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Abstract

The RVR (recursive variance reduction) simulation technique has been used with success for the evaluation
of the K-terminal reliability measure of networks where only links can fail.

In this paper, we show how this technique can be adapted for computing the K-terminal reliability
measure in the case of networks where both links and nodes can fail.

Experimental results show the interest of this technique, which can improve the precision of reliability
estimation for highly reliable networks.

Key words — Network reliability, Monte Carlo methods, variance reduction techniques, recursive variance
reduction.

Resumen

El método RVR (reduccién recursiva de la varianza - recursive variance reduction) es una técnica de simu-
lacién que ha sido empleada con éxito para la evaluacién de la confiabilidad K-terminal reliability en el caso
de redes con fallas en las lineas y nodos perfectos.

En este trabajo, se muestra como esta técnica puede ser empleada para calcular la confiabilidad K-
terminal en el caso de redes con fallas en nodos y aristas.

Resultados experimentales muestran el interés de esta técnica, que puede aumentar drasticamente la
precisién de la estimacién de la confiabilidad para redes altamente confiables.

Palabras clave — Confiabilidad de redes, métodos Monte Carlo, técnicas de reduccién de la varianza,
redes de comunicaciones.



1 Introduction

The system under study is an undirected connected communication network G = (V, £, K) consisting of a set
of nodes V, a set of connecting links £ and a set of terminals K (a fixed subset of the node-set). Both nodes
and links can fail, and are assigned an s-independent probability of failure ¢; (called node/link unreliability).

The success of communication between nodes in K is a random event, which has probability R(G). The
problem of evaluating R(G) or its complement, Q(G) = 1 — R(G), is usually called the K-terminal reliability
problem.

In graph terms, R(G) is the probability that there is at least a path between any pair of nodes in K
with all its nodes and links working. The particular case K = {s,t} is called the source-to-terminal network
reliability problem. This approach is used not only for the evaluation of communication networks but also
in the case of other binary stochastic systems.

The exact evaluation of R(G) was shown to be NP-hard [1], even in the special cases where K = {s,t}
or K =V, and where only nodes or only links can fail. Then exact evaluation techniques, like the ones
introduced in [10, 11], have worst case exponential computation time.

In the particular case of nodes not subject to failure, a number of works [2, 4, 3] have shown that a
simulation technique known as RVR (Recursive Variance Reduction) has the potential for efficient evaluation
of the measure. In this paper we study the application of this technique to the more general case where both
nodes and links can fail.

The paper is organized as follows. The rest of this section presents some general notation and preliminary
definitions. Section 2 recalls the RVR method in the context of perfect-node networks, and Section 3 presents
the RVR method in the general case (when both links and nodes can fail). Section 4 is devoted to present
the results of some numerical experiments. Finally, Section 5 corresponds to the conclusions of this work.
Notation (General)

g (V,&,K): an undirected network topology

% {u1,...,un}: the node-set of G

& {li,...,lm}: the link-set of G

K target set of G, K C V; the nodes of K are the terminals of G

m,n,k the number of [links, nodes,terminals] of G

|4] cardinality of the set A

1, indicator function: 17,4, =1, 1pgse =0

a real 1 —a

xg l(link 1 is up)* state of link [

Ty Pr{z; = 1}: operating probability of link !

q Pr{z; = 0} = 1 — r;: failure probability of link I

Ty 1inode u is up): State of node u

Tu Pr{z, = 1}: operating probability of node u

Qu Pr{z, =0} =1 — r,: failure probability of node u

Xg (Tiyy- sl s Tuys- - -5 Ty, ): random network-state vector

Gx network with node-set derived from ) and link-set derived from £ by removing respectively
all failed nodes and links in Xg

&g structure function associated with the K—terminal reliability measure :
®g(X) =1, is K-connected) for X € {0,1}m+"

Yg 1— ®g(Xg) : random state of the network G

R(G Pr{G is K-connected} = E {®4(Xg)}: K—terminal reliability of G

)
Q(9) Pr{G is not K-connected} = E{Yg5} = 1 — R(G): K—terminal unreliability of G

Definitions & Nomenclature

e A network G = (V,&,K) is K—connected if there is at least one path in G between every pair of nodes
in K (all the nodes in K are connected in G).



A subset C of £ is a K-cutset (or K-link cutset) of G if the subnetwork G = (V,€ — C,K) of G is not
K-connected.

e A subset C of V is a K-node cutset of G if the subnetwork G’ = (V — C, &,K) of G is not K-connected.

e Aset D C VUE is a K-extended cutset of G if the subnetwork ¢ = (V — D,€ — D,K) of G is not
K-connected.

e A K-tree of G is a K-connected tree of G whose leaves belong to K [8].

e For agivenlinkl € £in G = (V,E,K), G — I denotes the network with node-set V and link-set derived
from & by removing link [ € £. The target set of G — [ is equal to K.

e For agivennode u € Vin G = (V,&,K), G — u denotes the network with node-set V — {u} and link-set
derived from &£ by removing all links incident to u. The target set of G — u is equal to K — {u}.

e For a given link [ in G = (V,&,K), G|l denotes the network derived from G by setting the operating
probability of link I, p; to 1.

e For a given node u in G = (V,&,K), G|u denotes the network derived from G by setting the operating
probability of node u, p, = 1.

2 Recursive Variance Reduction Monte Carlo method for perfect-
node networks

The aim of variance-reduction methods is to construct random variables having same s-expectation as
Y; = 1 — ®5(Xg) and smaller variance, since a sample mean based on such a r.v. is a more accurate
estimator than the crude one based on Yg.

We give here a brief summary of a previous paper [2], where we have shown that r.v. Zg recalled below in
Proposition 2.1 can be used as the basis of a variance reduction method for perfect-node network reliability
estimation (i.e., it is more accurate than the one based on Yg). This random variable is expressed in terms
of |C| network-state random variables Yg,, 1 < i < |C/|, where C is a K-(link) cutset of the network G. Each
G; is deduced from G by (i — 1) link deletions and one link contraction.

Proposition 2.1 For any network G, let

c {l1,1l2,.. ., lic|}: a fived K-cutset in G
Ac the event “all links in C' are in failed state”
|C]
Qc Pr{Ac} =[]«
i=1
B; the event “all links in {l1,...,l;_1} are failed and l; is up”
Gi G-lb—...= L)L
\% discrete r.v. s-independent from r.v. Yg,’s, with
v—1
pmf{v} =Pr{V =0} =Pr{B,} /Qc = (1 — @) [[ 2,)/Qc, 1 <v <0,
j=1
then the random variable o
Zg=Qc +QcY Lv=qYa (1)
i=1
verifies
E{Zg} =Q(9) (2)
Var {Zg} = (Q(9) — Qc)R(G) < Q(G)R(G) = Var {Yg}. ®3)



In [2], we have shown that the Zg definition can be recursively used to construct a random variable F'(G)
giving a more accurate estimator than the one based on Zg. Using the same notation as in Proposition 2.1,
F(G) can been expressed as follows:

1 if G is not K-connected;
0 if IC is a singleton set;
F(G) = | (4)

Qo + @Zl(vzi)F(gi) otherwise.

i=1

The algorithm based on F(G) is called RVR simulation algorithm.
A procedure to obtain a trial of F/(G) can be summarized as follows:

Procedure RVR(G)

Input: network G
Output: a random sample of r.v. F(G)

1. Check end recursion condition:
1.1. Check if G is always K-connected: If [K| =1 return(0).
1.2. Check if the network is not K-connected: If G is not K-connected return(1).
2. Find a K-cutset C of G: C = {ly,...,lc|} the set of all links adjacent to s € K arbitrary.
3. Compute the probability that all components in C' are failed: Q¢ = leﬂ qi; -
4. Generate a trial v of V' (with distribution Pr{V =i} = Pr{B;} /Qc, 1 <i <|C)).
5. Construct the corresponding network : G, = (G — 1y —ly — ... — L, _1)|l,.
6. Recursive step: return(Qc + Q¢ x RVR(G,)).

When computing a trial for F(G), we generate a trial v of the r.v. V' (task 4). Since 1(y—;) is equal to 0
for all i # v, then only the term 1(y_,) survives. It results that the computations involved in the recursion
process can be represented by a linear computational structure. Its root corresponds to the network G under
study, each internal node corresponds to a recursive call (task 6) and the last node presents a network that
can be exactly evaluated (conditions 1.1 and 1.2 of the above procedure). Because at each recursive step
the number of links of the network resulting from task 5 is diminished by at least 1, the size of the related
linear structure is bounded by |£|.

In [2], we have shown that each recursive step of the RVR procedure has linear time complexity (in the
number of links |£]). The total complexity to generate a trial of F/(G) is then quadratic in the number of
links |£].

3 Recursive Variance Reduction Monte Carlo method for general
networks

We study in this section the case where both nodes and links can fail. We present some remarks which will
be used to simplify our work.

Remark 3.1 Let G = (V,&,K) be any network, K = {u1,...,ux}. Then

R= ( II pui) R(Glus|us] ... Juk|) (5)

u; X

and

QG) =1~ I pu) + (H pu,-> Q(Gluslusl. .. |uk)- (6)

u; EX u; EX



Proof . The proof is immediate from the definitions of R(G) and Q(G) (if a terminal node does not work,
it can’t communicate with the other terminals). O

(From now on we will assume that we are working with networks whose terminals are perfect (but other
nodes may fail), as the reliability of any network can be reduced to the reliability of a network with these
characteristics.

Remark 3.2 Let G = (V,E,K) be any network, and let | = (u1,u2) be a link of G such that p; = py, =
pu, = 1. We denote G x1 the network derived from G by contracting | (eliminating l; merging its extremities
ur and uy into a new node w; and setting the terminal set to K — {u1,u2} U{w} if uy or us belongs to K,

and K otherwise).
Then
R(G) = R(G *1). (7

A proof of this property may be easily obtained by establishing a bijection between the states of network
G and those of network G x [, remarking that corresponding states have the same probability, and proving
that whenever a state of G is an operating (respectively failed) state of the network, the corresponding state
of G =1 is also an operating (respectively failed) state.

As in the case of perfect-node networks, we now start by constructing a random variable Zg having same
s-expectation as Yg = 1 — &5(Xg) and smaller variance. This random variable is expressed in terms of |D|
network-state random variables Yg,, 1 < i < |D|, where D is a K-extended cutset of the network G. For any
network G such that p, = 1 Vu € K, we define the random variable

|D|
Zg=Qp+QpY 1v=9Ys, ®)
i=1
where:
D {e1,e2,...,ep}: a fixed K-extended cutset in G
Ap the event “all components in D are in failed state”
|D|
@p Pr{Ap} =[] ¢
i=1
B; the event “all components in {ey,...,e;_1} are failed and e; is up”
G; (G—e1—...—ei—1) e
v discrete r.v. s-independent from r.v. Yg,’s, with
v—1
pmf{v} =Pr{V =0} =Pr{B,} /Qp = (1 -¢.) [[ ¢;,)/@p, 1 <v<|D|
j=1

Proposition 3.3 For any network G such that p, = 1 Vu € K, the random variable Zg defined in Equation 8
verifies

E{Zg} = Q(9) (9)
Var{Zg} = (Q(9) — @p)R(9) < Q(G)R(G) = Var{Yg}. (10)

This property is also easy to prove, applying the total probability theorem with the partition {Ap} U
{Bi,1 <i < |D|} of the probability space of network G.

We now proceed as in [2] to apply recursively the construction process of Zg to find random variable
F(G) giving a more accurate estimator than the one based on Zg. Using the same notation as before, F'(G)
has been expressed as follows:

1 if G is not K-connected;
0 if K is a singleton set;
F(G) = ID| (11)

Qp + Q_DZ].(V=7;)F(Q@') otherwise.

i=1



The algorithm based on F(G) is called RVR simulation algorithm.
A procedure to obtain a trial of F(G) can be summarized as follows:

Procedure RVR(G)

Input: network G
Output: a random sample of r.v. F(G)

1. Check end recursion condition:

1.1. Check if G is always K-connected: If [K| =1 return(0).

1.2. Check if the network is not K-connected: If G is not K-connected return(1).
2. Find a K-extended cutset D of G: D = {ey,...,e|p|}.

3. Compute the probability that all components in D are failed: Qp = Hl.lz)l1 e;-
4. Generate a trial v of V' (with distribution Pr{V =i} = Pr{B;} /Qp, 1 <i < |D|).
5. Compute the corresponding network.
5.1. Construct G, = (G—e1—ex—...—ey_1)|ey.
5.2. If in G, there appears a link I = (u1,us) such that p; = p,, = pu, = 1, contract [.
6. Recursive step: return(Qp + @p x RVR (G,)).

To find a K-extended cutset D of G efficiently, we propose the following procedure. Choose any terminal
node k € K. Consider all the links incident to k, I; = (k,u;), 1 < i <degree(k). Then we can assume that
either g;, > 0, or g, > 0, or both (if this was not the case, as g = 0, the link /; would have been contracted
previously). We define D = {I; = (k,u;)|q;; > 0} U {w;|3; = (k,u;), qu; > 0}.

The order in which the elements are considered in steps 4 and 5 can be important from the viewpoint
of ease of implementation, and also affect the efficiency of the procedure. In particular, it can happen that
we mark as working a link such that one of its extremities was previously marked as failed; this doesn’t
affect the correctness of the algorithm, but can be seen as a waste of computational resources, as it does not
contribute to effectively reducing the network. It may be interesting then to number first consecutively all
links in D, and afterwards all nodes (in this way, links are always considered before nodes, and the above
mentioned situation can’t arise).

When computing a trial for F'(G), we generate a trial v of the r.v. V' (task 4). Since 1(y—;) is equal to 0
for all i # v, then only the term 1(y—,) survives. It results that the computations involved in the recursion
process can be represented by a linear computational structure. Its root corresponds to the network G under
study, each internal node corresponds to a recursive call (task 6) and the last node presents a network that
can be exactly evaluated (conditions 1.1 and 1.2 of the above procedure). Because at each recursive step
the number of components of the network resulting from task 5 is diminished by at least 1, the size of the
related linear structure is bounded by |£| + |V|.

4 Numerical experiments

In this section we present numerical experiments based on the dodecahedron network topology, shown in
Figure 1. This network has been much used in the perfect-node literature (see for example [6, 5, 9, 7]).
The number of nodes is 20, and the number of links 25. We will be interested in the source-to-terminal
reliability measure (the source and terminal nodes are shown in Figure 1), and the relative efficiency of RVR
with respect to crude Monte Carlo as a function of the node and link reliabilities. We have twenty five
experiments, corresponding to all the combinations of taking independently node and link reliabilities in the
set {0.9,0.95,0.98,0.99,0.999}.

We have run crude Monte Carlo and RVR algorithms with the same sample size. All the algorithms
were run in a Sun Sparc Enterprise 250 workstation, with 256 Mb RAM memory and 250 Mhz processor,
with operating system SunOS 5.7. The algorithms were implemented in C++; the compiler used was the
GNU one (gce 2.95) with code optimization for 64 bit processor. We denote by Ty and Tz the execution



times respectively of the crude Monte Carlo and of the RVR algorithms (measured in seconds). Their ratio,
Ty [Tz, corresponds to the relative speed of Z with respect to Y (i.e, if Ty /Tz is less than 1, then Z is
slower than Y).

Another important measure is the quotient Var {Y'} /Var {Z}, which shows the accuracy improvement of
RVR respect to crude Monte Carlo with the same number of iterations (if Var{Y'} /Var {Z} = v > 1, then
the variance of RVR is v times smaller than the variance of crude Monte Carlo).

Finally, the combined measure W = Var {Y'} /Var{Z} x Ty /Tz (usually called the speedup of method
Z with respect to method Y) as a single efficiency measure for comparing the algorithms.

Figure 1: The “Dodecahedron” Network Topology

Figures 2 and 3 show the relative error for the crude Monte Carlo and the RVR algorithms. The relative
error of crude Monte Carlo grows very rapidly with the reliability of the nodes of the network, and more
slowyly with the link reliability. It has the highest error in networks with highly reliable nodes and links.
On the other hand, the RVR algorithm has small relative error for these same networks, and higher error
for networks with highly reliable nodes and not so reliable links. When the nodes are not very reliable, the
relative error of RVR is relatively insensible to the link reliability.

Figure 4 shows the combined speedup measure W, which takes into account the variances and the
execution times of both methods. We can see that the RVR method is in general more efficient than crude
Monte Carlo, except for the case of highly reliable nodes and not so reliable links, where it has roughly the
same or slightly worse performance than crude Monte Carlo.

Table 1 shows the detailed results for crude Monte Carlo and RVR for the dodecahedron network. We can
see that the variances of RVR are always smaller than the variances of the crude Monte Carlo method, for
the same number of iterations. On the other hand, the execution time of RVR is much bigger. The execution
times for both methods do not change much for the different combinations of link and node reliabilities. The
last column shows the combined speedup measure W.

5 Conclusions and future work

In this report, we have adapted the RVR method for reliability evaluation in networks with failures in
nodes and links. We have shown that RVR has always smaller variance than crude Monte Carlo; this result
is confirmed experimentally, showing that this difference is more important for highly reliable networks



S =

ru n R@) Var{Y¥} Ty Var{Z} T, ¥ 11, I
0.9 0.9 0.7860 1.7E-05 4.7 7.2E-07 1344 23E+01 3.5E-02 8.2E-01
0.95 0.9 0.8938 9.5E-06 4.9 3.5E-07 139.3 2.7TE+01 3.5E-02 9.5E-01
0.98 0.9 0.9556 42E-06 5.0 24E-07 1425 1.7E+01 3.5E-02 6.1E-01
0.99 09 09763 23E-06 5.0 1.7E-07 143.5 1.3E4+01 3.5E-02 4.7E-01
0.999 0.9 0.9954 46E-07 5.1 1.0E-07 1444 4.6E+00 3.5E-02 1.6E-01
0.9 0.95 0.8019 1.6E-05 4.8 1.9E-07 135.6 &8.4E+01 3.5E-02 3.0E+00
0.95 0.95 0.9010 89E-06 5.0 7.4E-08 1404 1.2E4+02 3.5E-02 4.3E+00
098 0.95 0.9599 38E-06 5.1 7.1E-10 143.1 5.4E+03 3.5E-02 1.9E+02
099 0.95 0.9797 2.0E-06 5.1 9.8E-09 144.0 2.0E+02 3.5E-02 7.1E+00
0.999 0.95 0.9978 22E-07 5.1 2.0E-08 1454 1.1E4+01 3.5E-02 3.9E-01
0.9 098 0.8064 1.6E-05 4.7 7.2E-08 136.4 2.2E+02 3.5E-02 7.5E4+00
0.95 0.98 0.9020 8.8E-06 5.0 1.1E-08 140.7 &8.3E+02 3.5E-02 2.9E+01
098 0.98 09603 38E-06 5.1 14E-10 1429 2.7E+4+04 3.5E-02 9.7E+02
099 0.98 09800 2.0E-06 5.1 21E-11 143.6 9.4E+04 3.5E-02 3.3E+03
0.999 098 0.9980 2.0E-07 5.1 7.6E-14 144.6 2.6E+06 3.5E-02 9.3E+04
0.9 0.99 0.8071 1.6E-05 4.8 4.2E-08 136.6 3.7TE4+02 3.5E-02 1.3E+01
0.95 0.99 0.9022 8.8E-06 4.9 2.1E-09 140.3 4.3E+03 3.5E-02 1.5E+02
098 0.99 0.9604 38E-06 5.1 9.3E-11 143.0 4.1E4+04 3.5E-02 1.5E+03
099 0.99 09801 2.0E-06 5.1 6.8E-12 144.0 2.9E+05 3.5E-02 1.0E+04
0999 099 0.9980 2.0E-07 5.1 2.0E-15 144.6 1.0E4+08 3.5E-02 3.6E+06
0.9 0999 0.8079 1.6E-05 4.8 2.5E-08 136.4 6.2E+02 3.5E-02 2.2E+01
0.95 0.999 09023 &88E-06 5.0 1.8E-09 1404 4.9E+03 3.5E-02 1.7E+02
0.98 0.999 0.9604 38E-06 5.1 3.1E-11 1429 1.2E+05 3.5E-02 4.4E+4+03
0.99 0.999 0.9801 2.0E-06 5.1 3.5E-12 143.6 b5.6E+05 3.5E-02 2.0E+04
0.999 0.999 0.9980 2.0E-07 5.1 3.3E-17 144.4 6.0E4+09 3.5E-02 2.1E+08

Table 1: Results for the Dodecahedron network
Crude Monte Carlo relative error
1  /
01 | T A
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Node reliability

Figure 2: Relative error of Crude Monte Carlo mehod
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Figure 3: Relative error of RVR method
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(specially in the case of highly reliable nodes). The accuracy improvement is obtained at the cost of higher
execution times.

The tradeoff between these two different effects is reflected in the combined speedup measure; in the
numerical example studied, the speedup is favorable to RVR method, except for the case of networks with
highly reliable nodes and not so reliable links, where the difference in precision is smaller, and the overall
speedup results in the CMC method being the more efficient one.

The performance of the RVR method depends on how the extended cutset D is chosen at each iterative
step; future work is necessary to clarify the nature of this dependency, and to eventually find a rule for
optimally determining D, in order to maximize the variance reduction attained by the method.

References

[1] M.O. Ball. Computational complexity of network reliability analysis: An overview. IEEE Trans. Reliab.,
R-35(3):230-239, August 1986.

[2] H. Cancela and M. El Khadiri. A recursive variance-reduction algorithm for estimating communication-
network reliability. IEEE Transactions on Reliability, 44(4):595-602, December 1995.

[3] H. Cancela and M. El Khadiri. A simulation algorithm for source-terminal communication network
reliability. In Proceedings of the 29th Annual Simulation Symposium, pages 155-161, New Orleans,
Louisiana, April 1996. IEEE Computer Society Press.

[4] H. Cancela and M. El Khadiri. Series-parallel reductions in Monte Carlo network reliability evaluation.
IEEE Trans. Rel., 47(2):159-164, June 1998.

[5] M. El Khadiri and G. Rubino. Reliability evaluation of communication networks. In SAFECOMP’92,
International Conference on Safety, Security and Reliability of Computers, pages 279-283, Zurich, Su-
isse, October 1992.

[6] G.S. Fishman. A comparison of four Monte-Carlo methods for estimating the probability of s-t con-
nectedness. IEEE Trans. Reliab., R-35(2):145-155, June 1986.

[7] Sy-Yen Kuo, Shyue-Kung Lu, and Fu-Min Yeh. Determining terminal-pair reliability based on edge
expansion diagrams using OBDD. IEEE Transactions on Reliability, 48(3):234-246, September 1999.

[8] A. Satyarayana and M.K. Chang. Network reliability and the factoring theorem. Networks, 13:107-120,
1983.

[9] S. Soh and S. Rai. Experimental results on preprocessing of path/cut term in the sum of disjoint
products technique. IEEE Transactions on Reliability, 42, 1993.

[10] O.R. Theologou and J.G. Garlier. Factoring and reductions for networks with imperfect vertices. IEEE
Trans. on Reliab., 40(2):210-217, June 1991.

[11] D. Torrieri. Calculation of node-pair reliability in large networks with unreliable nodes. IEEE Trans.
on Reliab., 43(3):375-377, September 1994.

10



