
Temporal Versions Model

Mirella M. Moro, Nina Edelweiss, Clesio S. dos Santos
Universidade Federal do Rio Grande do Sul, Instituto de Informática

Caixa Postal 15064, CEP 91501-970, Porto Alegre, RS, Brazil

{ mirella, nina, clesio } @inf.ufrgs.br

Abstract
This work presents an alternative for the union of temporal data and a version model. The result,
the Temporal Versions Model, is able to store object versions and, for each version, the history of
its dynamic properties values. TVM is ideal for modeling time-evolving systems that need to
manage design alternatives as versions. One of the main features of our model is the possibility
of having two different time orders, branched time for the object and linear time for each version.
The model supports integration with existing databases, by allowing normal classes among the
temporal versioned classes. Finally, an approach to its implementation on top of a commercial
database within an integrated environment is presented.

Keywords: Temporal database, Versions model, time-evolving systems specification

1 Introduction
In design applications, different alternatives or versions of a project are kept in the

database. Historically, first researches about versions are related to the areas of CAD (Computer
Aided Design), CASE (Computer Aided Software Engineering), and SCM (Software
Configuration Management) [5, 9, 20, 28]. Nowadays, version concepts are spread over other
domains, such as concurrent projects, schema evolution, XML, and document versions [1, 4, 21].

A version describes an object in a period of time or from a certain point of view. Although
some design alternatives are stored as versions, not all the history of data chances is recorded.
Important modifications may have occurred whose related data are lost. The full history is only
accessible if a temporal database is used.

A temporal data model specifies both static and time-varying aspects of the application.
By definition, a temporal database must follow the principle that all data excluded by the user is
kept in order to preserve the complete data history. Many temporal models have been researched
and specified in the past two decades, most of them just extending conventional data models with
temporal features [6, 7, 11, 24, 25, 26, 27].

Handling versions (joining, separating, discarding and justifying wrong possibilities)
tends to decrease costs and improve quality of final products. In this context, presenting versions
with their respective temporal aspects has the advantage of getting design information related to
specific periods. The objective of this work is to bring together both versioning and temporal
features. The database stores the versions of an object and, for each version, the history of data
changes made in the values of its dynamic attributes and associations. This model is called
Temporal Versions Model (TVM).

TVM differs from other models because it presents two time orders (branched time in
objects and linear time in versions) and allows the user to define which properties will have their
history stored. This second feature is important for limiting the data space, allowing a better
performance. Furthermore, TVM has two important aspects: the user can specify the system
considering design alternatives as well as data history evolution; and he can merge TVM classes
with existing specifications, as the Model does not require that all classes are temporal versioned.

The use of a powerful temporal data model does not require a specific database
management system (DBMS) that supports it to implement an application. A tendency is to
implement the specific model on top of a conventional database through mapping of temporal
information to explicit attributes. Some experiences with mappings have been done and showed
their viability [11, 26, 27].

Thus, as an additional objective, an entire environment for supporting TVM is designed
[14]. Specifically, the mapping from the TVM base hierarchy to an object-relational database and
its implementation on top of a commercial database are detailed. The mapping is divided in two
parts: the representation of the model’s hierarchy, and the mapping of the application classes
[15]. Generic algorithms for mapping all operations from the TVM base hierarchy to the
underlying DBMS are detailed in reference [14]. Due to space limitations, this work presents a
summary of this mapping process and some interfaces for temporal versioned class definitions,
which create tables in a conventional database according to the TVM specification.

This paper is structured as follows. Section 2 briefly introduces some concepts of versions
and time. Section 3 defines the Temporal Versions Model. An environment for TVM on top of a
commercial database is presented in section 4. Section 5 illustrates a system specification using
TVM. Section 6 cites some related works. Finally, section 7 summarizes the main ideas of the
paper, discusses some future topics and shows other research issues that are based on the work
presented here.

2 Basic Concepts
This section briefly introduces the concepts of versioning and time. The concept of

version enables the user to keep different design alternatives. Versions can be defined as distinct
snapshots of an object under development, in different states, which share some identifiable
common characteristics. Considering an object-oriented database, there are two types of versions,
according to the level in which versioning is applied: class versioning (evolution of classes) and
instance versioning (modifications of the properties inside the instances). Only the second type of
versioning is considered in TVM.

Instance versioning implies that different versions of the same object differ only by the
value of some of their properties. However, only versioning is not enough to store all history
changes in instances with versions. Only those values that are identified explicitly by the user as
a new instance version are kept. The addition of the temporal dimension enables the storage of
the whole evolution of attribute and association values of the instances. Hence, the proposed
model (TVM) is based on concepts of instance versioning and time, allowing the storage of object
versions and, for each version, its lifetime and the history of all the changes made on its elements.

V1
V2

V3
V4

V5
V6

A
lte

rn
at

iv
es

Derivation and data history

Attribute X
20 25 35

01/01/2002
03/15/2002

05/20/2002

Figure 1. Alternatives X Derivation, and data history

Figure 1 presents the evolution of one generic versioned object, and how the derivation of
the alternatives (V1, V2, V3, V4, V5, and V6) are kept. Child versions represent design derivations
from a parent version, and sibling versions represent design alternatives. As this can overload the
storage capacity, the user can choose the elements for which he wants the whole history stored by
defining them as temporal. Furthermore, new versions are defined explicitly by the user, which
means that the system keeps changes inside the version history and creates a new version only if
the user requests it.

Figure 1 also shows the time-evolving behavior of a temporal attribute (X). Its value is 25
from 01/01/2002 on. Then, it changes to 25 on 03/15/2002, and finally, to 35 on 05/20/2002. All
these values are stored in the attribute history inside one object or version. In this figure, the
attribute history is inside version V6. The other versions have the same attribute X, but with other
values. So, the same attribute may have different values for the same versioned object,
representing the branched time order.

As data evolves, values may be associated with different timestamps. Valid intervals store
the history of an evolving reality, while transaction intervals store the sequence of temporal
classes states in the database. In bitemporal databases, all temporal values are associated with
both intervals.

3 Temporal Versions Model
In this section, TVM characteristics are presented separated in temporal features and

versioning features. A summary of the TVM class definition language is also shown.

3.1 Temporal Features
In TVM, time is associated to objects, versions, attributes and associations, allowing a

better and more flexible modeling of reality. The user can define attributes and associations as
static (when they do not have the values variation stored) or temporal (all the values changes are
stored creating their histories). A class may present attributes and associations of both types.

A temporal versioned object has a timeline for each of its versions. As more than one
version of the object may be available at the same time, two different time orders are supported
by TVM: (i) branched time for an object, due to its different versions timelines, and (ii) linear
time within each version. Time varies in a discrete way, and temporality is represented in the
Model through temporal intervals with bitemporal timestamps. Temporal attributes and
associations are associated with the temporal labels, for valid and transaction intervals.

3.1.1 Logical and physical removal operation
 A removal operation can be of two forms, logical or physical. When a version is logically

removed, it is moved to the deactivated status and has its lifetime finished. If there are temporal
attributes or associations, their final valid times receive the object or version final lifetime at the
moment of the logical removal operation.

The physical removal, also known as vacuuming, may be exceptionally executed, and
aims to remove from the database all information that is not relevant to the application anymore.
It is performed when necessary to reduce the database size, which may increase very much when
all temporal data is kept [6].

Support for transaction time brings with it the potential for accessing any past database
state, without having to execute recovery processes. Physical deletion limits this potential, and
while this may be desirable, care should be taken to avoid an adverse impact on the utility of the
data kept in the database [12]1. TVM does not define the rules for this type of removal operation,
assuming that all removal operations are logical.

3.2 Versioning Features
Versions of a real world entity must be kept together. Grouping versions of the same

object constitutes a versioned object. Class instances are one of the following: a versioned object,
a version, or an object without versions, as illustrated in Figure 2. Versions in versioned object
are related through a derivation relationship, defining a directed acyclic graph. Each versioned
object has a current version, which is used whenever operations are applied to a versioned object

1 The impact of allowing physical deletion in the database and the query language are clearly described by Jensen in [12].

without specifying one of its versions. The current version is defined by the system as the most
recently created. The user may also set a different version to be the current one.

CL Obj1

Obj2

V1

V2

V4

V3

Object without versions

Versioned Object

Versions

Figure 2. TVM instances: an object without versions, a versioned object, and four versions

3.2.1 Classes Hierarchy
Figure 3 illustrates the TVM base class hierarchy. Basically, TVM allows two types of

classes: (i) standard classes, for which neither versions nor temporal features are available
(defined as Object subclasses), and (ii) temporal versioned classes, supporting both features
(defined as TemporalVersion subclasses). The class TemporalObject has methods to manage
temporal labels. The class TemporalVersion has the version attributes configuration and status
(that informs if the version belongs to a configuration and its status, respectively) and the
navigation attributes ascendant, descendant, predecessor, and successor. Finally, the class
VersionedObjectControl has attributes to report the current version, the number of configurations
and versions, the first and last versions, the next version number, and whether the user has
specified a current version or not. All classes have methods to get and update the attributes and
methods with specific functions detailed in reference [14].

VersionedObjectControl

User’s Application Class

User’s Application Class

Object

TemporalObject
non temporal

non versionable

temporal and
versionable

0..11..*TemporalVersion

Figure 3. TVM base class hierarchy

3.2.2 Version States
A version changes its status during its lifetime (Figure 4). A version is created in the state

working. In this state the version is essentially temporary and can be derived, modified, queried,
and removed. When a version is derived from another one, its predecessor is automatically
promoted to stable, avoiding modifications on versions that are important from the historical
point of view. In this state the version cannot be modified, but can be derived, promoted to

consolidated, queried, and removed. In the consolidated state the version can be queried and
derived, but cannot be modified nor removed. TVM assumes only logical removals, when the
version is moved to the deactivated status and has its lifetime finished. In this state, versions can
only be queried, or restored to the original status. A summary of operations in each state is
presented in Table 1.

Status
Operations

working stable consolidated deactivated

Derive Y Y Y -
Promote Y Y - -
Modify Y N N N
Exclude Y Y * N -
Query Y Y Y Y

Stable

Deactivated

TemporalVersion

promote

derive

deletepromote

derive

delete

derive

Working

restore

restore

Consolidated

Legend: Y enable N unable - no defined
 * only if the version has no successor

Figure 4. Status and events that cause transitions Table 1. Status and allowed operations

3.3 Class Definition Language
A class definition language for TVM is completely defined in [14], with a simplified

syntax presented in Figure 5. The clause HasVersions specifies temporal versioned classes. The
clause temporal indicates if the property will have its evolution stored. A class may be temporal
or common aggregation of other classes. The specification of the inverse association indicates if
the relationship has two modes of navigation.

Class className [HasVersions] [inherit className]
 [[temporal] aggregate_of [n] className (by value | by reference)

{, [temporal] aggregate_of [n] className (by value | by reference)}]
 ([Properties:

 [temporal] attributeName : attributeDomain ; { [temporal] attributeName : attributeDomain ; }]
 [Relationships:

 [temporal] relationshipName (1:1 | 1:n | n:1 | n:n) [inverse inverseRelationshipName] relatedClassName ;
 {[temporal] relationshipName (1:1 | 1:n | n:1 | n:n) [inverse inverseRelationshipName] relatedClassName; }]

[Operations: { operationDefinitions }]) ;

Figure 5. Simplified definition language syntax

TVM has many other features, such as [14]:
• Temporal integrity rules related to the object lifetimes and management of temporal labels.
• Temporal types hierarchy.
• Restoring of deleted objects.
• Extension inheritance, in which versions are enabled in different hierarchy levels.
• Configuration, which assures only one version (or object) in each inheritance level per entity.

4 TVM on top of a Commercial DBMS
The approach of implementing TVM on top of a conventional DBMS is adopted in this

work. Existing commercial DBMSs can be used as long as a proper mapping from the temporal
data model to the data model underlying the adopted DBMS is provided. The database DB2 was
chosen due to its support of temporal data types similar as the standard SQL-92 [24].

This section presents the mapping that is divided in two parts: the representation of the
model’s hierarchy, and the mapping of the application classes. Finally, some interfaces of
Temporal Versions Model Environment are illustrated.

4.1 The Model Hierarchy Mapping

VersionedObjectControl
<<final>>

t configurationCount
t currentVersion
t firstVersion
t lastVersion
 nextVersionNumber
t userCurrentFlag
t versionCount
changeCurrent
delete
restore

TemporalVersion
t ascendant
 configuration
t descendant
 predecessor
t status
t successor
 delete
 deleteObjectTree
 derive
 getCompleteObject
- getCorrespondence
 getOIDControl
 getVersionedObjectId
- isDeleteAllowed
- isDeleteTreeAllowed
 promote
 restore
- verifyAscendId

TemporalObject
t alive
- closeOpenedLabels
 delete
 getAttributeHistory
 getAttributeValueAt
 getLifetimeI
 getLifetimeF
 getObjectHistory
 getRelationshipHistory
 getRelationshipHistoryAt
 setTemporalAttribute

Object
tvOID
 delete
 deleteObjectTree
- findVersion
 getClassId
 getClassName
 getCompleteObject
 getCorrespondence
 getEntityId
 getNickname
 getObject
- verifyAscendId
- verifyEntityName

Figure 6. The classes of the hierarchy with their attributes and their most important methods

The class hierarchy is mapped to an equivalent type hierarchy of DB2, in which some
methods can be executed through SQL commands and queries. Figure 6 illustrates the attributes
and the most important methods defined for the model hierarchy. Basically, only the methods
related to time and version features need to be translated.

The methods mapping is completely presented in reference [14] in form of generic
algorithms, which combine value definitions, variables, procedure calls, conditions, loops, SQL
queries, and possible errors. Additionally, questions about access rights to the
VersionedObjectControl instances must be specified by the database administrator. In summary:
• Class Object is mapped to a non instantiable structured type.
• Class TemporalObject is mapped to a non instantiable structured type with the attribute alive.

This class presents a method delete that is mapped to a stored procedure that receives the OID
and executes the logical exclusion by changing the status to deactivated, registering the
attribute alive value as false, associated to the present instant.

• Class TemporalVersion is mapped to a non instantiable structured type with its attributes. It
has the methods for handling version status.

• Class VersionedObjectControl is mapped to a structured type with its attributes and its
methods that manage the versioned objects.

4.2 The Application Classes Mapping
Because DB2 does not implement collections, this part of the mapping requires all classes

in the first normal form. For each standard class, the following objects must be created in the
database: (1) a structured type with the same class structure, to which is added the attribute
ascendant in case of the class is a subclass; and (2) a table to store the class instances, called
main table. If this last table stores the instances of a subclass, two triggers shall be associated to
the insert operation. The first one verifies if the ascendant value corresponds to a valid OID, and
the second one forbids the user to inform values to the inherited attributes.

For each temporal and versionable class, the same structured type and table mentioned
above are created, adding the following:
• A table for each temporal attribute and association to store its history, called auxiliary table.
• A trigger associated to the temporal attribute and association updates, which stores the old

values in its respective auxiliary table. For each new value inserted in the auxiliary table, (1)
if the initial valid time (of the new value) is not informed by the user, as usual, it assumes the
present moment; and (2) the final valid time (of the old value) receives the initial valid time
(of the new value) minus one instant.

• A trigger associated to the operation update, which allows the user to modify only versions in
the status working.

• A trigger associated to the operation update of the VersionedObjectControl attributes, which
do not allow the user to modify the attributes manually.

4.3 TVM Environment
The TVM Environment has a set of interfaces for modeling classes, handling and

querying instances. It also hides from the user the implementation and mapping details necessary
for TVM to work on top of the database.

Specifically, the user specifies the classes in a definition tree through the interface for
TVM Class Definition. The user can also map the specification to the TVM Definition Language
and to SQL, in order to store the system in the underlying database. Table 2 presents the meaning
for the icons on the specification tree, and Figure 7 presents this interface and part of a simple
example.

Icon Meaning
Normal class
Temporal class
Attribute
Temporal attribute
Association
Temporal association
Operation

Table 2. Icons on the specification Tree

Figure 7. TVM Environment: Classes Specification and TVM Definition Language

Figure 8. TVM Environment: screen for Class Details specification

Figure 8 illustrates the screen for Class Details specification. It requires the class name;
the type (whether temporal versioned or not); the inheritance (by extension between temporal
versioned class, and by refinement between standard classes); the correspondence that is enabled
only if there is an inheritance by extension; whether the class is abstract, final or none; and if the
class is an aggregation (by value or by reference) of other classes. The environment has screens
for specifying attributes, relationships and operations, which follow this same pattern.

5 Illustrative Example
To illustrate the presented concepts, TVM is used to model a simple application, a website

design company. Beyond its clients’ sites, the company keeps the professional pages of its
employees. Only the nucleus of the model is presented in Figure 9. The specification using the
TVM class definition language is presented in Figure 10.

Each Website is composed by one or more pages, one of them is the initial or main page.
Each site is associated to a page pattern, which defines the background color and image, a banner,
and the default font specification. The pattern is used as a standard for the company’s page
layout. Following to the company instruction, this pattern varies according to the seasons of the
year and commemorative dates. For instance, during the company’s anniversary month, the
background image presents a cake with lighted candles, and the banner offers special discounts.

The features of version and time are used in the following:
• The WebSite, WebPage, and PagePattern classes - all the alternatives of the site, its pages

and pattern, as well as the temporal attributes and associations values are stored.
• The relationship associatedWith - the main relationship of the model through which the

company changes its website pattern.
• The attribute banner - each pattern can be associated with the website for a long time, hence

several banners can be used during the same period.
• Relationship initialPage - the evolution of the initial or main page is also stored.

WebSite
<<T>> URL
<<T>> online

Font
fontType
fontSize
fontColor
fontEffect

WebPage
<<T>> pageTitle
<<T>> pageText

10..1

initialPage

<<Temporal>>

1..*PagePattern
patternName
backgrdColor
backgrdImage
<<T>> banner 10..*

default

0..*
1

associatedWith

<<Temporal>>

Figure 9. Class Diagram of the example

Class WebSite HasVersions
aggregate_of n WebPage by reference

 (Properties:
 temporal URL : string ;

temporal online : boolean;
 Relationship:
 temporal initialPage 1:1 WebPage;
 temporal associatedWith 1:1 PagePattern;) ;

Class WebPage HasVersions
(Properties:

temporal pageTitle : string;
temporal pageText : text;) ;

Class PagePattern HasVersions
(Properties:

 patternName : string;
backgrdColor : string;
backgrdImage : string;
temporal banner : string;

 Relationship:
default 1:1 Font;) ;

Class Font
(Properties:

fontType : string;
fontSize : integer;
fontColor : string;
fontEffect : string;) ;

Figure 10. Class definition language

Among the advantages of using TVM to model this application, the designer simplifies
the tasks of changing the pattern associated with all pages (which can be done by adding a new
value on the relationship associatedWith) and keeps the period of each alternative stored.

Additionally, he assures that the evolution of the clients’ website is stored. If a client wants an
old page to be restored, the user has only to modify the valid time of the page.

The company has many uses for the information stored in the database built from this
modeling. One of the most important is the chance to discover patterns and clients’ profiles by
using data mining techniques, for instance.

This example uses versioning to illustrate the different versions according to the time in
which they are valid. The same model could be used to specify other aspects. For instance, the
designer could create different versions according to the technology present inside the pages.
Hence, the pages could have versions with HTML, java script, asp, flash, and so on.

Figure 11 illustrates the PagePattern class with its versioned objects Autumn, Winter,
Spring, and Summer. The versioned object Winter is detailed with its five versions. The first one
(9,15,1) is the default page for the Winter. The second (9,15,2) and the third (9,15,3) ones were
derived as alternatives for the Christmas. The fourth (9,15,4) one is the version for the new year,
and the last one (9,15,5) was derived from it as the new millennium version.

Figure 12 presents the evolution of the associatedWith relationship for one employee’s
website graphically. The WebSite version is always the same one (9,8,1), while the association
with the pattern changes according to the commemorative date inside the Winter period.

9, 15, 1

brightGreen
sun2.gif
winterAd

Winter

9, 15, 3

brightRed
santaClaus7.gif
christmasAd3

ChristmasB

9, 15, 5

brightSilver
new2001.gif
odysseyAd

NewMillenium

PagePattern
Autumn
8,15,0

Spring
10,15,0

Summer
11,15,0

Winter
9,15,0

9, 15, 2

white
santaClaus5.gif
christmasAd

Christmas

9, 15, 2

white
santaClaus5.gif
 Dec23thAd

Christmas

derive

derive

Winter

derive

9, 15, 4

silver
champagne2.gif
holydaysAd

NewYear

derive

Figure 11. Graphical representation of one versioned object. The change in the attribute value of banner (christmasAd
to Dec23thAd) does not create a new version, only gives birth to one more value in its history

WebSite
9,8,1

PagePattern
9,15,1

tDec 21th

PagePattern
9,15,2

Dec 22th

PagePattern
9,15,4

Dec 26th

PagePattern
9,15,1

Jan 2nd

WebSite
9,8,1

WebSite
9,8,1

WebSite
9,8,1

Figure 12. Temporal relationship associatedWith timeline for one website in the Winter period

6 Related Work
Different application areas that need support on evolutionary development, such as CAD

and CASE tools, motivated versions-related research. More recently, the concept of version has
been spread to other areas, such as concurrent projects, schema evolution, XML, document
versions, and hypermedia systems [2, 4, 8, 21]. A good survey on versions model for software
configuration management can be found in reference [5]. In addition, reference [10] presents a
classified list of different kinds of versioning applications, and specific summaries with
versioning in hypermedia area.

The concept of time may be present not only in temporal database modeling but also in
queries, constraints, real-time applications, multimedia temporal synchronization, active
databases, deductive databases, and so on. About temporal databases modeling and
implementation, a good set of works is grouped by Tansel (et al) in reference [25]. Jensen also
grouped his vast set of published and non-published papers about temporal data, query,
implementation and design in reference [12]. Implementation issues are analyzed by Snodgrass in
reference [24].

These two concepts, version and time, are mostly treated individually in the literature,
which abounds with models for versioned information [2, 3, 5, 9, 13, 20, 28] and temporal data
[6, 12, 22, 23, 24, 25]. The novelty of this paper is to put them together, with equal and
simultaneous treatment.

This idea appears previously in an extension proposed by Wuu and Dayal for the
OODAPLEX model, as a uniform model for temporal and versioned object-oriented databases
[28]. They rely on the inherently rich type system of OODAPLEX in order to model temporal
information. Time points are treated as abstract objects, and a type hierarchy of time types is
defined to support various notions of time (including versions). Several temporal functions and
constraints are defined to introduce additional time-related semantics to the system. The retrieval
and manipulation of temporal and non-temporal information is uniformly expressed. However,
the concept of version is not defined explicitly.

Rodrigues, Ogata and Yano propose a formal definition of a temporal versioned Object-
Oriented data model, called TVOO [20]. They focused on the construction of a formal framework
that can be tailored to the needs of a given time varying system. All objects and relationships
between them are time dependent, and the history of the changes is kept in versions hierarchies.
Every object update results in a new version of that object. An evolution history is kept for each
class as a set of versions, where each object instance has its corresponding version hierarchy.
Versions behave independently of each other, have a lifespan, and are typed as a partially ordered
tree.

The main differences and similarities among TVM and these models are the following:
• Basic structure – TVM proposes a hierarchy as the basis for the user’s class specifications,

while TVOO uses a formal framework, and the OODAPLEX extension works with a
hierarchy of abstract time types.

• Objects – TVM and the OODAPLEX extension allow temporal versioned objects among
normal objects, while TVOO specifies that all objects are temporal.

• Versioning – each change generates a new version in TVOO, while in TVM the user must
create explicitly new versions.

• Time dimensions – TVM and the OODAPLEX extension have both transaction and valid
time, while TVOO has only transaction time.

• Derivation hierarchy – all models have concepts to manage the derivation order, but while
this hierarchy is represented by a tree in TVOO, it is represented by a directed acyclic graph
in TVM and in the OODAPLEX extension.

• Exclusion – the three models have logical exclusion, and excluded objects cannot be
recreated in TVOO.

7 Summary and Concluding Remarks
The Temporal Versions Model is the union of a versions model with temporal

information. TVM is ideal for modeling time-evolving systems that need to manage design
alternatives as versions. It offers three main advantages: design alternatives storage and
management; history of evolving data management; rebuilding of a database state in any past
date, without using complex operations as backup and recovery. Besides, the Model differs from
others due to extension inheritance, branched time order (not usual in the models found on the
literature in which the time order is almost always linear), integration with existing specifications
(it allows classes without time and versions among temporal versioned classes), and
homogeneous treatment for valid and transaction timestamps.

The Model is presented with rich details in [14], which include: temporal integrity rules;
logical exclusion; temporal types hierarchy; state diagram for versions; base class hierarchy with
attributes, associations, operations and working process; extension inheritance; configuration;
possible associations between standard and temporal versioned classes; class definition language.
A study comparing TVM with other models is also presented.

This work summarizes the mapping from the TVM base hierarchy and application classes
to an object-relational database and details the tool for support user’s classes specification. The
user can specify classes, attributes, associations and operations in this interface without previous
knowledge of the TVM language. The tool maps the specification to TVM definition language
and generates the script for creating the respective tables on the database. A complete architecture
for keeping hidden the implementation details from the user is proposed in [14]

Some questions and improvement suggestions are still open, such as: language support for
new literal and structured type specifications; data manipulation language; rules for ensuring the
ACID properties (atomicity, consistency, isolation, and durability); operations for generating
configurations, and creating an entity based on an existing entity.

This work is part of a project that aims to implement an integrated software environment
for class specification, object versioning, versions management, query, and visualization. The
phase of TVM specification and implementation is almost complete. Publications about this work
are presented in references [15, 16, 17, 18]. This work finishes the project’s first phase. Our
research group keeps working with time and versions, and some results are already published.

Based on the TVM definition, a query language is defined in reference [19]. This
language is being mapped to SQL in order to run on top of mapped tables. A complete data
manipulation language (with create, insert, update and delete statements) is also under
development. Furthermore, the same project is extending TVM to support schema versioning and
evolution, with a plan already presented in [8, 21].

Other future research topics are: comparative analysis between a standard database and
another with the TVM features; query optimization and indexing for a better performance; test of
tools for object oriented modeling joining with TVM features; and mapping from TVM to a
commercial object oriented DBMS.

References
[1] Al-Khudair, A. et al., “Object-Oriented Versioning in a Concurrent Engineering Design

Environment”, Proc.18th
 British Nat’l Conf. Databases (BNCOD),England, 2001, pp.105-125.

[2] Agrawal, R. et al., “Object versioning in Ode”, Proc. 7th Int’l Conf. Data Engineering
(ICDE), IEEE Computer Society, Tokio, 1991, pp. 446-455.

[3] Beech, D. and Mahbod, B., “Generalized Version Control in an Object-Oriented Database”,
Proc. IEEE 4th Int’l Conf. Data Engineering, USA, 1988, pp.14-22.

[4] Chien, S-Y., Tsotras, V.J. and Zaniolo C., “Efficient Management of Multiversion
Documents by Object Referencing”, Proc. 27th Int’l Conf. of Very Large Data Bases
(VLDB), Italy, 2001, pp. 291-300.

[5] Conradi, R. and Westfechtel, B., “Version Models for Software Configuration
Management”, ACM Computing Surveys, vol. 30, no. 2, June 1998, pp. 232-282.

[6] Edelweiss, N., Hübler, P., Moro, M.M. and Demartini, G., “A Temporal Database
Management System Implemented on Top of a Conventional Database”, Proc. 20th Int’l
Conf. the Chilean Computer Science Society (SCCC), Chile, 2000, pp. 58-67.

[7] Etzion, O., Jajodia, S. and Sripada, E., Temporal Databases: Research and Practice.
Springer-Verlag, LNCS 1300, 1998.

[8] Galante, R. M. et al., “Dynamic Schema Evolution Management using Version in Temporal
Object-Oriented Databases”, 13th Int’l Conf. Database and Expert Systems Applications
(DEXA), France, 2002, to be published.

[9] Golendziner, L.G. and Santos, C.S. dos., “Versions and configurations in object-oriented
database systems: a uniform treatment”, Proc. 7th Int’l Conf. Management of Data
(COMAD), India, 1995, pp. 18-37.

[10]Hicks, D.L. et al., “A Hypermedia Version Control Framework”, ACM Transactions on
Information Systems, vol.16, no.2, Apr. 1998, pp. 127-160.

[11]Hübler, P. N. and Edelweiss, N., “Implementing a Temporal Database on Top of a
Conventional Database: Mapping of the Data Model and Data Definition Management”,
Proc. 15th Brazilian Symposium on Databases (SBBD), Brazil, 2000, pp. 259-272.

[12]Jensen, C.S., Temporal Database Management, doctoral dissertation, Dept. of Computer
Science, Aalborg University, Denmark, 2000, http://www.cs.auc.dk/~csj/Thesis/.

[13]Kim, W., Bertino, E. and Garza, J.F., “Composite objects revisted”, Proc. ACM SIGMOD
Int’l Conf. Management of Data, ACM Press, Oregon, 1989, pp.337-347. SIGMOD Record
vol. 18, no. 2, June 1989.

[14]Moro, M.M., Modelo Temporal de Versões [Temporal Versions Model], master’s thesis, Inst.
de Informática, UFRGS, Brazil, 2001, http://nina.inf.ufrgs.br/Dissertacao/MirellaMoro.pdf
(in Portuguese).

[15]Moro, M.M. et al., “Adding Time to an Object-Oriented Versions Model”, Proc. 12th Int’l
Conf. Database and Expert Systems Applications (DEXA), Springer-Verlag, Germany,
LNCS 2113, 2001, pp. 805-814.

[16]Moro, M.M. et al., “Dynamic Systems Specification using Versions and Time”, Proc. 5th

Int’l Database Engineering and Applications Symposium (IDEAS), IEEE Computer Society,
France, 2001, pp. 99-107.

[17]Moro, M.M. et al., “A Temporal Versions Model for Time-Evolving Systems Specification”,
Proc. 13th Int’l Conf. Software Engineering & Knowledge Engineering (SEKE), Argentina,
2001, pp.252-259.

[18]Moro, M.M. et al., “Um Modelo Temporal de Versões para Especificação de Aplicações” [A
Temporal Versions Model for Specifying Applications], Proc. 4th Iberoamerican Work.
Requirements Eng. and Software Environments,Costa Rica,2001,pp.336-347 (in Portuguese).

[19]Moro, M.M. et al., “TVQL - Temporal Versioned Query Language”, 13th Int’l Conf.
Database and Expert Systems Applications (DEXA), France, 2002, to be published.

[20]Rodríguez, L., Ogata, H. and Yano, Y., “TVOO: A Temporal Versioned Object-Oriented
data model”. Information Sciences, Elsevier, vol. 114, 1999, pp. 281-300.

[21]Roma, A.B.S. et al., “Gerenciamento Temporal de Versões para Evolução de Esquemas em
BDOO” [Temporal Versions Management for Schema Evolution on OODB], Proc. 16th

Brazilian Symposium on Databases (SBBD), Brazil, 2001, pp.110-124 (in Portuguese).
[22]Sarda, N. L., “Extensions to SQL for historical databases”, IEEE Transaction on Knowledge

and Data Engineering, vol.2, no.2, June 1990, pp. 220-230.
[23]Snodgrass, R.T., “Temporal Object-Oriented Databases: A Critical Comparison”, Modern

Database Systems - The Objetct Model, Interoperability, and Beyond, ACM Press, New
York, 1995, pp.386-408.

[24]Snodgrass, R.T., Developing Time-Oriented Database Applications in SQL, Morgan
Kaufmann Publishers, 2000.

[25]Tansel, C.G. et al., Temporal Databases - Theory, Design and Implementation.
Benjamin/Cummings.

[26]Theodoulidis, B. et al., “The ORES Temporal Database Management System”, Proc. ACM
SIGMOD Int’l Conf. Management of Data, ACM Press, USA, 1994, pp. 511. SIGMOD
Record, vol. 23, no. 2, June 1994.

[27]TIME DB, A Temporal Relational DBMS. TimeConsult. http://www.timeconsult.com/
Software/Software.html.

[28]Wuu, G.T.J and Dayal, U., “A Uniform Model for Temporal and Versioned Object-Oriented
Databases”, Temporal Databases: Theory, Design, and Implementation, A.Tansel et al. (ed)
Benjamin/Cummings, 1993, pp. 230-247.

