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Abstract

University timetabling is a fundamental periodic activity in academic planning. In its general setting this

problem is NP-complete. Devising e�ective strategies for solving it has been a challenge for several decades.

Most approaches that work in real applications either �nd approximate solutions or only consider constraints

of a very speci�c type. Our approach has been to tackle the full complexity of the problem using concurrent

constraint programming techniques. We describe PATHOS, a concurrent constraint object oriented software

written inMozart that has been e�ectively used in real life situations. PATHOS improves the state of the art

in automatic timetabling strategies since it handles problems of a much bigger size than has been considered

so far using constraint programming techniques. The strategies and techniques used in PATHOS are also

applicable to other types of planning and scheduling problems.
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Automating scheduling of rooms and courses in an university has attracted attention since the 70's. Earlier

attempts assigned courses incrementally based on local reasoning criteria. For example, scheduling courses

sequentially in decreasing order of the number of constraints involving them ([4]). Later on in the 80's,

methods based on linear programming and network ows were used ([5]). More recently, the problem

has been tackled by means of genetic algorithms ([8]), simulated annealing ([1]), constraint satisfaction

([7])and concurrent constraint programming ([2, 6]). The existence of an international conference on the

topic (PATAT) bears witness of the fact that the problem remains a very active research topic.

The challenge is to provide a coherent computational model taking into account a whole variety of

requirements coming from very di�erent sources. For example, lectures for certain courses are required to be

given in rooms of some speci�c size, type or location, scheduled within given time slot ranges, required not

to overlap with some other lectures and satisfy lecturer schedule constraints. Since the timetabling problem

is NP hard, it is usually assumed that approximation methods (such as genetic algorithms) are unavoidable

when handling real-life situations.

The main contribution of this paper is to question this belief by exhibiting a system based entirely on

constraint programming techniques that has been used successfully to solve a problem instance of more than

2000 variables. We have been able to do so by a judicious choice of constraint propagators and a carefully

chosen balance between search and propagation. To our knowledge, no solutions to problems bigger than

700 variables using these techniques have been reported before.

Solving problems of important size requires a through understanding of the concurrent constraint model

and of its implementation. Our system is implemented in the concurrent constraint programming language

Mozart ([11]). The experience we developed in Mozart allowed us to identify certain limitations of its

current implementation that have a substantial impact on the eÆciency of our implementation. We argue

that removing these limitations should be a concern forMozart developers. Another contribution of our work

is the implementation of a new general search mechanism for Mozart that achieves signi�cant improvements

in eÆciency for problems involving a great number of variables.

The paper is organized as follows: In section 2 the notion of constraint programming is introduced. In

section 3 we specify the object-oriented architecture of the system and describe the problem representation

in terms the �nite domain constraints system of Mozart. Section 3.4 discusses the representation of soft

constraints, section 4 shows time and space performance measures for several problem instances. Finally, in

section 5 we give conclusions.

2 Concurrent constraint programming model

A great variety of combinatorial problems can be expressed as searching for one or several elements in a

vast space of possibilities. In general, the search space is de�ned as all combinations of possible values for a

prede�ned set of variables. Elements to be searched for are particular values of these variables. In most cases

the desired values of the elements are implicitly speci�ed by properties they should obey. These properties are

known as constraints. Constraints are usually expressed as predicates over some set of variables. Concurrent

constraint programming (CCP) languages ( [9]) take these predicates as basic primitives. Most notably,

the store-as-valuation concept of Von Neumann computing is replaced in CCP by the notion of store-as-

constraint. Constraints provide partial information about variables (e.g. x < y + 2) that accumulates

monotonically in the store as the computation proceeds.

In the basic model of concurrent constraint programming the store contains predicates that represent

partial information over variables. Concurrent agents interact with the store adding information (tell agents)

or asking questions (ask agents). Tell agents add constraints to the store whereas ask agents query the store

to see if a given constraint can be deduced from it. For example, let the available agents be

tell(X > 10); ask(X < 50) thenP; ask(X = 15) thenQ; tell(X < 20):

Considering this agents from left to right they exhibit the following behavior: information X < 10 is �rst

added to the store, then it is asked whether X < 50 can be inferred from the store. Since this is not the

case, the ask agent blocks. Similarly, the ask agent X = 15 ! Q is blocked. When the tell agent X < 20

adds this information, the ask agent X < 50 ! P is resumed and can then continue with process P . The

result of a process in this model is the set of variable values that are compatible with all constraints added

by the process to the store.

All concurrent constraint programming language (CCP) guarantee eÆcient propagation processes. There

are, however, some di�erences regarding the set of available constraints and the type of constraint system

they operate upon. A common type is the �nite domain constraint system. In this system each variable has
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variables. The model discussed in this paper uses the powerful �nite domain constraint system of Mozart.

We use an object oriented architecture for the system. We describe next its components.

3 Problem representation in Pathos

The structure of classes in Pathos mimics the usual organization structure of a university from the point of

view of timetabling. There are seven main elements: university, faculty, program, curriculum, course, group

and session. A curriculum is the set of courses that the students of a given program (i.e. academic unit,

department, etc) should, in principle, take together in a given academic period. Therefore, their schedule

cannot contain intersections. A course can be divided into groups. Each group is assigned a number of

lecture sessions in the basic period (a week, for example).

The only relation between classes is containment. For example, a university contains faculties, instructors

and buildings. There are constraints involving information about each one of these classes. For instance,

constraints about the availability of instructors make reference to the instructor class, while constraints

about the type of room needed for a session make reference to the building class.

The timetabling problem expressed in the setting of concurrent constraint programming must de�ne

variables and constraints between those variables. In the following we describe variable representation.

3.1 Finite domain variables

All variables in Pathos are �nite domain variables. In Mozart, a �nite domain is a set of integers. The

notation m#n represents the set of all the integers in the interval [m;n]. Constraints over �nite domain

variables are called domain constraints. A domain constraint has the form x :: D, where D is a �nite domain.

Domain constraints can also be expressed in the form x = n since x = n is equivalent to x :: n#n. Similarly

for inequations and inequalities. Terms of the form n#m are data structures in Mozart. This allows to

assign n#m to a variable and then use this variable to de�ne complex domains.

In Pathos, each variable represents the beginning time of a particular session. Initially these variables

are assigned the interval 1#168 corresponding to all possible time slots in the basic period, which has been

de�ned as a week. For the particular application we describe in this paper we consider 6 day weeks, each

day having 28 possible starting slots (since slots are 30 minutes long and courses are scheduled from 7:00AM

to 1:00 PM and from 2:00 PM to 10:00 PM). For example, to establish that a session S start on Tuesday

at 7:00am, constraint S:start = 29 must be asserted. Similarly, we could constrain S to be scheduled on

Tuesday by asserting S:start :: 29#56.

Since all variable in Pathos represent sessions this means that every constraint must be expressed as a

constraint over sessions. For example, if a lecturer availability is the range R, then all sessions this lecturer

teaches are constrained to be in the range R.

The task of Pathos is to determine the starting slot of each session involved in the problem so that at

least the following conditions hold:

� Two session of the same group must be scheduled on di�erent days (except when one of the sessions is

de�ned as a laboratory).

� Groups of courses of the same curriculum must be scheduled in such a way that a student registered

in a given group (or recitation) could also register in at least one of the groups of each of her courses.

� All sessions of a given instructor must be non overlapping.

� The number of sessions using a certain type of room at some speci�c hour cannot be greater than the

number of rooms of that type available at that hour.

The above constraints are asserted by default. Any solution Pathos �nds must maintain them. The user,

however, can specify some of the following constraints according to the characteristics of his problem:

� The beginning of a session can be restricted to a set of speci�c hours.

� A session must end before another one starts or two given sessions should not overlap.

� At least one group of each one of two courses (not necessarily belonging to the same curriculum) must

not overlap.

� The availability of an instructor can be restricted to some hours.
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� A curriculum can be associated to a maximum number of sessions per day.

The user can assert these additional constraints either as mandatory or weak. Any solution Pathos �nds

must satisfy mandatory constraints. Weak constraints are discarded when no solution considering them

exists. In addition, a visual programming interface allows de�ning new constraints and so tailoring Pathos

to each particular case.

A brief description of the interface follows.

3.2 Interface

Pathos takes a XML �le for input data. This �le describes the structure of the university (i.e. faculties,

departments, curricula, rooms and their types, etc.) from information that is usually taken directly from a

data base using SQL. Data concerning constraints can also be included in the XML �le or entered manually

using a graphical interface. The main window in this interface is split in two parts, one showing a tree

representing the university academic structure and the other containing a box for each course in a particular

academic program. The boxes shown correspond to courses in the department selected in the tree. Courses

are presented as a set of columns where each column contains all courses of a given term. The user selects

any two courses (or groups, sessions from a group, etc) by clicking on them and then chooses from a menu

the type of constraint to assert and whether it should be handled as a strong or weak constraint (see �gure

1).

Figure 1: Selecting Constraints

The interface includes a visual language for programming user de�ned constraints (see �gure 2). Boxes

in this language represent predicates. Each predicate box contains a number of entries. Lines are used to

connect entries from di�erent predicate boxes. Semantically, a connection asserts that the corresponding

entries are constrained to be equal. A variety of types of predicate boxes are supplied, such as the one

asserting that the schedule of each pair of its entries must be such that no intersections occurs. These

predicate boxes are the basic primitives of the visual language. Any entry left unconnected is supposed to

refer to a course, group or session. For these entries the user only speci�es the type (e.g. group), but not

the particular instance of this type the constraint should be applied to. Constraints de�ned by the user in

the visual language are compiled into the main graphical interface so that they appear in the menu showing

all available constraints. In this way they can be selected and asserted exactly as the builtin constraints.

There are also suitable graphical representations to ease constraint parameterization. For example, all

constraints referring to time ranges, such as instructor availability in the period, are provided a representation

in the form of an actual time table where the appropriate time slots can be selected. Space restrictions

preclude their inclusion in this paper.

3.3 Implementation of constraints

Constraints the user speci�es in Pathos are implemented as procedures in Mozart. A simple example is the

following, which asserts that two sessions (the arguments of the procedure) are scheduled in di�erent days.
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Figure 2: Visual constraint programming

1 proc fDi�erent days St1 St2g
2 thread cond

3 St1::[Monday] then

4 St2::[Tuesday Wednesday Thursday Friday Saturday]

5 []

... ...

19 St1::[Saturday] then

20 St2::[Monday Tuesday Wednesday Thursday Friday]

21 else skip

22 end

23 end

24 thread cond

25 St2::[Monday] then

... ...

44 end

45 end

46 end

In the above procedure lines after 24 are symmetric to lines between 4 and 21. Once the range of possible

schedules for any one of the two sessions is known to belong to a certain day, the procedure eliminates

that same day from the range of the other. Each thread in the procedure can be regarded as a concurrent

propagation agent, i.e. one that waits for any changes to occur in the domain of a variable (St1 or St2 in

the example) in order to propagate its e�ects, that is, to reduce the domains of other variables.

When all propagation stabilizes the domain of the variables has possibly been greatly reduced but not nec-

essarily determined in a single value. To �nd a solution some exploration process must be launched to choose

one of the remaining values of the domain of some variable. This may cause further propagation. Finding

a solution in a CCP languages entails thus a close interaction between propagation and exploration. When

propagators are weak domain reduction is low but the propagation process can be eÆciently implemented.

When they are strong many values are eliminated from the domains but the propagation process can be

slow. Since each choice of value in exploration awakes propagators a careful balance must be found between

strength and eÆciency. In Pathos propagators are usually strong. In procedure fDifferent daysSt1St2g,
for example, as soon as it is known that session St1 is restricted to Monday (line 3), session St2 is restricted

to slots other than Monday (line 4). The same occurs for each one of the other days.
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In many practical applications some constraints are intended to model preferences, predicates one would

like it to hold but are not considered essential. These are called weak or soft constraints. They represent

properties that are desirable but not mandatory. As far as we know, CCP languages do not have an explicit

mechanism to de�ne weak constraints (an extension of the formal model of CCP to handle soft constraints

has been proposed recently in [3]). In Mozart, a simple type of weak constraint can be modeled using the

notion of disjunction.

thread dis fPg then skip [] skip then skip end end

Here, P represents any constraint that is to be treated as being soft. The dis construct creates local

computation spaces for its alternatives, so that the e�ects of running them could easily be undone when a

failure occurs. When P cannot be satis�ed or, equivalently, when asserting P in the current computation

space leads to failure (i.e. there is no solution), then the disjunct where P appears is simply discarded. In

this case the only other enabled clause would then be the null clause (skip then skip). Since any propagator

can take the role of P this is a way of `testing' any constraint, i.e. of asserting it only if doing so does not

lead to a failure.

The above scheme implements, of course, a very simple form of soft constraint. In particular, it does

not handle preferences among constraints. Nevertheless it can be pro�tably used to model other forms of

preferences. For example, Pathos lets the user associate a sequence of types of rooms to a session, the idea

being that the order in the sequence corresponds to the order of preference for the user. The sequence is

compiled into a dis construct of the above form, where P constraints the session to one of the types of rooms.

Ordering the alternatives of this construct as in the sequence of types ends up ordering type of rooms by

user preferences.

4 EÆciency analysis

As mentioned before, Pathos is implemented in Mozart as a collection of concurrent propagation agents,

each running in its own thread. In general, it is not possible to predict the order of execution of threads for

a given program. Since the execution order of propagators strongly inuences total running time, it is very

diÆcult to determine with some accuracy the runtime behavior of Pathos. Nevertheless, it is clear that the

number of computation spaces generated in the path to a solution greatly a�ects running time.

Constraints conceptually work on a global computation space. As mentioned above, the presence of

disjunctions makes it necessary to construct local computation spaces. The existence of theses spaces makes

the language very powerful, but the price to pay is the amount of time and memory needed to maintain

them. Each time a new computation space is needed it must be decided what to do with the current one.

There are two possibilities(see [10]): either to save it so as to be able to recover it in case the new one fails

or simply to discard it but keeping enough information around to be able to reconstruct the space in case of

a failure.

To optimize running time there should be a careful balance between saving and recomputing spaces. One

could decide, for instance, to save one out of d computation spaces. That is, spaces numbered 1; d; 2d; 3d; : : :

will be saved, whereas spaces 2; : : : ; d � 1; d + 1; : : : ; 2d � 1; : : : would have to be recomputed if needed.

Number d is called the recomputation distance. Up to a point, increasing the recomputation distance means

saving execution time since the time used saving the spaces could very well be greater than the time used

recalculating them. This might happen when few shallow failures occur. On the other hand, increasing d

beyond a certain point may impose very frequent recomputations and thus greatly increase running time, a

situation one would expect to aggravate as d continues to increase.

In general, one would then expect the execution time in relation to recomputation distance to begin by

decreasing for a short range of increasing values of d and then to start increasing smoothly for higher values

of d.

For our real case, however,the actual observed behavior was the one in �gure 3. Here running time does

not increase smoothly after some point as d increases. Moreover, running time actually decreases drastically

for some high values of d. The reason for this non intuitive result can be understood by considering that

determining some variables takes more time than determining others. In our case, the �rst 30% of variables

are determined rather quickly and there are no signi�cant di�erences in running time for di�erent values of

d.

There is a direct relationship between the diÆculty of �nding a consistent value for a variable and the

number of choice points associated to it. When there are no failed attempts to determine a variable there is

only one choice point associated to that variable. Each failed attempt creates an additional choice point.

In table 1 we show the number of choice points for each set of 212 variables Pathos determines. The

third column shows the relative increase in those choice points. Thus, for the �rst 849 variables, 3997 choice
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Figure 3: Real behavior

Variables Choice Points Relative di�erence

0 3190

212 3409 219

424 3647 238

637 3760 113

849 3997 237

1061 4199 202

1273 4424 225

1485 4757 333

1698 5193 436

1910 5653 460

2122 5944 291

Table 1: Variables versus choice points

points are needed, representing an increment of 237. It can be observed that for up to 60% (1273) of the

variables, choice points increase roughly as the number of variables. This means those are easily determined

variables. The last 40% of the variables, however, are increasingly more diÆcult to determine (except the

last 10%). From this it can be inferred that saving computation spaces in the neighborhood of the limit of

60% of the variables could result in important running time savings. If this is the only \diÆcult" region it

suÆces to take as d some approximate divisor of 4424 (choice points for 60% of the variables).

To summarize, running time strongly depends on the number computation spaces created and saved and

these are dependent on the number of choice points. The distance of recomputation should be such that

spaces are saved in the neighborhood of diÆcult regions. When several diÆcult regions exist it is not obvious

how to choose a single d so that its multiples fall in the right places. Moreover, it is probably not very useful

having to run the application once without any optimization just to identify the number of choice points

and the diÆcult regions. An alternative is described further below.

4.1 Copying propagators

In real life timetabling problems the size of a given computation space can be large since it depends, among

other things, on the number of undetermined variables. The current implementation of Mozart de�nes

maximum RAM memory to be 512Mb. This means that there is not enough room to save many computation

spaces and therefore some recomputation of spaces would be anyhow needed. It is thus important to avoid

as much as possible commitment to choices leading to failure. In Pathos propagators have been designed

with this aim in mind. However, a limitation of the current Mozart implementation makes it diÆcult to

accomplish this purpose. Indeed, in Mozart propagators from a parent computation space are not copied to

its children spaces. Tis is a major source of ineÆciencies.

Whenever a new local computation space is created, all basic constraints applied in its father space are

inherited. However, the same does not occur with the propagators (or agents) of the father. This may hinder

the possibility of predicting possible failures, as is shown in the program below.

In the above program, assuming both X and Y having initial domain equal to 1#5, one would count on

having enough information to infer that in the dis construct the option X = 1 is not viable. This is because
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2 thread

3 dis

4 X = 1 then fPg
5 []

6 X j =: 1 then fQg
7 end

8 end

if X = 1 then the agent in line 1 would cause the computation space to fail (since Y :: 1#5 and Y :: 10#20

are inconsistent). However, this inference is not considered at the moment of analyzing the alternative X = 1

because each clause of the dis construct executes in a local computation space and the agent of line 1 does

not belong to it. This agent belongs to the father of that local space but propagators are not copied from a

father to its children. As s result, the explorer blindly commits to the dis alternative X = 1 (thus running

P ) and it is only after attempting to merge the results in the child space and in its father space that the

explorer faces the failure of the computation space. Since each failed commitment causes a new cycle of

space recomputations this strongly a�ects eÆciency.

4.2 Improving the Search Engine of Mozart

The size of our problem demanded a search engine supporting recomputation distance. We considered for

this the search engine in (http://www.mozart-oz.org/documentation/system/

node9.html#chapter.search). In this search engine the user de�nes the number of tree levels (choice points)

before a space is saved. For instance, in a 10 level search tree with recomputation distance equal to 3, only 4

spaces are saved (those at levels 0, 3, 6 and 9). The problem with this approach is that it does not take into

account the relation between the level reached and the time spent getting to it. In our case determination

of variable begins beyond level 3190. Reaching this level takes one minute or less but 12 spaces are saved up

to that point. This is a big waste of resources.

We decided to modify the source code of the search engine, which was kindly provided by Christian

Schulte. Our search engine de�nes recomputation distance in terms of time rather than tree levels. The user

speci�es the number of seconds that must elapse before a new computation space is saved. Certainly this

leads to a better memory administration since �nding consistent values for diÆcult variables usually takes

more time and therefore more memory is invested saving spaces in their neighborhood.
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Figure 4: Old Engine Versus New Engine in Problem 2 (all variables)

There was a remarkable improvement when when using our search engine. Figure 4 shows the relation

between the two engines in the real case taking into account the whole university timetabling problem.

Time is shown in seconds and the Variables coordinate refers to the percentage of variables that are already

determined.
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In this paper we described Pathos, a concurrent constraint programming implementation of a university

timetabling system. We showed its general architecture and interface. We discussed the implementation

of problem constraints as strong propagators and developed the idea of using the Mozart dis construct to

model soft constraints. We analyzed the eÆciency of our system in terms of the number of computation

spaces generated and saved. In this context we raised the issue of a particular limitation of the current

implementation of the Mozart language that signi�cantly a�ects eÆciency. A new search engine controlling

recomputation of spaces by time instead of exploration tree depth level was described. We showed the

remarkable improvement in eÆciency achieved by using this engine instead of the one supplied with Mozart.

Finally, we argued that real cases of timetabling can indeed be handled using CCP by carefully controlling

propagation and exploration.
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