Developing Mobile Agent-Based Applications

Fabiana P. Guedes, Patricia D. L. Machado and Vivianne N. M edeir os'
Federal University of Campina Grande, Systems and Computing Department
Campina Grande, Brazil, 58109-970
{ fabianap,patricia,vivianne} @dsc.ufcg.edu.br

Abstract

Issues related to devel oping distributed applications based on mobile agents are discussed. Up to now, the majority
of existing mobile agent-based applications have been created in an ad-hoc way, following little or no methodol ogy.
One reason is that current development models do not properly cover requirements and aspects of mobility in the
modeling, designing and verification of such applications. We present a methodology of devel oping mobile agent-
based applications that is based on the standard iterative and incremental unified process, the use of mobile agent
design patterns and issues that should be considered in the activities of analysis and design. Artifacts are produced
using an extension of the Unified Modeling Language (UML) that copes with mobility. A case study is presented to
illustrate the applicability of the model.

Keywords: mobile agents, unified process, UML, design patterns, distributed applications.

! Thiswork and its authors are supported by CNPq, process 552190/2002-0. First author was supported by CAPES.

1 Introduction

Agents are software units that can execute particular tasks and deal with environmental changes through autonomy,
intelligence, mobility, cooperation and reactivity. Particularly, mobile agents are autonomous software entities that
can migrate to different physical locations and continue its execution at the point where it stopped before migration.
Regarding distributed applications, the main advantages promised by mobile agents are reduction of network traffic,
load balancing, fault tolerance, asynchronousinteraction, dataaccess|ocality and flexible distribution of intelligence
inanetwork [13,18,12]. The growing interest in mobile agent technology has been motivated by its potential useina
number of application areas including electronic commerce, information gathering and dissemination,
telecommunication systems, customizable services and monitoring systems [18,9,23].

Mobility provides clear advantages as a programming concept as well as a software devel opment technol ogy.
Several mobile agent platforms have been developed, particularly based on the Java Language [13,18,10]. Also, a
number of case studies have demonstrated the applicability of mobile agents[9,23,1,12,6]. Nevertheless, up to now,
the majority of existing mobile agent-based applications have been created in an ad-hoc way, following little or no
methodology. One reason is that current development models do not properly cover requirements and aspects of
mobility in the modeling, designing and verification of such applications. Clearly, software agentsimpose profound
chancesin current software development methodol ogies and techni ques [24,19,12].

Some approaches toward a methodology for devel oping multi-agent systemsfocusing on patterns of interaction
and cooperation have aready been proposed [24,20,19]. Nevertheless, mobility has not yet been appropriately
considered in a software development process as awhole, even though some important attempts focusing on specific
activities, techniques and notations have already been made. The use of components for modeling mobile agentsis
explored in [25]. An abstract notation for modeling mobile applicationsis presented in [3]. The approach presented
in [12] focus on modeling mobile agent systems using an extension of UML. The concept of context dependent
coordination for mobile agents to simplify design and help deployment of Internet applicationsisintroduced in [2].
Tahara et d [22] proposes that design be split into two activities: platform independent architectural design and
platform dependent detailed design, where design patterns are applied at appropriate abstract levels. Nevertheless,
more complete approaches covering thoroughly disciplines of analysis, design, implementation and testing are still
needed aswell as substantial case studies using such approaches.

In order to contribute for a practical use of mobile agent concepts and technology according to a software
engineering discipline, the main objective of this work is to provide a methodology of developing mobile-agent
based applications. The methodology is intended for being used as part of process models based on the standard
iterative and incremental unified process [11,14]. Also, the methodology applies mobile agent design patterns as
suggested by Tahara et a R2] and an extension of UML that copes with mobility given by Klein at a [12].
Moreover, the methodol ogy addresses i ssues that should be considered in the activities of analysis and design. Since
mobile agent-based applications are usually built on different platforms and current platforms are evolving rapidly,
detailed design is also split into two activities: platform independent and platform dependent. The former focuson
the detailed logical design of the application whereas the second focus on detailed design decisions related to a
specific platform chosen to implement the application. A case study is used to illustrate the main ideas presented.

The paper is structured as follows. Section 2 describes the methodology proposed and its main phases and
disciplines. Platform dependent design is based on the Grasshopper platform [10]. Section 3 presents a case study
focusing on the activities of analysis and design. Finally, Section 4 presents concluding remarks and pointers for
further work. We assume the reader to be familiar with basic concepts of mobile agents as presented in [7] and the
unified process[11].

2 A Development M ethodology

In this section, we introduce a methodology of developing mobile agent-based applications that is based on the
widely used unified process, focusing on the use of UML and design patterns. Moreover, it applies and extends the
ideas presented by Tahara et a [22] on the design of mobile agent-based applications by applying patterns according
to specific architectural levels, where, to maximize reuse, higher levels areindependent of specific agent platforms.
An extension of UML proposed by Klein et al [12] is used to allow for a proper abstract modeling of aspects of
mobility. Figure 1, presents the model to be followed and its main disciplines. The model is iterative and
incremental, i.e., it iscomposed of a number of iterations over the time that produces an incremented version of the
system.

The need for amodel of devel oping mobile agent-based applicationsis evident. It isbeen widely accepted that
current methodologies and techniques are not suitable for developing agent-based applications 4,20,19,5].
Modeling and designing such applications involve additional issues and decisions not faced in ordinary object-
oriented software development and even conventional client-server systems development. At design level, specific

2

mobile agent patterns can be used to represent solutions to be implemented in different agent platforms. Additional
concepts have to be dealt with: mobile agent, stationary agent, agency and region, agent mobility, cloning and so on.

& Fundiondity Ikerationn
Iheraion 2
e
Ikerabon 1 TR
-__. £ -H'-\. =
Irception and E laborakion i
o -"-F.. £
Refire | |artitechurd | |Matfam Independent | |Fatform Dependent :
Requiremerts Analysis Desicn Diesion B o Implementation Tesk

Figure 1: Mobile Agent-based Development Model.

The original contribution of this paper is to present a more complete methodology of devel oping mobile-agent
based applications that combines and extends ideas presented in previous works, according to widely used software
engineering practices. Current approaches to devel op agent-based software do not satisfactory explores mobility.

The main disciplines of the model shown in Figure 1 are briefly described. For a more complete presentation,
see [8]. The aim of the inception and elaboration phase, as in the unified process, isto delimit the scope of the
project, investigate problem domain and identify functional and non-functional requirements. In order to guarantee
that the requirements are acquired without directing to specific solutions, it is strongly advisable not to consider
mobile agent concepts. Typical artifacts produced are: software development plan, business case, requirements
specification, glossary, systems architecture, preliminary conceptual model and prototypes (usually optional). The
construction phase consists of analysis, design, implementation and test disciplines. They are presented in the next
sections. Asthe project reaches initial operational capability, it enters thetransition phase asin the conventional
unified process.

2.1 Analysis

The main objective of this discipline is to produce a high-level model of the problem domain that can be used by
both stakeholders and designers according to the scope of the current iteration. Documents such as business case,
functional and non-functional requirements, use case diagrams and project plan are common entries. The main tasks
to be performed involve detailing use cases (basic and alternate flows, preconditions and postconditions), creating
activity diagrams, a conceptual model (class diagram representing domain concepts) and a glossary as well as
validating them. The behavior of the system can be more precisely specified, for instance, by system sequence
diagrams and by system operation contracts [14]. These activities are executed as usual in our methodology, expect
from the fact that we must take special care when dealing with agents and mobility.

2.1.1 Detailing Use Cases

A detailed specification of use cases usually includes: name, actors, description, basic and alternate flows,
preconditions and postconditions [14].

2.1.2 Defining a Conceptual Model

A conceptual model (also called domain model) illustrates concepts in the problem domain without referring to
particular solutions. It isdesirable for this model to be generic enough to allow for different solutionsto be chosen.
For instance, if concepts related to mobile agents are unnecessarily used early in the devel opment process, thereisa
risk of limiting the number of possible solutions to the ones involving mostly mobile agents. So, we recommend
avoiding using them at analysislevel.

Autonomous entities are the ones that are responsible for performing a particular task and indeed exist in the
problem domain. The objective of modeling them at analysis level is to capture autonomy and mohility in the
problem domain whenever they really exist and appropriately document them. It isimportant to remark that there
should be no compromise to implement this entity as a mobile agent and it should not limit the number of possible
solutions. On the contrary, this should lead to a bigger number of feasible possible solutions — also including the
ones that involve mobile agents. Experience has shown that the gap between conventional object-oriented analysis
and mobile agent-based design can be too large, since the former is based mostly on sequence and message passing,
not properly capturing other aspects of the system [3,19,20]. Thisisacontroversial matter that is out of the scope of
this paper.

2.1.3 Specifying Contracts for System Operations

Contracts describe the outcome of executing asystem operation in termsof state changesto domain objects[14]. Use
cases are generally used to describe system behavior in the unified process. However, in some cases, it can be of

great value to detail information from particular operationsthat are part of ause case. Contracts are usually created,

at the level of detailed analysis or high-level design, for each system operation that emerge when sequence diagrams
are created for expressing the behavior of use cases. They can be seen as artifacts in the intermediate level of

analysisand design. At design level, concrete concepts such as mobile agents are used.

A contract may include the following information: operation name, arguments and responsibility, exceptional
conditions, output, preconditions and postconditions. Preconditions are noteworthy assumptions about the state of
the system or objectsin the conceptual model. Postconditions represent the state of objectsin the conceptual model
after completion of the operation. Larman [14] has categorized postconditions as instance creation and deletion,
attribute modification and associations formed and broken (UML links). Concerning mobile agents, we suggest that
further categories be considered at design level: agent migration, agent cloning, agent deactivation and agent
activation.

2.2 Design

In thisdiscipline, analysis models are extended and refined to provide afeasible solution to the system, considering
functional and non-functional requirements. Due to particularities of mobile agents technology, in the model
presented in this paper, thisdisciplineisdivideinto three sub-disciplines. platformindependent architectural design,
platform independent detailed design and platform dependent detailed design. This is based on the ideas presented
by Taharaet a [22]. There, agent-based systems are designed according to the following levels. macroarchitecture—
high-level architectural design independent of platforms — and microarchitecture — detailed design and agent
behavior specialized in each platform to ke considered. In our model, the architectural design and platform
dependent detailed design disciplines corresponds to the macroarchitecture and microarchitecture design levels
proposed by Tahara et al. The main difference between the two models is that we included a platform independent
detailed design discipline where an extension of UML is used to model the detailed logical design of the system,
independently of particular platforms. Also, we consider a slightly different classification of patterns as platform
independent or dependent as in [13]. As mentioned before, this division is motivated to promote design reuse and
also because mobile agent-based applications may be required to run on different platforms. The disciplines of
design are presented in the next sections.

A mobile agent has the unique abilities to transport itself (code and state of execution) from one system in a
network to another and also create a clone of its own whose execution begins at the point of the cloning. An agent
system, or simply agency, is a running agent platform that can create, interpret, execute, transfer and terminate
agents. Thisis usually associated with the authority of a person or organization. To move from one agency to the
other, agents must have specia permissions.

2.2.1 Architectural Design
Architectural design represents an outline of the system. Particularly, in a mobile agent-based development, it

4

presents agent behavior patterns. When applying these patterns, it isimportant to take functional and non-functional
requirementsinto account in order to guaranteethey arefulfilled. The main tasksto be performed are: decomposing
the system into layers and partitions (conventional layered or partition architecture) and/or modeling agent behavior
for the main scenarios according to specific architectural design patterns (behavior diagram).

Architectural, or macroarchitectural, mobile agent behavior patterns are usually classified as: mobility and task
patterns [13,22]. Mobility patterns are applied when agents perform atask while moving in achain of agencies. The
intention isto allow for an efficient use of network resources. On one hand, it is advantageous to access resources
locally. On the other hand, costs of moving agents must be taken into account. Moreover, encapsulation of mobility
management is usually addressed in order to improve the quality of design. Task patterns are used to specify how
agents should interact in order to perform atask. In generd, tasks can be dynamically assigned to agents. Also, a
given task can be performed either by asingle agent or by a group of agentsworking in parallel and cooperating.

A behavior diagram presents a high level view of the combination of agent behavior patterns used to design the
system according to specific scenarios. For the sake of simplicity, we use an informal notation to present such
diagramsin Section 3. However, we recommend the use of an established notation to describe the architecture of
interconnected systems such as UML-RT [21]. Behavior diagrams can be composed of blocks that represent hosts
and servers and arrows that represent client-server relations. Each host may hold a number of agencies that are
represented by rectangles. Agents that run on specific agencies are included in the rectangles. The blocks are
connected by dashed arrows to represent agent mobility, single arrows to represent agent creation and double arrows
to represent agent cloning.

2.2.2 Platform Independent Detailed Design

The objective isto produce a specification of alogical design independently of any specific maobile agent platform.
Artifacts must reflect how agent behavior is implemented according to the architectural patterns chosen and the
functional and non-functional requirements. The main tasksinvolved in thisdiscipline areto refine classdiagramsto
include implementation concepts (mainly from patterns chosen) and elaborate interaction diagrams to show how
operation contracts are implemented and fulfill postconditions (see Section 2.1 for contracts).

Regarding class diagrams, agents are usually modeled as classes. However, when specifying an agent’s class, it
isimportant to decide for aminimum set of data that should migrate with the agent, since the size of an agent may
have a considerable impact on the performance of the whole system.

Regarding interaction diagrams, they areused asusual to illustrate sequences of interactions of the system. Two
kinds of interaction diagrams can be created: sequence and collaboration. For these diagrams, we use an extension
of UML proposed in [12] for modeling mobile agent-based applications. Thisextension introduces new elementsto
represent agencies, regions, agents, migration and cloning.

2.2.3 Platform Dependent Detailed Design

The main objective is to extend the logical specification produced in the platform independent design in order to
address design and implementation issues related to a specific agent system platform. Inthispaper, weillustrate this
discipline focusing on the Grasshopper platform [10]. As one would expect, complete and consistent artifacts of
analysis, architectural project and independent platform design are required as input criteria. The main tasks to be
performed arethefollowing: apply platform design patternsand refineinteraction and class diagramsto reflect these
patterns. Platform dependent patternsare usually categorized as: (1) refinement of patternsto include detailsrelated
to implementing them in the platform and (2) patterns related to issues such as communication, security and safety.
Regarding output criteria, it isimportant to check completeness and consistency of diagrams with respect to input
artifacts. For the lack of space, we briefly comment on mobility and communication in the platform.

Mobility. Mabile agent platforms can support two forms of mobility: strong mobility and weak mobility [4].
Strong mohility isthe ability of an agent to migrate with both code and execution state. Weak mobility istheability
of an agent to transfer code. In this case, code may be accompanied by some initialization data, but no migration of
execution state is involved. Due to JVM constraints (e.g. execution state of threads cannot be captured),
Grasshopper as well as the great majority of other platforms based on Java, does not support strong mobility. It
supports only weak mobility. Therefore, programmers need to create a mechanism to simulate strong mobility. A
Grasshopper agent must implement a method named live(). This method defines the agent behavior, i.e., the flow of
control executed by itsthread. In order to simulate strong mobility, this method can be split in execution blocks by
using conditional commands. Each block covers operations that have to be executed in agiven (type of) location. A
block finishes its execution by transferring the agent to another location.

5

Communication. The Grasshopper platform offers communication services that can be used according to specific
communication patterns. One desirable property of agent systems is to allow for transparent locality. In other
words, agents need not care about the location of the desired communication peer. This is implemented in
Grasshopper by a communication pattern named Proxy. Proxies are entities that intermediate communication
between client and server and are responsible for establishing the required connection. When a server is a mobile
agent, the proxy is responsible for finding out where the agent islocated. A client accesses a proxy by aloca call.
Then, the proxy forwards the call viathe communication channel to the server.

2.3 Implementation and Tests

Having a platform dependent detailed design, implementation consists basically of coding the necessary classes.

Testscan follow aprocess composed of thefollowing activities: planning, specification, construction, execution and
analysis of results [15]. These activities can be integrated with the analysis and design disciplines. We recommend
that unit testing, integration testing and functional testing as well as system testing to be performed. However, itis
very important to verify non-functional and structural aspects related to mobility, communication and security.

3 Case Study: Conference System

The case study presented in this paper, suggested by Cardelli [3], is about a conference reviewing system to manage
a virtual program committee meeting for a conference, including conference announcement, paper submission,
assignments to committee members and generation of review forms, paper review, report generation, conflict
resolution, notification, final versions and publication. It isimportant to remark that we follow the requirements
documented in [3].

As arequirement, most interactions must happen in absence of connectivity. For instance, it is highly unlikely
that all committee members will be continuously connected during review and conflict resolution. Also, refereesdo
not need to be continuously connected to fill forms that may require semantic checking. Review forms may be
forwarded to a chain of referees and must find their way back to the committee member that is responsible for it.
Moreover, the program chair must be freed from the task of following all operations involved in forwarding forms
and getting them back. The same appliesto reviewers. Another requirement isthat the system must handle multiple
administrative domains, since referees are geographically dispersed. Finally and not less important, to fully
automate all activities, forms must be active. This may guarantee that error-prone tasks such as collecting, checking
and collating pieces of information as well as distributing them are done efficiently. In this paper, we focus on
generating and distributing review forms and paper review.

For the lack of space, only a few artifacts of analysis and design are presented in a summarized way. A
complete presentation of this case study is given in [8]. Other case studies can be found in [17,16].

3.1 Analysis

In the following sections, the main activities and artifacts of analysisfor the case study are described.

3.1.1 Detailing Use Cases

After paper submission, the program chair collects submission forms together with attached papers and make the
necessary preparationsfor the reviewing processto begin. We defined 3 separate use casesfor thisasfollows. Note
that each committee member is also a reviewer. He/she may decide to review the paper directly, or to send it to
another reviewer.

Generate Form The program chair (actor) asks for the review process of a given paper to be started. For this, a
review form is created and a committee member is assigned to be responsible for the reviewing of the paper. The
form is sent to the committee member who isresponsible for forwarding it toN reviewers, whereN isthe number of
reviewers required. Review forms contain the paper and information on how to come back to the appropriate
committee member/reviewer.

Forward Form A reviewer (actor) receives areview form, opensit and decides to send it to another reviewer. He
may ask that the form come back to him once the review is completed. Theintention isthat each reviewer can check
the work of the subreviewers. Asan alternate flow, the reviewer receives aform, opensit and postpone his decision

6

of either reviewing the paper or redirecting it.

Review Paper A reviewer (actor) receives a form, opens it and decides to review the paper. After reading the
paper, the reviewer fillsin the form fields and releasesit. The form returns, by default, to the program chair, unless
an intermediate reviewer wishes to check the review. Asan alternate flow, the revi ewer may decide to complete the
review latter.

3.1.2 Defining a Conceptual Model

A high-level conceptual model of the conference system is presented in Figure2, representing the main conceptsand
their relationships.

FAMIES
Chair Conferance
has
g anizes fa.s
Program Committes Faper
comgosed of
aftackes
= e i ped Oy
Comiteehdember
forwam's
filed' by
Reeview Form Rewierer

Figure 2: Conference System: Conceptual Model.

3.1.3 Specifying Contracts for System Operations

The Generate Form use case gives rise to a system operation named generateForm(). A brief description of a
contract for this operation is given as follows. This operation is responsible for creating a form review
(ReviewForm) and delivers it to a committee member, responsible for forwarding it to N reviewers. As
preconditions, (1) avalid paper submission must exist, (2) the target committee member identification must bevalid,
and (3) the number of reviewers must be a valid positive and nortzero integer N. As postconditions, (1) a
ReviewFormiscreated, (2) thereview formissent to the committee member, and (3) the committee member creates
N-1 copies of the form. As exceptional conditions, the committee member may not be ready to receive the
ReviewForm In this case, the system must try to send the form again after a certain period of time. And, after a
certain number of trials, an error must be reported.

3.2 Design

In this section, a mobile agent-based design to implement the case study is presented. A mobile agent named
ReviewFormAgent is created to model an entity responsible for moving a ReviewForm through the chain of
reviewers. A stationary agent named Chair Agent is created to act in the behalf of the program chair and freed he/she

7

from the task of controlling the ReviewFormAgent agents.

3.2.1 Architectural Design

In Figure 3, an agent behavior diagram illustrates the review process. A combination of mobility patterns called
Itinerary and Branching is used [13]. Also, cooperation is defined by the master-dave task pattern, where
ChairAgent is the master and ReviewFor mAgent agentsare daves. Chair Agent isresponsiblefor creating an agent—
ReviewFormAgent — to conduct the review of each article and get back the results when the review finishes (the slave
is back). ReviewFormAgent is defined as a mobile agent that migrates from one agency to the other to perform the
reviewing task, according to an itinerary that is defined in the reviewing process. This agent can be forwarded as
appropriated from onerefereeto the other and back to aprogram committee member. Program committee members
areresponsible for distributing an article to a number of reviewers. Clones of the review form are sent to different
reviewers (branching). Business objects are kept in a database server and agent codebase iskept inaHTTP server.

ETTE Server Distobase Server

bzernt

| .
|l
*
i

Commnattee Manbey Compriter Frogran Char Congriter

Covnnatee Meanber Agency Progran Char Congrier
. 1: aeate
done i L
Bussimess

Foompuzent’ Rm‘-.-l‘onn.a.“rud 1- ¥ Fent Chairdgent Chjects

. '-R.Ei.w.'l'un'n.ﬁ.fad'

E

log

i
T

n

4.7 mome”, .
. 7 3T mome
4" mome b

-

.-'K :
h]
_ ’ _ e T e
' .
.
! .

Reviney Cmu&*r{»" S Reviwer Comrpratey Reviwer Compuer

T
1 o

Reﬂiew‘lir Age;xmjl 1 ReLi_ewer Axemep 2 Fewewer doenep 3

f ‘; e ffi”i‘_"’_*___--fx

RevewFoomdgend' ReviewFoomd pert Reuew Foomnd et

Figure 3: Conference System: Agent Behavior Diagram.

3.2.2 Platform Independent Detailed Design

Figure 4 shows the final part of a sequence diagram for the generateForm() operation, considering the patterns
chosen. The program chair actor reguests to the Chair Agent that areview form be created for a given paper and be
sent to agiven committee member. For this, Chair Agent interactswith an external object Conference tocollect data

8

about the conference and also with its agency to request creation of a ReviewFormAgent. This agent creates its
itinerary and migrates to the committee member agency.

Mobility and task patterns are detailed as follows.

Mobility patterns. Encapsulation of mobility management is usually addressed in order to improve the quality of
design. As previously mentioned, in our case study, avariation of theltinerary patternisused. Anobjectltinerary is
responsible for keeping information about next destinations. Being an autonomous mobile entity, an agent is capable
of navigating itself independently to multiple hosts. In this case, it should be able to handle exceptions such as
unknown hosts while trying to be dispatched to new destinations. It might even need to modify its itinerary
dynamically. Therefore, the idea is to shift the responsibility for navigation from the agent object to an Itinerary
object. The itinerary class will provide an interface to maintain the agent itinerary and to dispatch it to new
destinations[13].

The itinerary pattern has been used to represent ReviewFormAgent destinations. Actualy, an itinerary is built
asthis agent navigates to represent the path it has to follow on hisway back to the program chair host. Thisisdueto
the requirement that reviewers may require to check subreviewerswork as presented in Section 3.1. From Figure3, a
ReviewFormAgent agent migrates to a committee member’s agency and clone itself according to the number of
reviews required. Committee members interact with this agent to forward them to reviewers. Usually, committee
members require the agent to visit his agency on its way back to the program chair agency. As mentioned before,
reviewers can either review the paper or forward it to another reviewer.

Task patterns. In our case study, we opt for a pattern cdled Master-Save. In this pattern, a master agent creates
slaves that migrate to remote agencies in other to perform atask. Slaves come back to the master agency with the
results produced. This explains why we decided to model the Chair agent (master) as a Stationary agent.
ReviewFormAgent mobile agents are slaves (see Figure 3).

== ggency == =< agency ==
AnentSy stern gency: AgentSy sfe

<~ stationary agent->

1: crea‘[eAgent(cnrrrerenceDal‘a, registerData)

1 create_g_) <<mobile agent->
BeviewF onmAgent

}1].1.1: initialzeTask

e—
1.1.1.1; crgdteltinera (thgg. ExtDestinatio n)

1.1.2 ga

127 mowe

R T R N N i
ol

Figure 4. Conference System - generateForm() operation - Platform independent sequence diagram.

3.2.3 Platform Dependent Detailed Design

In our case study, based on the Grasshopper platform, Chair Agent has to interact with Conference in order to get
information about the conference that the ReviewFormAgent needsto carry. ChairAgent hasalso to interact withits
agency to request an agent ReviewFormAgent to be created. Due to the use of the proxy pattern, new classes and
associations emerge in the project. Sequence diagrams produced in the platform independent design need to be
expanded to include proxy objects. An extension of part of the diagram in Figure 4 is presented in Figure 5 (see
AgencyProxy).

== Agency ==

— Chairhgency:
AgentSystem
. << stationany agent =
JAgencyProEy ;
LhairAgent
1. createR imﬁxFDrmAgent(agerﬁ.CnrﬁerenceDatalF, agents. ReviewRegisterData)
——
1.1: createdgent(” iewFormAgent”, cotiebase, placeMate, arguments)
.
oy
1.1: crgates gent(ReviewFormAgent”,| codebase, placeMamg larguments [siing classMame — the name of the class of the)
agent
String codebase —the location where unknown
classes should be loaded from

] String placetame —the place where the agent
should he created

Chject | arguments —the arguments passed to
the agent. Inthis case arguments =
{conferencelData, registerData).

1.1.1: create < <mobileagent->
Reviewt ormfgent

Figure5: Conference System - generateForm() operation - platform dependent sequence diagram.

4 Concluding Remarks

We present a methodology of devel oping distributed applications based on the mobile agent-based paradigm. Thisis
based on the widely used unified process, the use of UML and design patterns and also techniques and notations for
devel oping mobile agent-based systems. It isclear that, in order to promote the use of mobile agent-based concepts
and technology in practice, it is essential to have a well-defined methodology according to a software engineering
discipline together with case studies that illustrateits application. Therefore, the main contribution of thiswork isto
combine and extend ideas presented by previous works on techniques and notations for different stages of
developing mobile agent-based systems and give additional guidelines on how to proceed from analysis to detailed
design. Thisisillustrated by acase study. It isbeen widely accepted that current object-oriented methodol ogies are
not appropriate for devel oping agent-based systems.

The case study presented in this paper isimplemented in the Grasshopper platform. Along with communication
support, the platform also provides for safety and security [10]. Functional tests have been performedtoillustrate the
main scenarios described by use cases using both local and remote hosts (under Windows/Linux). The model has
also been used in a teaching course on advanced telecommunication systems development. Other two major case
studies have aso been produced using the model: “Monitoring changing conditions on a flight reservation/selling
system” and “Interoperability of distributed commercial corporations’.

As further work, the model needs to be completed and thoroughly validated. Disciplines such as Test have not

10

been properly addressed yet. We have mostly applied functional, unit and system testing as usual. Nevertheless,
thereis still little knowledge about how such applications, and even Internet-based applications, can be effectively
tested. We aso need to consider what metrics can be used to manage and evaluate the methodology and the quality
of its artifacts. Tool support has aso to be considered. We have used Rational Suite Enterprise (http:
/lwww.rational .com) for producing most of analysisand design artifacts. However, additional tools may be required,
particularly regarding UML extensions, test techniques, reverse engineering and code generation and documentation.
The use of formal notationsto specify contracts and patterns may allow for automatic functional tests generation and
precise analysis of design properties.

Refer ences

[1] M. C. Bernardesand E. S. Moreira. Implementation of an intrusion detection system based on mobile agents. In
I nter national Symposium on Software Engineering for Parallel and Distributed Systems (PDSE 2000). IEEE,
2000.

[2] G.Cadbri, L.Leonardi, and F.Zambonelli. Engineering mobile-agent applications via context-dependent
coordination. In Proceedings of International Conference on Software Engineering - ICSE’ 2001, 2001.

[3] L. Cardelli. Abstractions for mobile computation. In Proceedings of Secure Internet Programming, volume
1603 of Lecture Notesin Computer Science, 1999.

[4] A.Fuggetta, G.P. Picco, and G. Vigna. Understanding code mobility. IEEE Transactions on Software
Engineering, 24, 1998.

[5] A.F. Garcia V. T. Silva, C.J. P. Lucena, and R. L. Milidiu. An aspect based object oriented model for multi-
agent systems. In XVI Brazilian Symposium on Softwar e Engineering, 2001.

[6] R.H. Glitho, E. Olougouna, and S. Pierre. Mobile agents and their use for information retrieval: A brief
overview and an elaborate case study. | EEE Network, 2002.

[7] The Object Management Group. The Mobile Agent System Interoperability Facility. The Object Management
Group, Framingham, MA, 1997.

[8] F.P.Guedes. Um modelo parao desenvolvimento de aplicacfes baseadas em agentes moveis. Master’ sthesis,
P6s-Graduacdo em Informdtica, Universdade Federa de Campina Grande, 2002.
http: //iwww.dsc.ufcg.edu.br/~copin/ (banco de dissertactes).

[9] Hayzelden and Bigham, editors. Agents for Future Communication Systems. Springer, 1999.
[10] IKV++, Germany. Grasshopper Basics and Concepts. http: //www.grasshopper.de.
[11] 1. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Devel opment Process. Addison-Wesley, 1999.

[12] Cornel Klein, Andreas Rausch, Marc Sihling, and Zhaojun Wen. Extension of the Unified Modeling Language
for mobile agents. In Keng Siau and Terry Halpin, editors, Unified Modeling Language: Systems Analysis,
Design and Development | ssues, chapter 8, pages 116-128. | dea Publishing Group, 2001.

[13] B.D. Lang and M. Oshima. Programming and Deploying Java Mobile Agents with Aglets. Addison Wedley,
1998.

[14] C.Larman. Applying UML and Patterns- An Introduction to. Prentice Hall PTR, second edition, 2002.

[15] J.D. McGregor and D. A. Sykes. A Practical Guide to Testing Object-Oriented Software. Addison-Wesley,
2001.

[16] P.S. Medcraft, C. S. Baptista, and U. Schiel. DIA: Data integration using agents. In ICEIS 2003 - 5th
International Conference on Enterprise Information Systems. |CEIS Press, 2003.

[17] V. N. Medeiros. Desenvolvimento e verificagdo de aplicagOes baseadas em agentes moéveis. Technical report,
DSC/Universidade Federal de Campina Grande, 2002. Relatério de Conclusdo de Projeto de Pesquisa,
PIBIC/CNPg.

[18] D. Milgjicic, F. Doudlis, and R. Wheeler, editors. Mobility: process, computers and agents. ACM, 1999.

[19] J. Mylopoulos, M. Kolp, and J. Castro. Uml for agent-oriented software development: The tropos proposal. In
M. Gogollaand C. Kobryn, editors, Proceedings of UML 2001, volume 2185 of Lecture Notesin Computer
Science, pages 422—441, 2001.

[20] J.Odél, V. D. Parunak, and B. Bauer. Extending uml for agents. In Proceedings of the Agent-Oriented
Information System Wor kshop at the 17th National Conference on Artificial Intelligence, pages3—-17, Austin,

11

USA, July 2000.

[21] B. Selic and J. Rumbaugh. Using uml for modelling complex real -time systems. Technical report, Whitepaper,
03 1998.

[22] Y.Tahara, A. Ohsuga, and S.Honiden. Agent system development method based on agent patterns. In
Proceedings of International Conference on Software Engineering - ICSE’ 99, 1999.

[23] Venieris, Zizza, and Magedanz, editors. Object Oriented Software Technologies in Telecomunications. John
Wiley & Sons, 2000.

[24] M. Wooldridge, N. Jennings, and D.Kinny. A methodology for agent-oriented analysis and design. In
Proceedings of the Third International Conference on Autonomous Agents- Agents’' 99, 1999.

[25] M.-J. Yoo, J.P. Briot, and J. Ferber. Using components for modeling intelligent and collaborative mobile
agents. In Proceedings of the Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, WET ICE 1998. |IEEE, 1998.

12

