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Abstract

This article present skeletons to solve Optimization Problems using the Branch-and-Bound technique. The
skeletons user is provided with the possibility to solve its problems, as much of sequential form as of parallel
and distributed forms without having to modify its code. The skeleton has been implemented using three
different programming languages: C, C++ and Java. The first part of our proposal compare the different
languages implementations. The second part of our proposal consists of a comparison between the parallel
and distributed tools to implement the parallel and distributed versions. An algorithm for the resolution
of the classic 0-1 Knapsack Problem has been implemented using the three implementations of skeletons
proposed. The parallel implementations have been made using MPI and Java Sockets. Some computational
results of the comparison of the languages are presented.
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1 INTRODUCTION

An Algorithmic Skeleton must be understand as a set of procedures that compose the structure to use in
the development of programs for the resolution of a given problem using a particular algorithmic technique.
They provide an important advantage by comparison to a direct implementation of the algorithm from the
beginning, not only in terms of code reuse but also in methodology and concept clarity. In general, the
software that supply skeletons presents declarations of empty classes. The user must fill these empty classes
to adapt the given scheme for the resolution of a particular problem.

To solve combinatorial optimization problems, the best element of some finite set of feasible solutions
has to be found. In general, all possibilities have to be explored in a search tree. The simplest technique
consists of the enumeration of all possible solutions. However, other approaches to deal with the resolution
of problems such as: Branch-and-Bound or Dynamic Programming have been developed. The Branch-and-
Bound technique determines the optimum-cost solution of a problem through a selective exploration of a
solution tree. The internal tree nodes correspond to different states of the solution search and the “leaves”
correspond to feasible solutions.

Since research on Branch-and-Bound algorithms began, these algorithms have been considered one of the
suitable tools for parallel processing. Several parallel libraries have been developed for this technique. PPBB
(Portable Parallel Branch-and-Bound Library) [9] and PUBB (Parallelization Utility for Branch and Bound
algorithms) [8] propose implementations in the C programming language. BOB [4], PICO (An Object-
Oriented Framework for Parallel Branch-and-Bound) [3] and COIN (Common Optimization Interface for
Optimization Research) [7] are developed in C++ and in all cases a hierarchy of classes is provided and
the user has to extend it to solve his/her particular problem.

In this paper, we present three implementations to solve optimization problems using the branch-and-
bound technique. They could be used on as much of networks of computers under Linux, like of personal
computers multiprocessor. The libraries are generic and based on skeletons. Our skeletons have been carried
out in the C, C++ and Java languages. The parallel implementations have been made using MPI (Message
Passing Interface), the standard tool in message passing programming and the distributed implementation
uses Java Sockets.



The main objective of our proposal is to compare the skeletons implemented using C, C++ and Java
languages. An algorithm for the resolution of the classic 0-1 Knapsack Problem has been implemented using
the three skeletons proposed. Branch-and-Bound Technique applied to solve the 0/1 Knapsack Problem is
described in second section. The sequential implementations of the skeletons implemented are presented in
third section. The parallel implementation of the skeletons is described in fourth section. Some computa-
tional results are presented in fifth section. Finally, in the sixth section the conclusions and the future work
are presented.

2 DEFINITION OF BRANCH-AND-BOUND TECHNIQUE TO SOLVE O/1
KNAPSACK PROBLEM

The 0-1 Knapsack Problem has been studied extensively during the past decades. Several exact algorithms
for its resolution can be found in the literature and for this reason appears in many real applications with
practical importance. This problem is considered NP-hard.

Consider the classical 0-1 Knapsack Problem where a subset of N given items has to be introduced in a
knapsack of capacity C. Each item has a profit pi and a weight wi and the problem is to select a subset of
items whose total weight does not exceed C and whose total profit is a maximum. Assume that all input
data are positive integers. Introducing the binary decision variables xi, with xi = 1 if item i is selected, and
xi = 0 otherwise, the problem can be formulated as follows:

max
∑N

i=1pixi

subject to :
∑N

i=1wixi ≤ C

xi ∈ {0, 1}, i ∈ {1, ..., N}
The Branch-and-Bound algorithm described by Martello and Toth [5] to solve this problem has been

implemented using the C, C++ and Java skeletons. The algorithm requires the elements to be ordered in
ascending order according to the weight/profit relation given by:

pi

wi
≥ pi+1

wi+1
(i = 1, ..., N − 1)

The bounds used in the implementation are defined as follows:
The lower bound is calculated by including objects in the knapsack until the maximum capacity is

reached:
s∑

i=k

wixi ≤ C; xi ∈ {0, 1}, i, k, s ∈ {1, ..., N}

lower bound =
∑s

i=kpixi

In a similar way the upper bound is calculated, but in this case a portion of the the last object considered
is included to fit the capacity.

Cr =
s∑

i=k

wixi ≤ C; xi ∈ {0, 1}, i, k, s ∈ {1, ..., N}

upper bound =
∑s

i=kpixi + ps+1×(C−Cr)
ws+1

As an example [5] we consider a knapsack with a capacity C = 102 and the number of objects N = 8
with the following weights and benefits:

pk = {15, 100, 90, 60, 40, 15, 10, 1}
wk = {2, 20, 20, 30, 40, 30, 60, 10}

Figure 1 shows the trace of the algorithm for the resolution of the Knapsack Problem in this example. To
solve the problem by Branch-and-Bound a tree in whose root the value of none of the xi is fixed, and where
in each successive level the value of a farther variable is determined by numerical order of the variables has
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Figure 1: Search Tree of an Example of Knapsack Problem

to be explored. Each node that is explored produces two farther nodes, depending on whether the following
object in the knapsack is introduced or not. If a node is generated, the upper bound and a lower bound
of the solution value are calculated, which can be obtained completing the partially specified capacity, and
these bounds are used to cut useless branches and to guide the exploration of the tree. The optimum solution
vector is x = (1, 1, 1, 1, 0, 1, 0, 0) and the value of the objective function is z = 280.

A Branch-and-Bound algorithm always converges in finite steps regardless of the search function. However,
its efficiency and the required storage space are highly dependent on the search function. We introduce the
following important search functions used in practice and their characteristics:

• Breadth-first search expands the search space on a level by level basis. A priority function that always
chooses to expand the problem with the smallest depth value will lead to a breadth-first expansion of
the search space. An advantage of a breadth-first search is that it guarantees to find the solution of
minimum depth in the tree. In a problem where solutions may be found at different depths this may
be one of the optimization criteria.

• Depth-first search attempts to generate a solution by performing search levels down the tree. After
expanding a given problem, the algorithm attempts to expand one of its newly generated offsprings.
One way of implementing this is to always select the problem-state of greatest depth in the tree for
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expansion. An advantage of a depth-first search is that it often has the smallest storage requirements
of any search strategy. This strategy also attempts to generate an initial solution quickly so that this
can be used for pruning sections of the tree.

In general terms, it can be said that the breadth-first searches explore the nodes in the same order
in which they are created, it means that they use a queue (FIFO list) to store the nodes that have been
generated but have not been examined yet. The depth-first searches explore the nodes in inverse order to
that of their creation, employing a stack (LIFO list) to store the nodes that are being generated but have
not been examined yet.

3 SKELETONS USER INTERFACES

In the MaLLBa skeletons, different users appear (see figure 2): Skeleton programmer is the person who
designs and implements the skeleton. He or she decides the set of classes the skeleton offers and requires.
Skeleton filler is the person who adapts the real problem and the heuristic to the skeleton classes filling the
details left by the skeletons programmer. Final user is the person who uses the fulfilled skeletons to get an
approximated solution for an instance.

Figure 2: Skeleton Users

The skeletons are specially target at two different objectives: provide the final user with a friendly
environment sharing their common knowledge, and simplify the programming of the skeleton filler. In a
MaLLBa skeleton two principal parts are distinguished: One that implements the resolution pattern provided
by the library and a part which the user has to complete with the particular characteristics of the problem
to solve and that will be used by the resolution pattern. There is an intuitive relationship between the
participating entities in the resolution pattern and the classes which will be implemented by the user.

The part provided by the skeleton, that is, the resolution pattern, is implemented through classes. These
classes are denominated provided classes and appear in the code with the qualifier provides. The part which
the user fills in with their particular problem is implemented through classes labelled with the qualifier
requires, and will be named required classes.

The adjustment that has been accomplished by the user consists of two steps. First, the problem has
to be represented through data structures and then, using them, the user has to implement the required
functionalities of the classes. These functionalities will be invoked from the particular resolution pattern
(because the interface for such classes is known) so that, when the application has been completed, the
expected functionalities applied to the particular problem are obtained. Figure 3 shows a UML scheme of
MaLLBa for the Branch-and-Bound technique.

4



Solution Problem SetUp SubProblem
+lower_bound()
+upper_bound()
+branch()

«interface»
Solver

Solver_Seq Solver_Lan Solver_SM

Solver_Centralized Solver_Distributed

Required

Provided

Figure 3: UML Scheme of MaLLBa::BnB

void lowerUpper (info spb, double L, U) {

number i, weig, prof;

if (spb.CRest < 0) {

L = -INFINITY; U = -INFINITY;

}

else {

i = spb.obj; weig = 0;

prof = spb.profit;

while ( (i<N) && (weig <= spb.CRest) ) {

if ( w[i] <= (spb.CRest-weig) ) {

weig += w[i]; prof += p[i];

}

i++;

}

L = prof; /* lower bound */

for (i = spb.obj, weig = 0, prof = spb.profit; i < N, weig <= spb.CRest; i++) {

weig += w[i]; prof += p[i];

}

if (i != spb.obj) {

i--; weig -= w[i]; prof -= p[i];

}

if ((i == spb.obj) && (spb.obj == (N-1)))

U = prof; /* upper bound */

else

U = prof + (p[i]*(spb.CRest - weig))/w[i];

} }

Figure 4: Bound method of C skeleton

4 SEQUENTIAL IMPLEMENTATIONS

The following figures show the sequential iterative C code used to solve the 0-1 Knapsack Problem through
Branch-and-Bound algorithm for a maximization problem. The bound function lowerUpper is defined in
Figure 4. We use the same function to calculate the lower and upper bounds. The lower bound is defined
as the maximum benefit that can be obtained from a given subproblem, while the upper bound includes the
proportional part of the benefit of the last object that could not be inserted into the knapsack. The branch
function that studies the insertion of the object k or considers not inserting it is presented in Figure 5. The
function knap is presented in Figure 6. It proceeds by repeating the test of live subproblems. Departing
from a subproblem sp the use of the Branch-and-Bound technique is considered to find the best solution
bestSol. The first subproblem is extracted from the queue, its upper and lower bounds are calculated and
supposing it improves the bestSol, it is updated. It continues with the process of extracting problems from
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void branch (info spb ) {

info spNO, spYES;

number newC, newPf;

number nextObject = spb.obj + 1;

if (nextObject <= N ) {

spNO.obj = nextObject;

spNO.CRest = spb.CRest;

spNO.profit = spb.profit;

insert(spNO);

newC = spb.CRest - w[spb.obj];

if (newC >= 0) {

newPf = spb.profit + p[spb.obj];

spYES.obj = nextObject;

spYES.CRest = newC;

spYES.profit = newPf;

insert(spYES);

} } }

Figure 5: branch method of C skeleton.

number knap() {

double L, U;

info sp;

while (!empty()) {

sp = extract();

lowerUpper (sp, L, U);

if (bestSol < L) bestSol = L;

if (bestSol < U) branch(sp);

}

return (bestSol);

}

Figure 6: knap method of C skeleton.

the queue and proving the bestSol until the queue is empty. If the problem is still unresolved, it is branched
and the branch function inserts the new subproblems into the queue. The execution of the C skeleton is
carried out in the main() function presented in Figure 7. The function knap returns the value of the best
solution founded.

Figure 8 shows the Java sequential skeleton implemented using a breadth-first search. The Java Branch-
and-Bound Skeleton requires the following classes: Problem, Solution and Subproblem. The class Problem
corresponds to the definition of a problem instance; the class Solution corresponds to the definition of a
solution (feasible or not) of a problem instance and the class Subproblem is a new abstraction that represents
the not explored solution area. This class requires the following methods:

• lower bound(): Given a problem and a subproblem, this function computes a lower bound of the best
objective function value that could be obtained for a given subproblem.

• upper bound(): Given a problem and a subproblem, this function computes an upper bound of the best
objective function value that could be obtained for a given subproblem.

• branch(): Given a problem, a solution and a subproblem, makes a partition of the current solution area.
This implies to make a decision about the current subproblem that will generate a set of subproblem
instances to be explored. This set of subproblems generated should be inserted in the data structure
queue using the method insert.

• solve(): return the best solution obtained until that moment, it means, the solution with the value
returned by lower bound().

We are interested to know the behavior of the algorithm. Concretely, we would like to know the number
of nodes generated of the search tree and the number of these nodes that are visited to find the best solution.
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int main (int argc, char ** argv) {

number sol;

readKnap(data);

spini.obj = 0;

spini.CRest = M;

spini.profit = 0;

insert(spini);

bs = knap();

printf("bestSol lf", bs);

return 1;

}

Figure 7: main method of C skeleton.

public class SolverSeqQueue {

LinkedList spList;

long Visitednodes = 0, Generatednodes = 0;

public SolverSeqQueue(){

spList = new LinkedList();

}

public Solution run(Problem pbm) {

double bestActual = -1, upper, lower;

SubProblem actualsp, anteriorsp;

Solution sol = null;

spList.add (pbm.generateSubProblem());

while (!spList.isEmpty()) {

actualsp = (SubProblem) spList.getFirst();

Generatednodes++;

if ((upper = actualsp.upper_bound(pbm)) > bestActual) {

Visitednodes++;

if ((lower = actualsp.lower_bound(pbm)) > bestActual) {

bestActual = lower;

sol = actualsp.solve(pbm);

}

if (upper != lower)

actualsp.branch(pbm, this);

}

spList.removeFirst();

}

System.out.println("Generated Nodes: " + Generatednodes + "Visited Nodes: " + Visitednodes );

return sol;

} }

Figure 8: Java Sequential Skeleton.
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Figure 9: Phases of the Master-Slave Paradigm

For this reason, we have added two new variables in the provided class SolverSeqQueue to store the number
of generated nodes Generatednodes and the number of visited nodes Visitednodes. The final value of these
variables will be known when finish the method run() of class SolverSeqQueue. The number of generated
nodes is increased when a subproblem is extracted from the data structure, in this case a queue. The number
of visited nodes is increased in the case of the upper bound is not going to prune the actual subproblem
being studied.

5 PARALLEL IMPLEMENTATIONS

To parallelize our skeletons for the Branch-and-Bound technique we have implemented a master-slave strat-
egy. These parallel implementations are composed of the following basic processes:

• Master process: There is only one master process in the skeletons. It contains all the information
about the states space and the status of each slave process, e.d., busy or idle.

• Slave process: the number of slave processes is specified in an initiation parameter. Each slave process
performs all the computations to solve/evaluate a subproblem.

Figure 9 shows the Master and the Slaves tasks [1, 2]. The generation of new subproblems and the
evaluation of the results of each of them are completely separate from the individual processing of each
subtask. The Master is responsible for the coordination between subtasks. The Master has a data structure
which registers the occupational state of each slave; at the beginning all the slaves are idle. The Master
assigns the first subproblem to the first idle slave in phase a. While there are idle slaves the Master receives
information from them and decides the next action to apply depending on whether the problem is solved,
or there is a slaves request or whether the slave is idle. In phase b, the slave branches the subproblem into
two subproblems and asks the Master for help. When the master receives a slave request from a slave, it is
followed with the upper bound value. If the upper bound value is better than the actual value of the best
solution, the answer to the slave includes the number of slaves that can help to solve the problem, as it is
represented in phase c. Otherwise, the answer indicates that it is not necessary to work in this subtree. If
no free slaves are available, the slave continues working locally. Otherwise, it removes subproblems from its
local queue and sends them directly to other slaves, phase d. When the number of idle slaves is equal to the
initial value, the search process finishes, then the Master notifies the slaves to finish work.
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FIFO LIFO
Size Time Generated Nodes Visited Nodes Time Generated Nodes Visited Nodes
500 0,043 783 393 0,147 1752 1422
1000 0,878 6282 3446 2,948 14840 13680
2000 4,728 13512 11647 4,722 13512 11647
3000 8,127 15966 9043 10,458 18879 16611
4000 61,609 81631 57537 457,518 577613 569333
5000 25,643 35781 17996 33,343 36432 32939
10000 64,329 37886 22108 - - -

Table 1: FIFO vs LIFO using Java Skeleton

Time in seconds
Number of objects C++ Skeleton Java Skeletons

500 0,049 0,043
1.000 0,825 0,878
2.000 4,579 4,728
3.000 6,755 8,127
4.000 58,421 61,609
5.000 23,954 25,643
10.000 54,286 64,329

Table 2: C++ vs Java using FIFO Structure

The implementation of the skeletons use MPI Send and MPI Recv, to send and receive messages re-
spectively [6]. The main loop in the Master and Slave codes are implemented using MPI IProbe. When a
message is received its status is used to classify what kind of work should be done: finish, receive a problem
for bounding and branching, receive a request from slaves, etc.

6 COMPUTATIONAL RESULTS

We accomplished a study of the time required by the sequential and parallel Branch-and-Bound Skeletons
using the C, C++ and Java languages.

The experiments have been done on two different clusters:

• An heterogeneous Cluster of PCs, which was configured with 2 750 MHz AMD Duron Processors, 4
800 MHz AMD Duron Processors, 7 500 MHz AMD-K6 3D processors, 256 Mbyte of memory each
and 32 Gbyte of hard disk each. This cluster of PCs belongs to the Parallel Computing Group of La
Laguna University.

• IBM CLX/768 (IBM Linux Cluster), 384 2 PE per node Intel Xeon Pentium IV 3 GHz 512 KB cache,
788 GB of memory each, and 5.5 TB of hard disk. This cluster belongs to CINECA.

The software used in the PCs cluster the operating system was Debian Linux version 2.2.19 (her-
bert@gondolin). The C and C++ compilers were GNU gcc version 2.7.2.3 and the mpich version was
1.2.0, and the compiler of Java was J2SE 5.0. The software used in the CLX/768 was the mpiCC compiler
of C++ and the mpicc compiler of C based on the MPICH-GM version of MPI (myrinet enabled MPI).

Table 1 shows the times in seconds obtained executing the Java implementation when a FIFO and a
LIFO data structure is used to solve the Knapsack Problem for number of objects between [500,10.000].
Also, this table shows the number of generated nodes and visited nodes when both data structures are used.

Table 2 presents the comparison between C++ and Java languages for different sizes of the knapsack
problem for the sequential case using FIFO data structure; these problems were generated for sizes between
[500,10.000]. The algorithm computes the best solution and the solution vector in all cases.
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Figure 10: Comparison between Parallel C++ and C Implementations for number of objects 100000

Figure 10 shows the obtained results for the knapsack problem when the number of objects is 100,000
and the solution vector is not calculated. The results of the executions in the CLX/768 for C and C++
implementations are presented.

7 CONCLUSIONS

Three skeletons for the resolution of problems by means of the Branch-and-Bound paradigm has been intro-
duced in this paper. The chosen languages to develop the skeletons have been C, C++ and Java. The high
level programming offered has to be emphasized. The schemes used can be easily transformed to solve other
combinatorial optimization problems. The skeletons provide a sequential solver and a parallel solver without
additional user effort. To the advantages of the oriented object (OO) methodology provides: modularity,
re-usable, modifiable, and so on, is added the interpretation facility of the skeleton, mainly because there
is quite an intuitive relationship between the entities participating in the resolution pattern and the classes
implemented by the skeleton. Also, the language Java offers greater advantages for the development of the
components software associated with the geographical distribution.

The results of a comparison of times, number of nodes generated and number of nodes visited for the
Java Skeletons using a breadth-first and depth-first search have been presented. In the case of depth-first
search, size problems larger of 10.000 objects have not be solved because of memory problems. It can be
appreciated that the time needed for the algorithm to solve the problem is related to the number of objects
generated and visited.

A comparison of the time required for the C++ and Java sequential skeletons to solve different sizes
of the knapsack Problems is presented. The results show C++ sequential skeleton is slightly more efficient
than Java sequential skeleton. On the other hand, the results obtained using the C++ parallel skeleton are
less efficient than the results obtained using the C parallel skeleton.

A comparison between the parallel implementation using MPI and distributed implementation using Java
Sockets is in our agenda.
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