
Dual Selective Code Compression

Eduardo B. Wanderley Netto
CEFET-RN, Dept. Informatics,

Natal, Brazil, 59015-000
braulio@cefetrn.br

Eduardo A. Billo
UNICAMP, Institute of Computing,

Campinas, Brazil, 13084-971
eduardo.billo@ic.unicamp.br

and

Rodolfo J. Azevedo

UNICAMP, Institute of Computing,
Campinas, Brazil, 13084-971

rodolfo@ic.unicamp.br

Abstract

Code compression has been shown to be efficient in code size reduction and, recently, performance improvement and
energy savings. In this paper we use a compression method, the ComPacket, which has a very fast decompressor in
hardware, to compress selectively regions of the code to improve performance and complementary regions to sustain
the code size reduction both at the same time. Using the leon (SPARC v8) platform and benchmarks from Mediabench
and MiBench suites we reached, on average, 25% of code memory area reduction, and a speed-up of 1.5
simultaneously.

Keywords: Computer Architecture, Code Compression, Compression, Performance.

 2

1. INTRODUCTION

As the embedded systems market grows up, the software applications become more and more sophisticated requiring
huge amounts of memory. On the other hand many embedded devices require strict energy consumptions and
performance. RISC processors are commonly found integrating such devices and the code density of such processors is
not their best feature.
In this scenario, several code compression approaches have been used to cope with the RISC density code problem and
sometimes they also achieve energy consumption savings and performance improvements.
Techniques from data compression field have been considered as the base to derive methods that can be applied to
code. However, special requirements like random access and on-the-fly (thus, fast) decompression discard some
outstanding data compression methods.
The first approach to compress code for RISC processors is due to Wolfe and Chanin [1]. The CCRP used a relative
slow decompressor in hardware located between the Cache and Main Memory, thus hiding the decompressor latency. It
is usual that a compression method that produces a high density code implies in a slow decompression. That is why
Wolfe and Chanin, and many other researches after them, have chosen to hide this latency behind the cache [2,3,4].
Nevertheless, this decompression overhead is usually large enough to negatively interfere in the system performance.
Selectively choosing instructions or regions to be compressed can help in minimizing the decompressor impact by
selecting rarely used instructions to be compressed, favoring hot-spots of code execution to remain intact and
performing as good as in an uncompressed execution code system.
Performance improvements can be achieved by relocating the decompressor engine to between the processor and the
cache, so that, the code is stored compressed in cache increasing its hit ratio and avoiding many accesses to the main
memory. The same reasoning can be used to justify energy savings.
This last model, called PDC (Processor-Decompressor-Cache), requires a very fast decompressor hardware as it is
located on the processor critical path and nothing else can hide its latency. The main implication in this approach is that
the code compression method has to be simple enough to require a fast decompressor.
In this work we introduce selectivity to our code compression method called ComPacket[5], which was specially
designed to be a PDC, and has a fully functional implementation in FPGA[6]. The ComPacket uses an incomplete
dictionary to hold instructions selected by any criteria. These instructions are changed in the original code for packets
of indexes into the dictionary.
Unlike the selective goals aforementioned, we wanted to focus in the code execution hot spots for a better compression
thus improving cache hit ratio and so, the system performance.
We have realized that, when using an incomplete dictionary based code compression method, the dictionary formation
drives the results for performance and area. Using a dictionary built upon the count of the instructions in the code
benefits code size reduction and using a dictionary which is composed with instruction that is executed the most,
benefits performance. These dictionaries we call Static Dictionary (SD) and Dynamic Dictionary (DD) respectively.
As far as SD and DD use to hold different instructions, we use both of them in our selective approach. The DD is used
for inner-loops and the SD for the remaining code. The assumption is that, for loop-intensive applications, a specialized
dictionary for inner-loop will enhance the performance improvement and the remaining regions, which use to be rarely
executed (following the 90/10 rule of the thumb) but represent the biggest part in the code, will be compressed with a
SD specially designed for them which will promote better compression.
This approach reduces the code up to 60% of its original size and produces speed-ups as big as 2 for loop-intensive
applications from Mediabench[7] and MiBench[8] benchmark suites running in a SPARC v8 architecture (Leon
Processor).
This paper is organized as follows: Section 2 discusses the related work. Section 3 describes the compression method
used. Section 4 explains the selectivity in our approach. In Section 5 we describe the experimental setup followed by
the results we obtained in Section 6. Finally, Section 7 presents our conclusions.

2. RELATED WORK

In this section we present the PDC and Selective code compression methods that are closest to our work. Moreover, we
define the Compression Ratio as the ratio between the compressed code size (including the dictionaries sizes when
apply) over the original code size.
Benini et al [9] used a dictionary based compression method formed by using dynamic profiling information. A small
256 entries dictionary with one instruction per entry is used to keep the most executed instructions. They compress
instructions that belong to the dictionary if they can be accommodated in a cache line size package. A 75%
compression ratio is produced for the DLX. Also, a 30% energy reduction was obtained. Unfortunately, cache access
time is increased in 32% as the decompressor is docked to the cache.

 3

Lekatsas et al [10] used the Xtensa 1040 as the underline processor to support a small dictionary compression method
based on static instruction count. The authors used variable-length codewords of 8 and 16 bits to compress the original
24 bit instructions. Their primary goal was to guarantee that the decompressor engine requires no more than one cycle
to decompress one or two codewords. Some decompression overhead comes from the fact that the engine is supposed
to keep fractions of misaligned instructions or codewords that come from the cache. Moreover, the dictionary was
doubled (2x256-entry) to support two codewords decompressions per cycle. A 35% code size reduction was achieved
and a 25% performance improvement (cycles count reduction) was reported.
Since the first code compression work [1] selectivity has been considered to minimize the execution time overhead due
to the decompressor. Nevertheless, two works in special focus the selective code compression methods: the first by
Debray and Evans [11] used a threshold value (% of execution time related to the total execution) to limit the number
of functions that are compressed. Only the functions that contribute less with execution time are compressed. This
method has a decompressor in software thus no hardware support is needed.
The second specialized selective code compression method is the work by Xie et al [12]. They use an arithmetic coding
which requires a long latency to the decompression. The decompressor in hardware is avoided for traces that are often
used. Both selective work presented here are very sensible to the threshold used to limit the code regions to be
compressed. If just a small portion of frequently executed regions is compressed, the performance is strongly affected.
Compression ratios vary from 72% to 88% depending on the threshold used. Both used dynamic profile information to
setup the threshold.
Our compression method differs from previous work by using selectivity not to avoid performance penalties but to
enforce the execution of compressed instructions in inner-loops and, at the same time, using two dictionaries with
different goals and formations to guarantee good compression ratios and performance simultaneously. In fact, our
selective approach can be applied to any incomplete dictionary based code compression method. The ComPacket
method was used as a case study, and it was chosen because we authored it, so that it is on the shelf.

3. THE COMPACKET

The ComPacket compression method is named after the main unit used for compression: the Compressed Packet
(ComPacket). This ComPacket holds a set of indexes into an instruction dictionary. We use an invalid opcode of the
underling architecture (SPARC v8) to signalize that a ComPacket has been fetched. The encoding of the ComPackets
favors regularity and can be easily identified by the decompressor. All the ComPackets are sized 32 bits and hold from
2 to 4 indexes. Only 4 ComPacket formats are supported, presented in Figure 1. The escape sequence uses 4 bits to
identify an invalid instruction; 2 bits to inform which instruction is supposed to be executed first in the case of the code
stream execution reaches the ComPacket by a branch instruction; 1 bit to inform the size of the indexes in the
ComPacket (6 or 8 bits); and 1 bit to signalize the presence of a branch instruction. This escape sequence is uniformly
located in all ComPackets. The method allows misaligned branch targets by using the TT pair bits to signalize that the
decompression should begin from any Index inside the ComPacket. Currently, only one target is allowed inside a
ComPacket. It is also allowed to hold one branch instruction index inside the ComPacket restricted to an offset of 8 or 6
bits depending on the format used.

 ESC Index1 Index2 Index3 Index4

 ESC Index1 Index2 Index3

 ESC Index1 Index2 Index3 B_off

 ESC Index1 Index2 B_off

6 bits 6 bits 6 bits 6 bits 8 bits

8 bits 8 bits 8 bits 8 bits

Format 4

Format 3B

Format 3

Format 2B

 invalid op-code T T S B
4 bits 2 bits 1 bit1 bit

Figure 1: ComPackets formats

 4

When a ComPacket is fetched into the decompressor it is recognized as a ComPacket and the correspondent
instructions are fetched from the dictionary and delivered to the processor in order.
The ComPacket can use dictionaries of up to 256 entries, but some formats (Format 4 and Format 3B) uses only the 64
first entries.
The process for building the dictionary is completely independent of the encoding, but searching instructions that better
suits the formats, like code patterns with 4, 3 or 2 instructions, will produce better compression results.
Some restrictions apply to this encoding: at most one instruction is supposed to be a branch in the ComPacket and this
branch has a branch offset that can be represented with 6 or 8 bits depending on the format chosen. Another restriction
is that only one instruction in the ComPacket can be the target of a branch.

3.1 The compression algorithm

To use the ComPackets we outlined a compression algorithm, shown in Figure 2, that begins by finding the executed
inner-loops and build a DD for them, based on the dynamic information retrieved from the profile. Similarly, the
remaining code is scanned to form another dictionary, the SD. Once the dictionaries are built (step1), the compressor
scans the code to identify branches/calls/jumps and mark them and their targets (step 2). Then, it scans again the code
trying to match a ComPacket 4 for the first addresses. If it is possible, it marks the instructions to a ComPacket4. If it is
not possible for a ComPacket4, try a ComPacket3, 3B and a ComPacket2B in this sequence. Then, continue scanning
the code until all instructions are investigated (step 3).

The next step (step 4) assembles the ComPackets marked. Then, they are inserted in the code replacing the original
instructions (step 5). Next, it allocates room for a new change dictionary (ChgDict) instruction. This instruction is
allocated in each inner-loops pre-header and after the post-dominator, so that the decompressor understands which
dictionary must be used at a given time (step 6). Finally, all branch/call/jumps offsets are adjusted to the new targets
positions (step 7).
The adaptation to the original ComPacket compression algorithm is only the inclusion of step 6, which deals with the
new ChgDict instruction. This instruction is supposed to affect only the decompressor hardware switching the
dictionaries. It is not recognized by the processor itself. Every time a ChgDict instruction is found by the decompressor
it issues a bubble to the processor pipeline. These instructions are rarely found by the decompressor as they are outside
the inner-loops and the applications spend most of their execution time inside the inner-loops.
Notice that not all the instructions that belong to the dictionary are compressed in the code. To be worth, at least two
neighbor instructions that belong to the dictionary are changed by one ComPacket.

4. SELECTIVE CODE COMPRESSION

The goal of our selectivity is to find regions of the code that executes the most and constitute a specialized dictionary
for those regions. For the remaining regions we find another dictionary also specialized for them. For loop-intensive
applications, which is commonly found in real systems, the inner-loops often dominate the execution time of the code.
Table 1 presents the contribution of the inner-loops in the code execution for our set of benchmarks. It is also depicted
the number of distinct instructions that belongs to this inner-loops. We can see that, for some applications, a dictionary
of 64 entries is enough to accommodate all the inner-loops instructions. Nevertheless, the encoding restrictions do not
allow all the instructions to be compressed.

Compress()
1. Build the Dictionaries
2. Code Marking
3. Scan the Code

a. Try to mark Format 4 ComPacket
b. Try to mark Format 3/3B ComPacket
c. Try to mark Format 2B ComPacket

4. Assembly ComPacket formats marked in 3.
5. Replace ComPackets in the code
6. Allocate change dictionary instructions
7. Patch addresses

Figure 2: Compression method algorithm

 5

Table 1: Inner-loops

 Instructions
Executed

Time in Inner-loop.
(%)

Distinct instructions in
inner-loops

Search 8,070,065 51 63
Pegwit 32,976,116 63 315
Djpeg 3,707,977 84 558
Cjpeg 15,070,171 61 668
Apcm_enc 9,527,331 78 65
Apcm_dec 7,091,219 91 57

The selection of a dictionary for inner-loops is done by having performance in mind; so that the most compressed
instructions in the inner-loops, the most is the benefit with performance. If we have to select instructions to be in this
dictionary, it should be done by their execution contribution avoiding traces that executes rarely inside the inner-loops.
This is the reasoning behind our choice of using a dynamic dictionary for inner-loops.
The dictionary for the remaining code should be built upon the compression goal. In this case a static dictionary
performs better.
Figure 3 justifies why we are not using only one dictionary. The problem is that SD and DD are very different. On
average, only 16% of the instructions in SD belong also to DD for 256 entries dictionaries. This figure presents the
dictionaries similarities for small dictionaries sized up to 256 entries. Note that most of the instructions that belong to
DD do not belong to SD so that having two dictionaries will benefit performance and compression at the same time.

0

64

128

192

256

1 64 128 192 256

Dictionary Sizes

N
um

be
r o

f R
ed

un
da

nt
 S

D
/D

D
 In

st
ru

ct
io

ns

Search
Pegwit
Djpeg
Cjpeg
Adpcm_enc
Adpcm_dec
Average

Figure 3: SD and DD similarities

100%

75%

50%

25%

 6

The scheme of using two dictionaries is depicted in Figure 4. In fact, it is an abstraction of the real (much more
complex) implementation. The inner-loop is hachured in the memory system. Initially the bit Sel Dict, inside the
decompressor is always set up to 1, which means that the execution stream is not inside an inner-loop. The processor
asks for the instruction at address 0x04 (Fig. 04(a)). The decompressor fetches the instruction from main memory and
realizes that it is not a ComPacket. Instruction I0 is delivered to the processor as is. Then, the processor asks for the
instruction at address 0x08. This is a ChgDict instruction, which means that an inner-loop will follow. The
decompressor understands the instruction, changes the Sel Dict Bit to 0, and inserts a bubble in the processor pipeline
by issuing a nop instruction (Fig. 04(b)). Then, the processor asks for the next instruction. The decompressor realizes
that it is an uncompressed instruction and delivers it to the processor (Fig. 04(c)). Finally, the processor asks for the
instruction at address 0x10. In this address a ComPacket holds indexes to the dictionaries. In this situation, the
decompressor will fetch from both dictionaries the first index inside the ComPacket, say index into entry 2. As far as
the dictionary 0 (inner-dict) is selected in the MUX the instruction that will be delivered to the processor is I4 (Fig.
04(d)). The next instruction asked by the processor will be already inside the decompressor (in ComPacket 2B
(CP2B)), so that no fetch from main memory is required.
When the processor reaches the end of the inner-loop at address 0x1c the decompressor switches the MUX selection
and the outer dictionary is activated again. If the ComPacket at address 0x24, for example, holds an index into entry 2,
the instruction that is supposed to be delivered to the processor is I9, not I4.
In our approach, instead of using just one region of the code, like the other selective approaches in the literature, we use
all the regions, but we select which dictionary is supposed to be used at a certain time in execution. We named this
selectivity dual.

Memory System
(cache mapped)

Decompressor

I0

Chg dict
I1

CP2B
CP3
I7

Chg dict
I8

CP4

I2
I3
I4
I5
I6

I7
I8
I9

I10
I11

Inner
Dict (0)

Outer
Dict (1)00

04
08
0c
10
14
18
1c
20
24
28
...

Pr
oc

es
so

r

Sel
Dict
Bit 1

04
addr

I0
MUX

Memory System
(cache mapped)

Decompressor

I0
Chg dict

I1
CP2B
CP3
I7

Chg dict
I8

CP4

I2
I3
I4
I5
I6

I7
I8
I9
I10
I11

Inner
Dict (0)

Outer
Dict (1) 00

04
08
0c
10
14
18
1c
20
24
28
...

Pr
oc

es
so

r

Sel
Dict
Bit 0

08
addr

nop
MUX

Memory System
(cache mapped)

Decompressor

I0

Chg dict
I1

CP2B
CP3
I7

Chg dict
I8

CP4

I2
I3
I4
I5
I6

I7
I8
I9
I10
I11

Inner
Dict (0)

Outer
Dict (1)00

04
08
0c
10
14
18
1c
20
24
28
...

Pr
oc

es
so

r

Sel
Dict
Bit 0

0c
addr

I1MUX

Memory System
(cache mapped)

Decompressor

I0
Chg dict

I1
CP2B
CP3
I7

Chg dict
I8

CP4

I2
I3
I4
I5
I6

I7
I8
I9
I10
I11

Inner
Dict (0)

Outer
Dict (1) 00

04
08
0c
10
14
18
1c
20
24
28
...

Pr
oc

es
so

r

Sel
Dict
Bit 0

10
addr

I4MUX

Figure 4: Decompressor Scheme

(a) (b)

(c) (d)

 7

5. EXPERIMENTAL SETUP

We used a simulator of the Leon processor (SPARC v8) [13] developed in our lab to support our experiments. The
benchmarks are extracted from MiBench[8] and Mediabench[7]. They are a string search algorithm, Search, commonly
used in office suites; Djpeg and Cjpeg, used for compressing and decompressing images from and to JPEG formats;
Adpcm encodes or decodes audio; and Pegwit, an encryption tool.
We used LECCS, a GCC based cross compiler for the Leon processor, with –O2 option in all the benchmarks, so that
we avoid typical optimizations that increase object code size, like function in-lining and loop unrolling.
A binary rewriting tool was developed to read an original code, perform the compression and write the new binary
compressed code. It is fed with profile information and a Control Flow Graph generated by the simulator.
We established a memory hierarchy with the main memory sized 1Mbytes and each access costs two clock cycles (8
cycles to delivery 4 instructions). In fact, this main memory setup can be considered a very fast one. Our intention is to
demonstrate that even if we experience a low miss penalty, in terms of clock cycles, code compression can produce
better performance results than the original execution.
The caches are chosen by the original code execution behavior. Commonly, the cache size is decided at design time
based on the point in which a doubled sized cache does not improve the hit ratio considerably. In our case, we selected
the hit ratio threshold for 0.9, so that every cache must miss at a maximum of 10%. Also, if we doubled the cache size
the difference for cache hit ratio must be lower than 5%. We relaxed the first threshold for the adpcm codes because
even with a very small cache most of the misses are compulsory, so that once the code is read by the cache for the first
time it will produce hits for practically all the execution time. Choosing the cache size by a percentage of its
performance allows us to infer the results for larger applications (and larger caches).

6. RESULTS

The first measurements show the Compression Ratio for the benchmarks used. We experienced with many
combinations of dictionary sizes from 0 to 256 (0, 32, 64, 128, 256 entries) for inner-loops and outside inner-loops
regions. Table 2 presents the best results for compression (obtained by the adpcm decoder benchmark) and table 3
presents the average results.
These tables present the compression ratios with and without the dictionary size included in the compressed code size.
This allows us to measure the overhead implied by the dictionary on the compressed code. For example: using a inner-
loop dictionary with 64 instructions and the outside dictionary with 128 instructions we reach a compression ratio of
52% for the adpcm without including the dictionaries sizes and 60% if we include them. Thus, the dictionaries
represent 8% in the compression ratio.
Note that, when using only one dictionary for outside the inner-loops (inner size = 0, e.g. first data row) the
compression ratio is as good as 47% (58%) for the adpcm. As the dictionary grows, the compressed code becomes
smaller, but the dictionary itself influences more in the compression ratio. On average, the compression ratio for this set
of benchmarks is 70% (or 74% if the dictionary is counted). On average, the dictionaries represent up to 5% of the
compressed code, depending on their sizes and combination used.
When we use only the dictionary for inner-loops (first data column, e.g. Outside = 0) the compression is simply
unexpressive. Note that, as the inner-loop dictionary increases, the compressed code (without counting the dictionary
size) is not influenced. This revels that increasing the inner-loops dictionaries sizes do not imply in more compression
and then it is not suitable to use a big dictionary here.

Table 2: Compression Ratio for adpcm_dec for various dictionaries sizes
Outer 0 32 64 128 256

Inner w/o w w/o w w/o w w/o w w/o w
0 100 100 61 62 58 61 53 59 47 58
32 99 100 60 63 57 61 53 60 46 58
64 98 101 59 63 56 62 52 60 45 59
128 98 104 59 66 56 65 52 63 45 62
256 98 109 59 72 56 70 52 69 45 62

 8

Table 3: Average Compression Ratio
Outer 0 32 64 128 256

Inner w/o w w/o w w/o w w/o w w/o w
0 100 100 80 81 78 79 75 77 70 74
32 99 100 80 81 78 79 74 77 69 74
64 99 100 80 81 77 80 74 77 69 75
128 99 101 79 82 77 81 74 78 69 76
256 99 103 79 85 77 83 74 81 69 76

The next experiments show how performance is affected by code compression. In fact, the most compressed is the
code, the less instructions are fetched from the main memory (due to cache hit ratio improvement). The memory
latency is also a factor to be considered: the slower the main memory, the better is the benefit of compression, as we do
not need to wait for the original amount of fetches, but just the compressed one.
 We have also selected the performance measurements for a set of dictionaries sizes combinations. As some
applications require an inner-loop dictionary smaller than 66 instructions (see Table 1) we used a 64 entry dictionary
for the inner-loops to observe the influence of the outside dictionary on performance. Figure 5 shows the speed-ups
obtained.
Note that performance is rarely affected by the outside inner-loops dictionary. Then, the inner-loop dictionary is
responsible for the performance benefits of the compressed code.
This figure depicts also the magnitude of the performance benefits we can obtain with code compression. On average,
1.5 is the speed-up for a 64/256 (inner/outside) dictionaries sizes combination.
To realize how good this dual selective approach is comparing it with others, we measured the performance and
compressibility of the same benchmarks without selectivity. We compressed all the code with only one SD and also
with only one DD. These dictionaries have 256 entries and are strongly optimized for area and performance benefits,
respectively.

0,5

1

1,5

2

2,5

64/0 64/64 64/128 64/256

dictionary sizes
(inner/outer)

sp
ee

d-
up

adpcm_e (cache size
= 128bytes)

adpcm_d (128)

cjpeg (1k)

djpeg (512)

pegwit (1k)

search (2k)

Figure 5: Performance speed-ups

 9

1,4

1,5

1,6

SD DD 64/256 64/128 64/64

dictionary used
(inner/outer sizes when apply)

sp
ee

d-
up

Figure 6: Speed-ups comparison

70

75

80

85

90

SD DD 64/256 64/128 64/64

dictionary used
(inner/outer sizes when apply)

C
om

pr
es

si
on

 ra
tio

Figure 7: Compression ratio comparison

Figure 6 shows the comparative results for performance for a set of dictionaries sizes combinations. Observe that with
selectivity (64/256 combination) we outperform the results obtained for SD. Even with a smaller area used by the
dictionaries (64/128 case, compared with the 256-entry SD) we still outperform the SD approach and, in a case where
we halve the number of dictionaries entries with selectivity (64/64 compared to 256 for SD), we still have the same
performance of the SD.
For the DD, which is a specialized dictionary for performance, this approach is not as good. But unfortunately, the
penalty we have to pay for performance using the DD is a small compression as we can see in Figure 7. The DD do not
have a good compression ratio compared to the SD. The dual selective approach, on the other hand, is almost as good
as SD for compression.

 10

Thus, we conclude that, using dual selectivity, we can have good performance and at the same time we save memory
area for the code, approaching the best results simultaneously.
Another conclusion is that using smaller dictionaries than the usual 256-entry is not so prohibitive, neither for
performance nor for chip area savings.
This is the first approach with selectivity (using inner-loops) to promote performance improvement and it is
independent of the compression method utilized. In this paper we are not comparing the performance of the
ComPacket method in terms of compression or performance to other PDC approaches, as it is not introduced here. In
fact, we used ComPacket just to compare the pure static and pure dynamic approaches with this mixed one.
Comparing with our former method [5], which builds only one dictionary based on static and dynamic measurements,
the dual selective approach, introduced here, reached similar result for compression and performance with smaller
dictionaries.

7. DISCUSSION

This method is as good as the application is loop-intensive. One of its drawbacks is for applications that do not use
inner-loops very often, like susan, and dijkstra, others benchmarks from the suites utilized. We still have to cope with
the problem of selecting instructions from the inner-loops when they do not fit in a small dictionary like those used by
the ComPacket. By this time we simply used a DD approach, but maybe some traces inside the inner-loops could be
priority.
As far as this selective approach is used in other compression method, the 256-entry dictionary limit can be relaxed. In
fact, ComPacket indexes codification limits the maximum dictionaries sizes to be used. This small dictionary size, on
the other hand, is important not to impact the total compressibility of the code and to make it fast to fetch instructions
from the dictionary.
The dictionaries are supposed to be loaded from each application memory footprint. This will happen in the beginning
of the execution which means that the performance penalty over millions of executed instructions is just inexpressive.
This is reasonable in embedded systems, as far as the applications are well known at design time and trend not to
change over time.
Performance improvements come from the compressed instruction in cache, avoiding main memory fetches, usually
slow. In fact, compression will improve spatial locality in cache, which implies that we can reach better performance
with compression or we can use smaller caches and still reach the same performance as before.
A key aspect in performance comes from the fact that introducing a decompressor between cache and processor will
probably consume clock cycles. Nevertheless, the implementation of the ComPacket method in FPGA [6], integrated
the decompressor with the processor pipeline so that no extra cycle is necessary to decompress an instruction. In this
scenario the decompressor itself does not implies in performance penalties.
Energy consumption is another key aspect in embedded systems and uses to follow the behavior of the performance (as
far as main memory accesses are reduced, and energy per accesses is still the same) when using code compression, so
that we believe that this method will help in energy savings as well.

8. CONCLUSIONS

So far we have presented a selectivity approach to code compression to enhance the performance of the system without
paying the also restrictive price of area in embedded systems. Our dual selectivity favors performance by allocating a
specialized dictionary for the inner-loops of an application, thus providing better hit ratios for the cache system.
Another specialized dictionary is used for the other regions of the code to guarantee a good compressibility.
Using the leon (SPARC v8) platform and benchmarks from Mediabench and MiBench suites we reached, on average,
25% of code memory area reduction, and a speed-up of 1.5 simultaneously. We believe that energy consumption will
also benefit much by the code compression usage, and this is one of future works.

References

 [1] A. Wolfe and A. Chanin, Executing Compressed Programs on an Embedded RISC Architecture. In Proc. of
ACM/IEEE Annual International Symposium on Microarchitecture, pp. 81-91, Nov. 1992

[2] D. Kirovski, J. Kin and W. Mangione-Smith. Procedure Based Program Compression. In Proc. of ACM/IEEE
Annual International Symposium on Microarchitecture, pp. 194-203, Dec. 1997

[3] T. Kemp, R. Montoye, D. Auerbach, J. Harper, J. Palmer, A Decompression Core for PowerPC, IBM Journal of
Research and Development 42(6):807-812, Sep. 1998.

 11

[4] G. Araujo, P. Centoducatte, R. Azevedo, and R. Pannain. Expression tree based algorithms for code compression on
embedded RISC architectures. IEEE Transactions on VLSI Systems 8(5):530-533, Oct. 2000

[5] E. W. Netto, R. Azevedo, P. Centoducatte, and G. Araujo. Multi-profile based code compression. In Design
Automation Conference, DAC04, 2004 pp 244-249

 [6] E. Billo, E. W. Netto, R. Azevedo. Design of a Decompressor Engine on a SPARC Processor. Submitted to SBCCI
05

[7] C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: a tool for evaluating and synthesizing multimedia
communication systems. Pp. 330–337, Dec. 1997.

[8] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, and T. Mudge. Mibench: a free, commercially representative
mbedded benchmark suite. In Proc. of the IEEE 4th Annual Workshop on Workload Characterization, pp. 3–14,
Dec. 2001.

[9] L. Benini, A. Macci and A. Nannarelli, Cached-code compression for energy minimization in embedded processor.
Proc. of ISPLED’01. pp. 322-327, Aug 2001

[10] H. Lekatsas, J. Henkel and V. Jakkula. Design of one-cycle decompression hardware for performance increase in
embedded systems. Proc. of DAC’02. pp. 34-39, Jun 2002.

[11]S. Debray and W. Evans, Profile-guided Code Compression, In Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and implementation, 37(5):95-105 Jun 2002.

[12]Y. Xie, W. Wolf and H. Lekatsas, Profile-driven Selective Code Compression, In Proc. of the Design, Automation
and Test in Europe Conference and Exhibition, pp. 462-467, Mar 2003

 [13] G. Gaisler. Leon. [OnLine], Oct. 2003. Available: http://www.gaisler.com.

