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Abstract

A circle graph is an intersection graph of chords in a circle. These graphs have been introduced
by Even and Itai in 1971 and were extensively studied. There are several characterizations for
this class. One of them uses the concept of local complementations and was proposed by André
Bouchet in 1994. In this thesis, we use the idea of this characterization to define a new class, which
generalizes circle graphs, and we call it Bouchet graphs. We prove that these graphs also generalize
interval graphs, and we find a characterization of the new class by 33 forbidden subgraphs, which
is obtained by using a computer program. As a consequence of this characterization, we show that
Bouchet graphs can be recognized in polynomial time. Finally, it is proved that there are 396
different formulations of Bouchet’s characterization theorem for circle graphs.



1 Introduction

Let G = (V (G), E(G)) be a graph. The neighborhood of a vertex v ∈ V (G) is the set N(v),
which consists of all the adjacent vertices of v. Let F be a finite family of nonempty sets. The
intersection graph of F is obtained by representing each set in F by a vertex, and connecting
two vertices by an edge if and only if their corresponding sets intersect. Circle graphs are the
intersection graphs of chords in a circle. Interval graphs are the intersection graphs of intervals in
the real line. A graph H is a forbidden subgraph for a graph class C if no graph in C contains
H as an induced subgraph. An undirected graph G is called triangulated if every cycle of length
strictly grater than 3 possesses a chord, that is, an edge joining two nonconsecutive vertices of
the cycle. A graph G = (V (G), E(G)) is a comparability graph if their edges can be oriented in
such a way that the resulting directed graph G′ = (V (G), D(G)) satisfies the following condition:
(u, v) ∈ D(G), (v, w) ∈ D(G)⇒ (u, w) ∈ D(G).

The local complementation of a graph G at a vertex v ∈ V (G), defined in [1] and denoted by
LC(G, v), is the operation which replaces the subgraph of G induced by N(v) by its complement.
Two graphs are locally equivalent if one of them can be obtained from the other by a sequence of
local complementations.
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Figure 1: Local complementation.

The following properties of the local complementation can be easily proved:

Property 1 Let G = (V (G), E(G)) be a graph and v ∈ V (G). Then LC(LC(G, v), v) = G.

Property 2 Let G and H be two graphs. G is locally equivalent to H if and only if H is locally
equivalent to G.

Property 3 Let G, H and I be three graphs. If G is locally equivalent to H, and H is locally
equivalent to I, then G is locally equivalent to I.

Let G and H be two graphs, such that G contains H as an induced subgraph. Let G′ and H ′ be the
resulting graphs of applying local complementation to G and H, respectively, at the same vertex.
The following property states that G′ also contains H ′ as an induced subgraph.

Property 4 Let G be a graph of m vertices {v1, v2, ..., vm} and H a graph of n vertices (m > n),
such that H is isomorphic to the subgraph induced by {v1, v2, ..., vn} in G. Let {w1, w2, ..., wn} be the
vertices of H such that the isomorphism holds after replacing vi by wi. Then, the subgraph induced
by {v1, v2, ..., vn} in LC(G, vi) is isomorphic to LC(H, wi).



Proof: We show that (vj , vk) ∈ E(LC(G, vi)) if and only if (wj , wk) ∈ E(LC(H, wi)), for i, j, k ≤ n.

Case 1: vj , vk ∈ N(vi)

Since vj , vk ∈ N(vi) and H is isomorphic to the subgraph induced by {v1, v2, ..., vn} in G, then
wj , wk ∈ N(wi). Therefore,

(vj , vk) ∈ E(LC(G, vi))⇔ (vj , vk) /∈ E(G)⇔
(wj , wk) /∈ E(H)⇔ (wj , wk) ∈ E(LC(H, wi))

Case 2: vj /∈ N(vi) or vk /∈ N(vi)

Since vj /∈ N(vi) or vk /∈ N(vi) and H is isomorphic to the subgraph induced by {v1, v2, ..., vn} in
G, then wj /∈ N(wi) or wk /∈ N(wi). Thus,

(vj , vk) ∈ E(LC(G, vi))⇔ (vj , vk) ∈ E(G)⇔
(wj , wk) ∈ E(H)⇔ (wj , wk) ∈ E(LC(H, wi))

2

2 Bouchet graphs

There is no known characterization of circle graphs by forbidden subgraphs. Bouchet presents in [1]
a characterization that may contribute in this way, using the definition of locally equivalent graphs.

Theorem 1 A graph G is a circle graph if and only if no graph locally equivalent to G has an
induced subgraph isomorphic to one of the graphs depicted in Figure 2.

W5 W7 BW3

Figure 2: Graphs of Bouchet’s Theorem.

We define Bouchet graphs as follows:

Definition 1 A graph G is a Bouchet Graph if and only if no induced subgraph of G is locally
equivalent to W5, BW3 or W7 (Figure 2).

2.1 Generalization of circle graphs

First we prove that this new class is a generalization of circle graphs:

Theorem 2 Let G be a circle graph. Then, G is a Bouchet graph.



Proof: Suppose that G is not a Bouchet graph. Then, it must have an induced subgraph locally
equivalent to W5, W7 or BW3. Let H be such a subgraph and suppose that it is locally equivalent to
W5. There exists a sequence of k vertices vi1 , vi2 , ..., vik such that LC(...LC(LC(H, vi1), vi2)..., vik) =
W5. Thus, by Property 4, the graph G′ = LC(...LC(LC(G, vi1), vi2)..., vik) has W5 as an induced
subgraph. As G′ is locally equivalent to G, by Theorem 1, we obtain that G is not a circle graph.

Note that no peculiarity of W5 was used in this proof. It would be the same to use W7 or BW3

instead. 2
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Figure 3: Non-circle Bouchet graph.

Circle graphs are a proper subset of Bouchet graphs. Figure 3 shows a graph which is not a circle
graph —after applying local complementation first at vertex v and then at vertex w, the resulting
graph has W5 as an induced subgraph—, but which is an interval graph [3]. As it will be shown
later, interval graphs are also generalized by Bouchet graphs; therefore, this graph is a Bouchet
graph.

2.2 Characterization by forbidden subgraphs

It follows from the definition of Bouchet graphs that W5, BW3 and W7 are forbidden subgraphs
for this class. A simple procedure to obtain more forbidden subgraphs is to make local complemen-
tations of known forbidden graphs, using any of their vertices. Using a BFS algorithm, we closed
under local complementation W5, BW3 and W7, obtaining three families FW5

, FBW3
and FW7

. The
union of these families is the set of forbidden subgraphs which characterizes Bouchet graphs.

2.2.1 Family FW5

When we apply local complementation to W5, we must consider v0 on the one hand, and the
remaining vertices on the other (taking into account the labels of the vertices of Figure 4(a)). It is
clear that after applying local complementation at vertices v1, v2, v3, v4 and v5 the resulting graphs
are all isomorphic. As shown in Figure 4(b), the local complementation of W5 at v0 is isomorphic
to W5.

The local complementation of W5 at v1 yields the graph of Figure 5, which we call W51
. The local

complementation of W51
at any vertex yields W5 again.

The result of closing W5 under local complementation is the family FW5
, composed of the two graphs

of Figure 6. The transition between its members by local complementation is given in Table 1 1.

1If entry (i, j) of the transition table is G, it means that after applying local complementation to graph i at vertex
j, the graph obtained is isomorphic to G —not necessarily with the same labelling of vertices.
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Figure 4: (a) Graph W5; (b) LC(W5, v0).
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Figure 5: Local complementation of W5 at v1.

2.2.2 Families FBW3
and FW7

In the same way, we closed under local complementation BW3 and W7, obtaining families FBW3
(9

graphs) and FW7
(22 graphs). These results are summarized in Figures 7, 8 and 9, and in Tables 2

and 3. They were obtained using a computer program.

A characterization by a finite set of forbidden subgraphs, each of them with a bounded amount of
vertices, gives us a polynomial time recognition algorithm for Bouchet graphs. A graph G belongs
to this class if and only if no induced subgraph of G is isomorphic to any graph in FW5

∪FBW3
∪FW7

.
As the number of vertices of these graphs is bounded by 8, this can be checked in O(n8).

2.3 Minimal set

The union of families FW5
, FBW3

and FW7
conforms a minimal set of forbidden subgraphs that

characterizes Bouchet graphs. In order to prove the minimality of the set, we must show that none
of its forbidden subgraphs is a proper induced subgraph of other one. Considering the amount of
vertices of the graphs of each family, it is enough to see that no graph in FW5

is an induced subgraph
of any graph in FBW3

∪ FW7
, and that no graph in FBW3

is an induced subgraph of any graph in
FW7

. Moreover, by Lemmas 1 and 2, it is only necessary to prove that neither W5 is an induced
subgraph of any graph in FBW3

∪ FW7
, nor BW3 is an induced subgraph of any graph in FW7

.

Lemma 1 Let G ∈ FW5
. If G is an induced subgraph of a graph H ∈ FBW3

∪ FW7
, then for every

graph G′ ∈ FW5
there is a graph H ′ ∈ FBW3

∪ FW7
such that G′ is an induced subgraph of H ′.

Proof: Suppose G ∈ FW5
is an induced subgraph of H ∈ FBW3

∪ FW7
.



W5

v0 v1

v4

v3 v2

v5

W51

v0

v1

v2

v3v4

v5

Figure 6: Graphs of family FW5
.

v0 v1 v2 v3 v4 v5

W5 W5 W51
W51

W51
W51

W51

W51
W5 W5 W5 W5 W5 W5

Table 1: Transitions of Family FW5
.

Let {v1, v2, ..., v6} be the vertices of G, and {w1, w2, ..., w6} the vertices of H that induce the
subgraph isomorphic to G. Suppose also that the isomorphism holds after replacing vi by wi

(1 ≤ i ≤ 6).

Since both G and G′ belong to FW5
, there exists a sequence of k vertices vi1 , vi2 ..., vik of G such

that: G′ = LC(...LC(LC(G, vi1), vi2)..., vik). By Property 4, the graph H ′ = LC(...LC(LC(H, wi1),
wi2)..., wik) has G′ as an induced subgraph. As H ′ is locally equivalent to H, H ′ belongs to
FBW3

∪ FW7
. 2

The following lemma can be proved analogously:

Lemma 2 Let G ∈ FBW3
. If G is an induced subgraph of a graph H ∈ FW7

, then for every graph
G′ ∈ FW5

there is a graph H ′ ∈ FW7
such that G′ is an induced subgraph of H ′. 2

Using a computer program we could verify that none of the graphs in FBW3
∪ FW7

has W5 as an
induced subgraph, and none of the graphs in FW7

has BW3 as an induced subgraph. Thus, the set
FW5

∪ FBW3
∪ FW7

is a minimal set of forbidden subgraphs.

2.4 Generalization of interval graphs

Interval graphs were characterized by an infinite set of forbidden subgraphs in [4]. The following
theorem, due to Gilmore and Hoffman[2], provides another characterization for this class:

Theorem 3 A graph G is an interval graph if and only if G is triangulated and G is a comparability
graph.

Using this theorem we prove that interval graphs are a subclass of Bouchet graphs.

Theorem 4 Let G be an interval graph. Then G is a Bouchet graph.
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Figure 7: Family FBW3
.
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Figure 8: First 16 graphs of family FW7
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.



v0 v1 v2 v3 v4 v5 v6 v7

W7 W721
W72

W72
W72

W72
W72

W72
W72

W71
W79

W79
W79

W79
W79

W79
W79

W79

W72
W715

W7 W74
W75

W77
W77

W75
W74

W73
W717

W712
W74

W74
W76

W77
W76

W712

W74
W712

W712
W72

W73
W73

W72
W78

W78

W75
W719

W713
W72

W72
W78

W710
W710

W78

W76
W718

W718
W78

W715
W715

W73
W73

W78

W77
W710

W72
W73

W73
W72

W72
W710

W72

W78
W710

W717
W716

W713
W75

W74
W712

W76

W79
W715

W715
W710

W711
W718

W71
W718

W711

W710
W79

W78
W78

W77
W75

W75
W712

W712

W711
W719

W719
W712

W712
W716

W716
W79

W79

W712
W718

W74
W719

W711
W73

W78
W715

W710

W713
W75

W75
W714

W714
W78

W78
W78

W78

W714
W713

W713
W713

W713
W717

W717
W717

W717

W715
W718

W72
W79

W79
W76

W76
W712

W712

W716
W721

W717
W78

W78
W717

W711
W711

W718

W717
W716

W716
W78

W78
W73

W719
W714

W719

W718
W715

W712
W76

W76
W712

W79
W79

W716

W719
W75

W720
W711

W711
W712

W712
W717

W717

W720
W719

W719
W719

W719
W719

W719
W719

W719

W721
W7 W716

W716
W716

W716
W716

W716
W716

Table 3: Transitions of family FW7
.

Proof: As we will see, none of the 33 forbidden subgraphs is an interval graph. Then, if a graph G
is an interval graph, it cannot contain one of the 33 forbidden subgraphs as an induced subgraph.
Therefore, G is necessarily a Bouchet graph.

Graph BW33
is the only triangulated graph in the set of forbidden subgraphs. Thus, by Theorem

3, none of the 32 remaining graphs is an interval graph.

We still have to see that BW33
is not an interval graph. In order to do it, we show that BW33

is
not a comparability graph, and again by Theorem 3, BW33

is not an interval graph.

It is not possible to find an orientation of the edges of BW33
such that it satisfies the comparability

property. Figure 10(a) shows BW33
. It is easy to see that there is no difference between any of both

possible orientations of edge (v4, v6). Considering orientation v6 → v4 (Figure 10(b)), (v2, v6) and
(v0, v4) must be orientated v6 → v2 and v0 → v4 respectively (Figure 10(c)). Then, the orientation
of (v4, v5) and (v5, v6) must necessarily be v5 → v4 and v6 → v5 (Figure 10(d)). Now, it is not
possible to orient (v1, v5) maintaining the comparability property. 2

Clearly, interval graphs are a proper subset of Bouchet graphs. For instance, C4 (a simple cycle
formed by 4 vertices) is a Bouchet graph, but not an interval graph.
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Figure 10: BW33
is not a comparability graph.

3 Generalization of Bouchet’s theorem

Using families FW5
, FBW3

and FW7
, we can prove that there are 396 equivalent formulations of

Theorem 1. First, we need the following lemma:

Lemma 3 Let G be any graph and GW5
∈ FW5

. Then, G is locally equivalent to a graph H that
has W5 as an induced subgraph if and only if G is locally equivalent to a graph H ′ that has GW5

as
an induced subgraph.

Proof: As GW5
∈ FW5

, there exists a sequence of k vertices vi1 , vi2 , ..., vik such that LC(...LC
(LC(W5, vi1), vi2)..., vik) = GW5

.

⇒) Suppose that G is locally equivalent to a graph H that has W5 as an induced subgraph. As W5

and GW5
are locally equivalent, by Property 4, the graph H ′ = LC(...LC(LC(H, vi1), vi2)..., vik)

has GW5
as an induced subgraph. Then, by Property 3, G is locally equivalent to H ′.

⇐) Now suppose that G is locally equivalent to a graph H ′ that has GW5
as an induced subgraph.

As W5 and GW5
are locally equivalent, by Property 4, the graph H = LC(LC(...LC(H ′, vik)...,

vi2), vi1) has W5 as an induced subgraph. Then, by Property 3, G is locally equivalent to H. 2

The following lemmas can be proved analogously:

Lemma 4 Let G be any graph and GBW3
∈ FBW3

. Then, G is locally equivalent to a graph H that
has BW3 as an induced subgraph if and only if G is locally equivalent to a graph H ′ that has GBW3



as an induced subgraph.

Lemma 5 Let G be any graph and GW7
∈ FW7

. Then, G is locally equivalent to a graph H that
has W7 as an induced subgraph if and only if G is locally equivalent to a graph H ′ that has GW7

as
an induced subgraph.

Finally, the generalization of the characterization for circle graphs is enunciated in the following
theorem:

Theorem 5 There are 396 possible formulations of Bouchet’s theorem for circle graphs, replacing
W5 by any graph in FW5

(2 graphs), BW3 by any graph in FBW3
(9 graphs), and W7 by any graph

in FW7
(22 graphs).

Proof: It is a consequence of Lemmas 3, 4, 5 and that 2× 9× 22 = 396. 2

4 Summary

A new class of graphs has been defined using the ideas introduced by André Bouchet in his theorem
of characterization of circle graphs. A characterization by a minimal set of forbidden subgraphs for
this new class was given here. It is important to remark the use of a computer program in this proof.
It was also shown that this class generalizes circle and interval graphs. It remains as further work
to study what happens in Bouchet graphs with those problems that in general are NP-Complete,
but have polynomial time solutions for circle and interval graphs. Last, but not least, it was proved
in this thesis that there are several equivalent formulations of Bouchet’s original theorem for circle
graphs.
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