shown in Figure 4. The two functions in the predicate
function are designed to return multisets with the same number of elements. returnsFalse' represents the situation in
which the OCL expression holds, inserting a false value for each company in place company.
numberOfEmployeesLess51' represents the actual situation, adding a true value to the multiset when a company has less
than 51 employees and a false value when it has more. If at least one company has less than 51 employees, the two
resulting multisets are different for the node being evaluated and the PredAllNodes function displays the node number.

Figure 4. OCL Mininum Value Constraint Transformation to CPN Code

Figure 5 shows a partial CPN model in which the OCL expression does not hold. This state was reached after
simulating the CPN model. The CPN code shown in Figure 4 can be executed in CPN Tools after entering the state
space tool, calculating the state space, and calculating the strongly connected component graph. Results of executing
function PredAllNodes using the same CPN initial marking used when the CPN was simulated are displayed in Figure
6. The last line contains the list of state space node numbers in which the OCL expression does not hold. In this
example, state space nodes 2 and 4 violate the OCL expression. Node details (marking of all places in the CPN model)
can be displayed using function NodeDescriptor [5].

Figure 5. Partial CPN Model Showing OCL Expression Violation

Figure 6. Results of Executing the OCL Expression Checking Function

 6

4.2 Uniqueness Constraints
More complex constraints such as uniqueness can also be checked. For example, class Person has attributes
socialSecurityNumber, firstName, and lastName. Attribute socialSecurityNumber must be unique for each person. This
constraint is expressed using the following OCL expression:

context Person inv:

Self.allInstances->forAll(p1, p2 | p1<>p2 implies
p1.socialSecurityNumber <> p2.socialSecurityNumber)

Figure 7 shows CPN colorset and variable declarations and Figure 8 shows a partial CPN model showing constraint
violation. Using the same approach of multiset comparison used in Section 4.1, function PredAllNodes detects all state
space nodes in which the OCL expression is violated. The code is more complex than in the first example because
probing this uniqueness constraint requires creating two nested loops in which the social security number of a person
(outer loop) is compared with the social security number of all the other persons in place person (inner loop) for each
state space node (see Figure 9). Extended function equality' is the responsible for determining the state space nodes in
which the OCL constraint does not hold.

Figure 7. CPN Declarations for Uniqueness Constraint Checking

Figure 8. Partial CPN Model Showing Uniqueness Constraint Violation

 7

Figure 9. OCL Uniqueness Constraint Transformation to CPN Code

4.3 Comparison of Examples
Extended function returnFalse' shown in Figure 4 and extended function returnFalse' shown in Figure 9 have the same
purpose – representing the ideal situation in which the OCL expression holds –, but arguments are different due to the
OCL expression type. In both examples, returnFalse' argument is the same as the argument of the other function in the
Boolean predicate function (numberOfEmployessLess51' in Figure 4 and equality' in Figure 9). This is done to
guarantee that the two multisets have the same number of elements.
The two examples show that CPN code is dependent on the OCL expression type and the place name and colorset.
Checking a similar OCL constraint for another place requires changing place names and function arguments but the
logic is reusable. This opens the possibility of transformation automation because it is possible to define a set of
functions to be executed for checking each OCL expression type.

5. CONCLUSIONS
This paper has described an approach to check OCL expressions of a UML-based system model using CPN state space
tools. The CPN model used for checking is the result of the transformation of a UML-based system model represented
by the use case model, the collaboration model, and the class model. The approach takes advantage of the fact that an
object instantiating from a class having attributes is transformed into both a transition and a place. OCL expressions
having such a class as context are checked using CPN state space functions. The CPN function PredAllNodes is used to
determine the set of state space nodes in which the OCL expression does not hold. The Boolean predicate function
executed by PredAllNodes compares the ideal situation in which the OCL expression holds with the actual situation.
Two examples of OCL expression checking have been shown. The transformation approach from an OCL expression
to a set of CPN functions described on this paper is manual. Transformation may be automated by using place colorset
and OCL expression type information.

References

[1] Baresi, L. and Pezzè, M. “On Formalizing UML with High—Level Petri Nets.” In Concurrent Object–Oriented
Programming and Petri Nets: Advances in Petri Nets. LNCS 2001, Gul A. Agha, Fiorella De Cindio, and
Grzegorz Rozenberg eds, Berlin, Germany, 2001, pp. 276-304.

[2] Calderón, M.E. and Shin, M.E. “Tool Support for Model Transformation to Analyze Dynamic Behavior of Large-
Scale Systems.” In Proceedings of the 2005 Design, Analysis, and Simulation of Distributed Systems Symposium
DADS’05 (San Diego, California, April 3-7), pp 107-114.

 8

[3] Booch, G., Rumbaugh, J.; and Jacobson, I. The Unified Modeling Language User Guide. Reading, Massachusetts:
Addison Wesley, 1999.

[4] Elkoutbi, M. and Keller, R.K.. “User Interface Prototyping Based on UML Scenarios and High-level Petri Nets.”
In Proceedings of the 21st International Conference on Application and Theory of Petri Nets (Aarhus, Denmark,
June 26-30) Springer-Verlag, Germany, 2000, pp 166-186.

[5] Jensen, K., Christensen, S. and Kristensen , L.M. CPN Tools State Space Manual. Aarhus, Denmark: University
of Aarhus, 2002.

[6] Kristensen, L.M., Christensen, S., and Jensen, K. “The Practioner’s Guide To Coloured Petri Nets.” In
International Journal on Software Tools for Technology Transfer. Vol 2, No. 2 (1998), pp 98-132.

[7] Object Management Group. UML 2.0 OCL Specification. June 2005, http://www.omg.org/docs/ptc/05-06-06.pdf.

[8] Rumbaugh, J., Booch, G., and Jacobson, I. The Unified Modeling Language Reference Manual, Reading,
Massachusetts: Addison Wesley, 1999.

[9] Saldhana, J., Shatz, S.M., and Hu, Z.. “Formalization of Object Behavior and Interactions from UML Models.” In
International Journal of Software Engineering and Knowledge Engineering (IJSEKE), Vol 11, No. 6, (December,
2001), pp 643-673.

[10] Shin, M.E., Levis, A., and Wagenhals, L. “Mapping of UML-based System Model to Design/CPN Model for
System Model Evaluation.” Presented at the Workshop on Compositional Verification of UML’03 (San Francisco,
CA, October 22), 2003.

[11] Shin, M.E., Levis, A., Wagenhals, L., and Kim, D. “Analyzing Dynamic Behavior of Large–Scale Systems
through Model Transformation.” In International Journal of Software Engineering and Knowledge Engineering.
Vol 15, No.1 (February, 2005), pp. 35-60.

[12] Shin, M.E and Calderón, M.E. “Meta-Modeling Approach to Tool Support for Model Transformation to Validate
Dynamic Behavior of Systems.” In Proceedings of the 2005 International Conference on Software Engineering
Research and Practice (SERP’05). (Las Vegas, Nevada, June 27-29), pp 316-322.

[13] Warner, J. and Kleppe, A. The Object Constraint Language: Precise Modelling with UML. Reading,
Massachusetts: Addison Wesley, 1999.

