
 
 
 

GADBMS - Restr icted Genetic Algor ithm to induce a set of rules 
from Relational Databases  

 
 

Andréa de Fátima Cavalheiro  
Federal University of Paraná, Computer Science Department, 

Curitiba, Brazil , 81531-990 
andrea.cavalheiro@gvt.net.br 

 
and 

 
Aurora Ramirez Pozo  

Federal University of Paraná, Computer Science Department, 
Curitiba, Brazil , 81531-990 

aurora@inf.ufpr.br

Abstract 

The present work introduces the GADBMS, a system that uses a special restricted genetic algorithm to induce a set 
of rules from relational databases. The choice of GA paradigm is partially justified by its great capacity in dealing 
with noise, invalid or inexact data, and its easy adaptation to different domains of data. The GA algorithm uses Tabu 
lists to restrict the selection process. This restriction allows the creation of a set of potential rules for the classifier 
tool.  This tool was tested in four datasets and compared to other twenty-three rules based algorithms. After that, 
noise was added to the databases and a new set of experiments was performed. The results prove that the proposed 
algorithm is eff icient and robust. And the strategy used to maintain the diversity was considered valid, since the 
algorithm was able to keep its accuracy in categorization even for smaller populations. 

Keywords: Genetic Algorithms, Tabu Search, Classification Task and Knowledge Discovery in Databases. 
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1 Introduction 

Data mining deals with the discovery of hidden knowledge and unexpected patterns in large databases. Data Mining 
can be considered to be an inter-disciplinary field involving concepts from machine learning, database technology, 
statistics and mathematics among others. While the main concern of database technologists are to find eff icient ways 
of storing, retrieving and manipulating data, the main concern of the machine learning is to develop techniques for 
learning knowledge from data. In data mining the classification task is a very important method that use approaches 
based on machine learning among which decision trees, neural networks, rule induction and genetic algorithms 
(GA). 

Genetic algorithms are suitable for complex problems, but some improvement must be done in the basic algorithm. 
Many approaches have been proposed. Some studies aims at improving the performance of GA searching 
capabiliti es using hybridization [1, 2, 3]. In hybridization, GA is used together with one of the following paradigms: 
simulated annealing, tabu search, artificial neural networks and expert systems.  

This paper presents a classifier induction tool based on genetic algorithms restricted by Tabu lists, which allows the 
generation of a set of potential rules.  Some reasons to use genetic algorithms include their scalabilit y, their abilit y to 
handle noisy data, configuration of parameters according to the task, and the possibilit y of parallel processing [4].  

This strategy was proposed in [4] for multimodal and multiobjective function optimization and used in [5] for data 
mining tasks, where it uses two lists of restrictions: long-term and short-term Tabu lists. We extended the work done 
by Lopes and Pozo [5] using the same strategy proposed by them, but with x long-term and short-term Tabu lists, 
where x corresponds to the number of classes in the datasets. The rules for the different classes are available in 
separated Tabu lists. In our approach, each individual in the population is treated as a SQL command making 
possible the evaluation of the rules directly in the DBMS.  

This paper is organized as follows. Section 2 begins with a brief overview of data mining and genetic algorithms. 
Section 3 shows the implemented algorithm, and the results for some tests are discussed in section 4. Section 5 
concludes this paper. 

2 Data Mining and Genetic Algorithms 

Data mining is commonly used defined as the search for useful patterns in data. It consists in the application of data 
analysis and discovery algorithms to produce patterns or models from the data. There are a large variety of data 
mining approaches [6, 7, 8, 9] with different searching methods aiming to discover different kinds of knowledge. 
The classification task using rule learning technique is one of these methods. Rules are commonly used in 
expressing knowledge and are easily understood by human. Rules are also commonly used in expert systems for 
decision making. Rule learning is the process of inducing rules from a set of training examples. The problem of data 
mining can be formulated as conducting a search for novel, useful, and interesting knowledge. The search can be 
accomplished by several techniques, for instance, using genetic algorithms. 

Genetic algorithm is a machine learning technique that uses the metaphor of natural selection to simulate the 
evolution of individual structures via processes of selection and reproduction. These processes depend on the 
perceived performance (fitness) of the individual structures as defined by an environment. Each individual in the 
population is evaluated, receiving a measure of its fitness in the environment. Selection focuses attention on high-
fitness individuals, exploiting the available fitness information. Recombination and mutation perturb those 
individuals, providing general heuristics for exploration. Although simplistic from a biologist‘s viewpoint, these 
algorithms are suff iciently complex to provide robust and powerful adaptive search mechanisms. For more 
information about genetic algorithms and its operators, a good source is [10]. 

A genetic classifier consists of a population of classifying elements that compete to make predictions. Elements that 
do not present a good performance are discarded while the ones that make good predictions proli ferate producing 
new offspring. During the training the force of the elements are subjected to changes to maintain the predictions 
correct and/or to punish mistakes. All population goes through an apprenticeship phase where the weakest elements 
die and new elements are created. During this process random mutation happens, characterized through changes in 
the elements, and crossovers in which two elements cross to form a new element. 

Work on genetic classifier algorithm has traditionally been grouped into one of two general approaches. The 
Pittsburg approach [11] uses a traditional genetic algorithm in which each entity in the population is a set of rules 
representing a complete solution to the learning problem. The Michigan approach [12] has generally used a 
distinctly different evolutionary mechanism in which the population consists of individual rules, each of which 
represents a partial solution to the overall learning task. That makes it necessary to develop some strategy to extract 
a group of non-redundant rules from the GA population [12, 13]. Different research methods were developed to 
overcome this problem. 
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The first group of studies [14, 15, 16] focuses on the maintenance of the diversity in the population and include (1) 
sharing methods, that use sharing functions to avoid the convergence to similar individuals; (2) crowding methods, 
which constrain the replacements of new individuals; and (3) crossover restrictions. However, these methods are 
difficult to apply to practical problems: (1) Unsuitable sharing functions often prevent individuals from exploiting 
optimal regions; (2) the crowding often failed to avoid the early convergence; (3) the method seems too artificial.  

The second group aims at improving the performance of GA searching capabilities using hybridization [1, 2, 3]. In 
this approach, GA is used aside one of the following paradigms: simulated annealing, tabu search, artificial neural 
networks and expert systems. However, most of the studies in the literature have focused on the global search via 
GA, while the local search has been made using one of the previously referred techniques.  

The last group of studies focuses on either function optimization problems, or problems to find Pareto optimal 
solutions [17, 18, 19]. These studies include: (1) methods to divide individuals into subgroups, where each subgroup 
corresponds to one objective function, (2) methods to rank Pareto optimal individuals not to be covered by other 
individuals, (3) combination of tournament and sharing methods, and (4) methods to divide Pareto solutions to some 
ranges. These previous studies have the common goal of improving GA by using methods to maintain diversity in 
the population.  

In this paper, a classifier induction tool based on genetic algorithms restricted by Tabu lists is presented. This 
strategy was proposed in [4] for multimodal and multiobjective problems and used in [5] for data mining tasks. The 
implemented algorithm use x long-term and x short-term Tabu lists, where x corresponds to the number of classes in 
the database, which differs from the work done by Lopes and Pozo [5], that use two lists of restrictions, one long-
term and one short-term Tabu lists. In [5], it is necessary to execute n times the program to find all the possible rules 
(where n is the number of classes), in our approach, the rules are stored in n separated Tabu lists, making it possible 
to discover the rules in just one execution.  

Tabu Search is an optimization method that uses a form of short-term memory to prevent the search to become 
trapped in local minima. A Tabu list that keeps track of recent solutions is formed. At each iteration, in the 
optimization process, solutions are checked against the Tabu list. A solution that is on the list will not be chosen for 
the next iteration (unless it overrules its Tabu condition by what is called an aspiration condition). The Tabu list 
forms the core of Tabu search and keeps the process from cycling in one neighborhood of the solution space. 

At each iteration, a steepest-descent solution that does not violate the Tabu condition is chosen. If no non-Tabu 
improving solution exists, the best non-improving solution is taken. The combination of memory and gradient 
descent allows for diversification and intensification of the search. Local minima in the search space are avoided 
while good areas are well explored. In the next section, we present how these concepts are used in GADBMS.  

3 Overview of the System Implemented  

This work proposes the GADBMS, a classifier induction tool based on genetic algorithms restricted by Tabu lists. 
The tool was implemented in C++ and we use Oracle database. Furthermore, each individual in the population is 
treated as a SQL command; in this way it becomes possible to evaluate the rules directly in the DBMS. The basic 
architecture can be seen in the Fig. 1.: 

To accomplish its goal, the GADBMS was implemented in three main modules: Configuration Module, GATabu 
and Extracted Rules. The following explains how the modules work. 

3.1 Configuration Module  

The main parameters that need to be provided to GADBMS are: a file that contains all the attributes; classes and 
valid values of the database; crossover, mutation and unrestricted attribute rates; population; long-list and short-list 
size; number of generations and runs; and similarity threshold that can be in phenotypic or genotypic space.  After 
providing these parameters, the most important part of the process is the searching of rules, which will be explained 
in the next paragraph. 
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Fig. 1. The GADBMS 

 

3.2 GATabu  

The Classifier Tool uses the genetic algorithm restricted by Tabu lists to evolve a population of rules. After the 
execution, the rules stored in the long list will be used to create a classifier. 

3.2.1 Initial Population 

Based on the domains features and GA parameters, we create the initial population. When the individuals are 
created, an approximated number of unrestricted attributes are used.  The attributes that are unrestricted in the 
individual are randomly chosen, which avoids the generation of invalid rules (rules that do not cover any example) 
in the starting population. The proportion of unrestricted attributes is determined by the unrestricted attribute rate. 

3.2.2 Fitness Function 

After creating the population it is necessary to calculate the fitness of each individual in the population. The fitness 
function for this problem must be able to qualify the rules as partial classifiers, so the accuracy of a rule is more 
important than its ability to cover all training instances. In our GADBMS we used de Laplace Function [20], which 
is described in equation 1: 

 

Fitness Function = (VP + 1)/(VP+FP+K).  (1) 

 

Where K is the number of classes in the domain, VP are positive examples correctly classified by the rule and FP is 
negative examples incorrectly classified as positive. The fitness is calculated directly in the training set using the 
same individual as a SQL command. After this, a genetic algorithm restricted by Tabu lists is applied in the 
population that was created randomly. 
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3.2.3 Genetic Algorithm Restricted by Tabu Lists 

The algorithm works with x long list with size m and x short list with size n, where x will be the amount of classes in 
the dataset, m and n will be the number of maximum individuals stored in the lists.  In Fig. 2 we can see a basic idea 
of the Tabu GA used to classify the best rules of the population. 

 

The long-list with size m will only store the individuals that cannot have identical or similar phenotype/genotype. 
The best individuals of all the previous generations will remain stored in this list. The short-list with size n, will only 
store these individuals of the most recent iterations. When the list is completely fill ed, a new individual will replace 
the oldest one. In this list, the individuals can have the same phenotype or genotype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The TABU – GA 

 

 

In each generation we verify if the best individual of the population is stored in the correspondent Tabu lists, 
according to the class that individual belongs to. The individual will only be stored in the long-list if a similar 
individual does not exist in it. If an individual with a similar phenotype or genotype needs to be added to the long-
list, it will only be added if it has a function value higher than the other individual. This individual will be removed 
from the list, suffer mutation and be put back in the population to participate in the next generations.  

The individuals are chosen by tournament selection method and the list of restrictions can be applied to only one 
parent. When selecting parents candidate, we refer to the Tabu lists in order not to select individual with similar 
genotypes or phenotypes.  

The algorithm used crossover in two-points, which generates two offsprings and mutation. When mutation is applied 
on a rule, it randomly chooses one of its attributes and changes it value. When applied on discrete attributes, 
mutation consists on choosing another value from some positive training instance. For continuous attributes, two 
values Min and Max are sampled from different positive examples, and a restriction in the form Min <= A <= Max 
is created, where A is the attribute and Min <= Max. 
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3.24 Similarity 

In our classifier the similarity metric can be based on either phenotype or genotype space. The phenotype similarity 
measure corresponds to the amount of similar attributes in the rule. If two attributes of different rules are identical 
we added 1.0 and if two attributes of different rules are similar we added 0.5. Adding all the values of each attribute 
allows as to compare them to the similarity threshold previously defined. 

The genotype similarity is measured based on the positive training instances correctly classified by the rules.  We 
computed the similarity on the following way: the individuals covered by the rule that is being evaluated are 
separated in a group, resulting in an amount x. For each rule that composes the long list it is executed on that group 
and results in an amount y of covered individuals. With these two values (x and y), we calculated the percentile of 
individuals covered by the rule that is being evaluated and we compared the result with the similarity threshold 
previously defined. 

3.3 Extracted Rules 

After having finished the searching process, in this module the rules are organized in an appropriate way, seeking to 
obtain a good precision for the classifier.  

A set of rules formed by the individuals of the long list will be evaluated for the classifier. In this stage all the rules 
belonging the long list will be analyzed and only the rules that classify at least one individual will be used. Finally, 
the precision of the classifier will be calculated using the test sets.  

In this approach we used ordered rules set, all rules are assembled in a particular order. To classify a new example, 
each rule is tried in order until some rule that covers the example is found. In that case, the predicted class is given 
by the activated rule. If none of the rules cover the instance, a default class is used.  

Ordered rules set have the property of being logical, in the sense that clashes between rules cannot occur as only one 
rule can be used at a time. The fitness of the rules is used to define their order. 

4 Experiments and Results 

In order to allow comparisons, we evaluated four datasets that were used by [5], which were compared with the 
methodology used by [21]. In this methodology, 33 classification algorithms were compared in different datasets in 
terms of classification accuracy and many other characteristics. In the following we choose twenty-three of these 
algorithms based on trees and rules. Table 1 describes the datasets used in our experiments. 

 

Table 1. Analyzed data, where N is a numerical attribute, C is a categorical attribute and the symbol + represents a 
database with noise. 

 

Name Size Class Attr (N) Attr(C) Description 

Bld 345 2 6  

Bld+ 345 2 15  

Predict whether or not a male patient 
has a liver disorder based on blood 
tests and alcohol consumption. 

Pid 532 2 7  

Pid+ 532 2 15  

Predicted female diabetes patient. 

Smo 1855 3 3 5 

Smo+ 1855 3 10 5 

Predicted attitude toward restrictions 
on smoking in the workplace. 

Vot 435 2  16 

Vot+ 435 2  30 

Classify a Congressman as Democrat 
or Republican. 
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For each database, one variation has been created by the addition of noise, that is, more attributes with random 
values.  We used two methods to estimate the error rate: 

• For large databases (more than 1000 examples) we used the test set to estimate de error rate. 

• For smaller databases we used 10-fold cross-validation: The database is randomly divided in 10 disjoint subsets, 
each containing approximately the same proportion of records from each class. For each subset, a classifier is 
constructed using the records that are not in it. The classifier is then tested on the withheld subset to obtain a 
cross-validation estimation of its error rate. The error rate is the average of all cross-validation estimates. 

 

For all the simulations we used 200 generations. However, in most of the executions, the generations did not pass 
50. In this algorithm the number of generations is stopped automatically at 50 attempts of doing crossover, if the 
long list already contain a similar individual. 

We used population size and long-term Tabu list with length 200 and short-term Tabu list with 20. The crossover 
rate, mutation rate and similarity threshold were adjusted according to the database that were evaluated. Initial tests 
were made to find better parameters to each database.  

4.1 Population Size  

One previous experiment was performed to verify the effects of the population size on the accuracy of the system. 
An important point that should be mentioned is that for all the evaluated sets we executed the GADBMS on a 
population of 200 individuals and the classifier obtained almost the same precision as when we executed on a 
population of 2000 individuals. In Table 2 it is possible to see the results obtained in two of these datasets. 

 

Table 2. Effects of the population size on the accuracy of the system 

 

Database Smo Pid 

Population Size 2000 200 2000 200 

Rules founded 3 3 4 4 

Error Rate 0,3050 0,3050 0,3076 0,2993 

Time (hh:mm.ss) 00:09:17 00:01:56 00:16:25 00:02:25 

 

 

 

4.2 Similarity Space  

The second experiment was performed to verify the effects of the similarity space and is summarized in Table 3. 
Working with genotypic space we could see that the execution time is very fast and the amount of extracted rules is 
less than when we used the similarity measure in phenotypic space. However, in some of the analyzed bases, the 
type of similarity applied was not significant to arrive to the best precision of the classifier. 
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Table 3. Similarity applied on Smo dataset. 

 

 Genotypic Phenotypic 

Rules founded 3 10 

Error Rate 0,3050 0,3050 

Distance 4 4 

Time (hh:mm.ss) 00:01:56 00:16:58 

 

4.3 Error Rates Comparisons   

Another important measure is the standard error, given by (p (1- p)/n)½ , where p is the error estimate for the 
database and n is the number of training examples. The result of a classifier is considered close to the best if the 
difference between its result and the best for the database is not greater than the standard error [21]. GADBMS was 
close to the best classifier in two databases.  

The GADBMS has been tested on the databases, obtained a mean error rate of 0,2553. In Table 4 we can see the 
errors rates averages between the implemented algorithm and the results obtained by [5, 21]. Compared to the mean 
rates of the 23 algorithms presented by [5, 21], this result is not significantly different (at the 10% level) from the 
best of the other 23 classifiers, because does not differ more than 0.058 [22]. 

 

Table 4. Comparison of the results between 23 algorithms based on trees and rules and the implemented algorithm. 

 

 LIM; LOH; SHIH 
Results Report in [21] 

LOPES 
Results Report in [5] 

GADBMS 

Dataset Min. Max. Median Mean Mean 

Bld 0,2790 0,4320 0,3220 0,3775 0,3862 

Bld+ 0,3130 0,4410 0,3490 0,3475 0,4219 

Pid 0,2210 0,3100 0,2380 0,2593 0,2576 

Pid+ 0,2210 0,3180 0,2500 0,2778 0,2705 

Smo 0,3040 0,4240 0,3050 0,3008 0,3050 

Smo+ 0,3050 0,4110 0,3050 0,3068 0,3050 

Vot 0,0364 0,0580 0,0457 0,0582 0,0503 

Vot+ 0,0412 0,0662 0,0469 0,0611 0,0455 

Mean 0,2151 0,3075 0,2327 0,2486 0,2553 

 

 

During the experiments, the accuracy did not have significant variations between runs when the same genetic 
parameters were used in the same database. The addition of noise attributes does not appear to increase the error 
rates significantly. The usage of equipment with different hardware configurations made it impossible to have a 
reliable comparison between processing times in the database for the experiments. It is important to note that 
statistical algorithms are in general more eff icient but the classification using rules presents models that are more 
meaningful for the final user.  This was one of the reasons that encouraged our study. 
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5 Conclusion 

In this work, we have introduced a classifier induction tool based on genetic algorithms restricted by Tabu lists.  In 
our approach the possible rules can be found in just one run and stored in separate lists, which can be a good way to 
work with different classes in a single database. 

 The system displayed good efficiency working with smaller populations reducing the processing time and 
producing the same results as when using larger populations. In our experiments very few parameters combinations 
were tried, which means the accuracy in many databases can be significantly improved if better parameters are 
found.  

The use of SQL queries is very interesting, mainly due to the fact of being possible to evaluate the rules directly in 
the database. Once the population size is quite small, the processing time did not seem to be significant. This can be 
a great advantage when used on large amounts of data. 

It is suggested for future works, to execute the tool in larger databases, analyzing the execution time and the rules 
found and use a new similarity measure, which can be applied regardless the types of attributes being evaluated. 
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