
The RS Language for Distributed Automata

Giovani Rubert Librelotto, Marcos Luı́s Cassal, Rogério Turchetti, Guilherme Dhein
UNIFRA – Centro Universitário Franciscano

Rua dos Andradas, 1614, Santa Maria, RS – Brazil
{giovani,cassal,turchetti,gdhein}@unifra.br

and

Simão Sirineo Toscani
PUC-RS – Faculdade de Informática

Av. Ipiranga, 6681 Prédio 30, bloco C
Porto Alegre, RS – CEP: 90619-900

stoscani@inf.pucrs.br

Abstract

RS is a reactive synchronous programming language suited to the implementation of the control part of reactive sys-
tems. The RS source programs are compiled to finite automata, which are very fast at execution time. This paper
describes: (1) the distribution of the RS language, (2) the design of an MDX kernel that implements the communica-
tion facilities for the distributed automata, and (3) the implementation of the resulting distributed model using the C
language.

Keywords: Reactive systems, finite automata, reactive synchronous programming language, MDX, distributed au-
tomata.

1 Introduction

The RS language [7] is intended for the programming of reactive kernels, which are the central and most difficult part
of a reactive system. A reactive kernel takes care of all logic of a reactive system, handling input signals, performing
reactions and generating output signals [6]. In its original version, the RS language dealt only with centralized kernels,
since each program had been compiled to a single automaton [4].
This article describes the changes that allow the RS language to deal with distributed control. The model tries to be
general enough, without binding definitions to languages or environments. A communication environment based on
the MDX protocol [1] is also described. The environment offers the communication services for the RS distributed
automata. The new MDX environment, called MDX RS, offers a fast communication service to the automata.
The paper is organized as follows: section 2 gives a brief introduction of the RS language; section 3 defines the RS
distribution model; section 4 introduces the MDX system; section 5 describes MDX RS communication kernel; sec-
tion 6 describes the implementation of the distributed model, using the C language; section 7 presents the conclusions
of the work.

2 The RS Language

The RS language adopts the synchrony hypothesis, that is, it assumes that each reaction is performed in zero time.
Therefore, the output signals are synchronous with the input ones, and the time only goes by during the external
environment activity. This assumption simplifies the language semantics and allows the programs to be compiled to
finite automata.
The RS compiler translates the source programs to a set of tables that describe a state machine similar to the Mealy
machine [5]. As the object code is not an executable file, the system needs an interpreter for the automata execution.
In addition to the control kernel, a reactive application requires the implementation of an I/O interface, to receive the
input signals and to conduct the output signals, and a set of procedures, to handle the application data. As it occurs
with Esterel [2], Lustre [6], and other synchronous languages, RS is not a self-sufficient language; the I/O interface
and the data handling components should be provided by a host language or by the execution environment. An RS
source program is composed by a set of modules, each module is composed by a set of rule boxes and each rule box
is composed by a set of reaction rules. Despite having these 3 levels, every source program can be seen as composed
by only a single set of reaction rules. Each rule has the form C → action, where C is a set of signals, called the firing
condition, and action is a sequence of statements. A firing condition C is true when all of its signals are on.
The execution of an RS program is accomplished in a sequence of steps, where each step consists of the parallel
execution of all rules with firing condition true. The first action of a step is an implicit action that turns off all the
signals contained in the true conditions. As the execution of a rule can turn on signals, this originates a sequence of
steps that only finishes when the set of on signals is not enough to fire any reaction rule. In this situation, the program
waits until some external signal arrives to start a new reaction.

3 The distribution of the RS language

The distribution of control is currently used in many environments, such as plant floors, domestic automation, and
robotics. In these environments, a component reaction can depend on another component behavior. This section
defines a model that allows the translation of an RS program into a set of automata and, afterwards, the execution of
these automata on different machines.

3.1 Syntactic modifications

The RS distribution requires new declarations to allow: (a) to compile a program for a set of automata; (b) to place
these automata in different processors. The adopted approach allows to specify, in the same source code, the processes
to be distributed as well the machines in which they will run.

3.1.1 The machine declaration

The machine declaration introduces a new level in the syntactic hierarchy of the language. Beyond the three levels of
the original structure, i.e., modules, rule boxes, and reaction rules, the machine declaration adds a new level. By the
way, this level is the same as that of a program, i.e., the machine declaration may contain all the old structuring levels.
A distributed program begins with the declaration rsd prog and is composed by several machine declarations. Another
small syntactic change was the inclusion of the external interface definition, after the header rsd prog. The external
interface declaration allows the identification of the input and output external signals. This declaration is intended only
to make the program more clear, because the information it contains is redundant and could have been gotten directly

2

by the compiler. Now, each machine declaration originates a single independent automaton for a specific machine.
This new syntactic hierarchy of the RS language can be seen in next subsection.

3.1.2 An example of a distributed program

To illustrate the new syntax, a distributed RS program is now presented. Although there is no interest at the moment,
neither the program has any practical importance, what the program verifies if a mouse button was pressed with a
double or a single click. The program has two input signals: tick, that means a clock impulse, and click, that means the
pressing of the mouse button, and two output signals: single and double. The program is executed in two machines,
called sinope and pan.
rsd prog mouseD:
external interface:
[input : [click, tick], output : [single, double]].

machine sinope :
[input : [click, tick], output : [start, relax]
module timer:
[input : [click, tick], output : [start, relax], p signal : [a,b],
var : [delta], initially : [up(a)], tick#[a] ===> [up(a)],
click#[a] ===> [delta:=3, emit(start), up(b)],
tick#[b] ===> case [delta>0 > [delta:=delta-1, up(b)],

else > [emit(relax), up(a)]]]
].
machine pan:
[input : [click, start, relax], output : [single, double],
module emitter:
[input : [click, start, relax], output : [single, double], var : [count],
start ===> [count:=0], click ===> [count:=count+1],
relax ===> case [count=0 > [emit(single)],

else > [emit(double)]]
]

].

3.2 Distributed automata generation

In the following, a machine 1 declaration is called an UD (Unit of Distribution). The steps to compile each UD and
later to transfer the generated automaton to the corresponding machine is now summarized:

1. Put each UD in a proper file, keeping the identification of the machine and substituting ”rs prog name#n” for
”machine machineID”, where name is the name of the distributed program and #n is a counter value (the initial
value of the counter is zero and it is increased by 1 for each occurrence of machine).

2. Compile each UD (using the original RS compiler) and send the automaton to the corresponding machine.

In the previous example, the name of the distributed program is mouseD and it has two UDs. The corresponding
automata to these UDs are called mouseD1 and mouseD2. The generated code for each UD is placed in two files, one
with extension .aut and another with extension .rul. The first one describes the automaton and the second one contains
the reaction rules for this automaton (from which the actions are obtained at execution time). For the distributed mouse
control program, the following files will be generated:

mouseD1.aut mouseD1.rul
AUTOMATON mouseD1 : Rules for mouseD1 :
init − [1, ∗, go to(1)] Module timer:
1 click [2, ∗, go to(2)] 1. [] ===> []
1 tick [1, ∗, go to(1)] 2. [] ===> [delta:=3, emit(start)]
2 tick [[3− 1, ∗, go to(2)], 3. Case:

[3− 2, ∗, go to(1)]] 3-1. [] delta>0—>[delta:=delta-1]
3-2. [] else —> [emit(relax)]

mouseD2.aut mouseD2.rul
AUTOMATON mouseD2 : Rules for mouseD2 :
init − [1, ∗, go to(1)] Module emmiter:
1 start [2, ∗, go to(1)] 1. [] ===> []
1 click [3, ∗, go to(1)] 2. [] ===> [count:=0]
1 relax [[4− 1, ∗, go to(1)], 3. [] ===> [count:=count+1]

[4− 2, ∗, go to(1)]] 4. Case:
4-1. [] count = 0 —> [emit(single]
4-2. [] else —> [emit(double)]

1Each machine declaration specifies a complete original RS program.

3

The compiler also generates another file, with extension .iod, called Archive of Distributed Information (AID), which
specifies in which machine each automaton will run, which are the signals coming from the external environment, and
which are the signals that must be sent to other automata. Coming back to the distributed mouse example, the AID file
is:

IOFILE mouseD
External input: [click, tick]
External output: [single, double]

AUTOMATON mouseD1 (machine sinope)
External input : [click, tick]
External output: [start, relax]
Input from env.: [click, tick]

AUTOMATON mouseD2 (machine pan)
External input : [click, start, relax]
External output: [single, double]
Input from env.: [click]

3.3 Execution environment for the distributed automata

The system has a master–slave organization, where the master is the RS Main process and the slaves are the automata.
The master communicates with the user and sends signals and commands to the slaves. The slaves carry out the
reactions and send the results to the master, which shows them on the screen. To free the master from the blocking
data entry activity, a special process named RS IO is used. This process reads the input data from the keyboard. The
current prototype is useful during the debugging phase of a distributed system. In the final version of this system, the
RS IO will be replaced by the external I/O interface, which will implement the real communication with the external
environment.
The processes that compose the RS distributed environment are:

• RS IO: receives input signals and commands entered by the user and sends them to the RS Main process.

• RS Main: initialize and finish the automata, transfer each signal received from RS IO to the ARSD that treat
this signal, and shows results and error messages in the screen.

• ARSDs: the distributed RS automata. They carry out the commands received from the RS Main process, and
react to the received signals.

4 The MDX parallel programming environment

The MDX environment2 [1] executes over an heterogeneous workstation network, and implements a parallel virtual
machine with shared memory. The idea is to allow the programmer to write multithreaded programs where the threads
are dynamically created in the network, and in which sharing of data is done through the distributed virtual memory.
Each network node is a computer with one or more processing units and a local memory, interconnected by a physical
network, under some operating system such as Windows, OS/2, Linux, and Solaris, among others.
In an application, the same program is replicated in all the nodes of the network, however in each node only a subset of
threads is executed. Thread synchronization is carried through semaphores and barriers. The MDX system is based on
the client/server model, and it uses RPC as the communication mechanism. The system is composed by a name server,
a distributed virtual memory manager, a compiler manager, an execution manager, and a synchronization manager.
These components use the services of a communication kernel. The basic architecture of the MDX system over a
network of workstations is shown in figure 1.
The communication kernel is intended to allow the communication between the client and server processes, regardless
of their location, in a fast, trustworthy, and transparent way [1]. To accomplish this duty the kernel executes the
following three tasks: (a) message examination to identify if it is a request or a reply and to whom it must be delivered;
(b) location of the involved client or server process; (c) sending of the messages to the right place.

5 MDX RS — A communication kernel for RS automata

Communication requirements of the RS environment are small and may be provided by a simple kernel, which will be
called MDX RS. This kernel is presented in the coming sections.

2The MDX system is being investigated as part of a project involving the following Brazilian universities: UNICRUZ, PUCRS, and UFRGS.

4

Figure 1: The basic architecture of the MDX system over a network

5.1 Functions required by the RS environment

There is no need of shared memory, for the RS automata; instead, some message interchanging mechanism. In the
reaction rules source code (file .rul), the occurrence of the statement emit(s) means that the automaton will emit
the signal s to either another automaton or to the external environment. The destination is defined in the file AID
(extension .iod). For example, in the mouseD distributed program, the statement emit(start) sends the start signal from
the machine sinope to the machine pan, because in the AID file it is indicated that start is an output signal ofmouseD1
(machine sinope) and is an input signal for mouseD2 (machine pan).
In the translation of an ARSD to a C program, the emit command is substituted by the communication primitive
MDX send(), which sends a given signal to a specific automaton. For this to happen, a previous connection between
the two automata must have already been established. The establishment of the connection creates one socket and,
through this socket, the two automata will communicate until the end of the distributed program execution. The
MDX send() command for the above described example would be the following: MDX send (mouseD2, ”start”);
where mouseD2 is the automaton that will receive the message and start is the signal to be sent.
For signal reception, every automata has a thread that uses the MDX recv() command, which has the following format:
MDX recv (int Socket, char *message); where the parameters specify the connection socket and the message, which
will be later treated according to the RS protocol. It must be remarked that an ARSD is very different from an MDX
server. When an automaton receives a signal, it can perform only a local computation, or even it can execute nothing,
if the signal is not expected in the current automaton state.

5.2 Structure of the MDX RS communication kernel

The original MDX system is based on the client/server model, where several clients ask for services to one or more
servers. As an automaton is neither a client nor a server, it was necessary to define a new structure for the communi-
cation kernel.
The MDX RS kernel uses a NLT table (Name Local Table) that registers the network nodes that are used by the
distributed system.

5.2.1 The establishment of connections

The procedure that establishes the ARSD’s connections has a parameter that receives a communication port identi-
fication, which will be used to wait for connections with other automata. After receiving this port specification, the
automaton waits, in an accept command, until another automaton establishes a connection with it. When this hap-
pens, the information about the connection is added to the NLT, and a thread for the intercommunication of these two
automata is created.
This thread repeats a loop until the automaton receives a message asking for its termination. Inside the loop, the
automaton waits for a message using the socket created in the previous procedure. When a message is received, the
message is treated in according to the RS protocol. If, after the handling of the message, it is necessary to send a signal
to an automaton A, then a seek operation is made in the NLT to find the socket belonging to A and the message is sent
to this socket, through an MDX send() operation.

5.2.2 Structure of the new kernel

In the RSD (distributed RS) system, an Init() process that waits for new connections between ARSDs will always
be active. From this Init(), for each established connection, a thread is created (procedure Recv()) which makes the

5

communication between the local ARSD and the remote one. This structure is shown in figure 2.

Figure 2: Structure of the MDX RS communication kernel

5.3 Structure of the MDX RS system

The structure of the MDX RS system has just three layers:

• Automaton: It is a C program that implements an ARSD and uses the MDX RS communication and synchro-
nization primitives.

• MDX RS Kernel: It is the main part of the system. It supplies the communication support to the ARSD and
manages the NLT.

• Operating System: Until now it has only been tested on Linux.

As it can be seen, the user API and the specialized servers have been eliminated. The API could be removed because
the kernel, together with the RSD model functionality, already guarantee the required transparency, giving the illusion
that the automata executed in a single machine.
As to the specialized servers, it can be stated that the execution server is not necessary because the actual prototype
requires the manual loading and execution of each automaton (later the system will be improved in this aspect). The
shared memory server plays no role, because the RS automata do not share memory. The synchronization server is not
needed because the synchronization is made by the RSD system itself. Similarly, the compilation is done directly by
the user. Finally, the name server is not necessary because each automaton has a copy of the NLT in its local kernel.

6 CRSD — The RSD compiler

The objective of the CRSD is not to substitute the original RS compiler, but to complement it. The idea is to use the
original compiler generated code (an automaton) to generate the C code that implements the automaton. The CRSD
uses only the information of the files that describe the automata.
Code generation. The code generation is accomplished in two phases: action generation and automaton gener-
ation. In the first phase, the program variables are identified and the RSD commands and attributions are translated.
In the second phase, the action execution order is defined. From the RS automaton definition, the automaton routine
is constructed; basically, this routine contains calls to the previously generated procedures and functions.
Handling of parallel actions. In the representation of an ARSD, the asterisks are used to separate ac-
tions that can be executed in parallel. During the execution of these actions, the signal values must remain frozen
(that is demanded by the semantics of RS language). That is, the new value of a signal can be attributed only after
the execution of all the parallel actions. To solve this problem the same solution of the old RS system is used: every
signal possesses an original value and a copy, the value is always read from the original signal and written in the copy.
When the parallel action finishes, the copy value is used to bring up to date the original signal.
Internal exception handling. An internal exception means a communication error or even an execution
error. In such situation the ARSD emits a exception message to the RS Main process and waits for a reply, which can
be either an order to finish or an order to continue the processing. The waiting for reply is synchronous; in such a way
the ARSD does not execute any command until the reply arrives.
RS protocol. The RS protocol [3] standardizes the information exchanged between the following pair of pro-
cesses: RS Main-ARSD, ARSD-ARSD and RS IO-RS Main. For the total ordering of messages the system uses

6

logical clocks and time stamps, according to Lamport’s algorithm [4]. The messages for which the ordering is not im-
portant do not receive time-stamps. The main reason for the option of centralized control was maintenance easiness.

7 Conclusions

In the RSD language, all the components to be distributed are specified in a single source program, which improves
the programmer view of the structure of the system as a whole. Each component is compiled for an independent
automaton and, for each component, the programmer specifies the machine where it will run.
The distribution of language RS extends the scope of its applications, since the language starts to contemplate dis-
tributed controls. One of the advantages of organizing a system as a set of communicating automatons, instead of a
single automaton, is the reduction of size (number of states) of the system. The great disadvantage is the overhead
introduced by the run-time communication.
Despite the overhead corresponding to the communication between automata running on different machines, it was
possible to observe a sensible increase in the execution speed of the distributed programs when compared to the
centralized program. This is justified by the fact that the code generated by the CRSD compiler is faster than the
interpreted code of the original RS language. In fact, the distributed mouse example showed that the RSD version,
executed on the MDX RS communication kernel, has better performance than the centralized RS program (this can
be detected visually). But this apparent better performance can be due to the low complexity of the example and
needs to be better studied. However, as a big distributed system will be composed by several automata, having several
operations occurring at the same time in separate machines, hopefully the distributed performance will be higher than
the centralized one.
As RSD is still a prototype in a test phase, it is natural that it has improvements to be introduced. With respect
to security, for example, the monitoring of the master process must be implemented, therefore. In relation to the
MDX RS kernel, an execution manager must be created to make possible the execution of the kernel and the automata
in remote machines, with only one command. The experimentation of the RS system in real distributed applications
will probably indicate other improvements to be introduced in both the model and in its implementation. These
improvements will be introduced in future versions of the system.

References

[1] Costa C, Dotti F, Copetti A, Preuss E (2000). MDX-A Parallel Programming Environment Supporting Dis-
tributed Shared Memory an message Passing. Simposio Argentino de Tecnologı́a, Tandil, Argentina.

[2] Berry G, Gonthier G (1992). The Esterel Synchronous Programming Language: Design, Semantics, Implemen-
tation. Science of Computer Programming, ([S.l.], v.19, n.2, p.87-152).

[3] Librelotto G, Toscani S, Monteiro L (2000). Distribution of the RS language in the MDX environment. In: SBLP
2000, Recife - PE. p. 120-133.

[4] Peterson J, Silberschartz A. Operating Systems Concepts. New York, Addison-Wesley Publishing Company,
1985.

[5] Hopcroft J, Ullman J (1979). Introduction to Automata Theory, Languages and Computation. Reading, Mas-
sachussetts: Addison-Wesley.

[6] Halbwachs N (1993). Synchronous Programming of Reactive Systems. Dordrecht: Klumer Academic Publisher.

[7] Toscani S. RS: Uma Linguagem para Programação de Núcleos Reactivos. Tese de doutoramento, (Depto de
Informática, UNL, Lisboa, Portugal, 1993).

7

