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Abstract

Until now, most results reported for parallelism in production systems have been simulation
results — very few parallel implementations exists. In this paper, we present the initial imple-
mentation of our parallel OPS5 compiler on the IBM SP2. It is evident that the Rete match
algorithm is suitable for parallel processing on distributed memory systems, as supported by
the fact that the best performance of our parallel OPS5 compiler is achieved on the benchmark
program make-teams with 100 employees using 16 processors and runs 7.76 faster than parallel
OPS5 using a single processor. From our observations and experimental results, we believe that
enhancements can make our parallel OPS5 compiler more effective. We also analyze the approach
to parallelization taken in our prototype compiler and discuss various improvements.

Keywords: Parallel OPS5, Scalability, Parallel Rete match algorithm, Message-passing machine, IBM SP2,
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1 Introduction

Production systems occupy a prominent place in the field of Artificial Intelligence (Al), including cognitive
modeling, problem solving systems, and expert systems. However, production system programs are highly
computation intensive. For a long time, this has limited the applicability of production systems. Over
the last three decades, considerable research has been devoted to efficient implementations of production
system languages. Some efforts have focused on high-performance uniprocessor implementations, while
others concentrated on high-performance parallel implementations. Although the combination of better
algorithms, efficient compilation techniques and faster hardware platforms has yielded increases in speed of
several orders of magnitude, further research and development in production systems will require enlarging
the production-memory (knowledge bases) in these systems (as in [6] and [7]) which further exacerbates the
problem of long execution times. The common characteristic of these applications is that they process orders
of magnitude more data than traditional applications. Production system implementations, however, have
been notorious for their inability to handle large amounts of data due to uncontrollably expanding working
space. This leads us to introduce the state transition graph and the partition working memory elements
methods. These two methods not only avoid unnecessary comparisons in each match phase but also reduce
the huge work space. Thus we believe that these approaches help in resolving the problem of excessive space
requirements.

Sophisticated compilation techniques and parallelization have been the two main approaches taken by
researchers in their efforts to solve the problem. In 1988, Anoop Gupta et al. pointed out that their parallel
implementation of OPS5 on the Encore Multiprocessor achieved a 12.4 fold speedup using 13 processes [2].
Anurag Acharya has addressed the issue of efficiently implementing production systems on the generation
of message-passing computers [3]. As one can see from these examples, in this past, research on parallel
implementations of production systems has focused on shared memory multiprocessors. Recent advances in
interconnection network technology have provided high communication bandwidth and low latency which
makes us more interested in implementing production systems on distributed memory computers.

In this paper, we discuss two approaches to tackling the growth in execution time due to growing data
sets — scalable parallelism and scalable match algorithms. From our preliminary experimental results, it is
evident that the Rete match algorithm is very suitable for parallel processing on distributed memory systems.
Another motivation for studying message-passing machines is their easy scalability to a large number of
processors as opposed to shared-memory systems [5]. This makes it interesting to consider message-passing
computers for the implementation of production systems.

The remainder of this paper is organized as follows. In Section 2, we sketch earlier attempts to deal
with the problem. Section 3 outlines production systems issues, using OPS5 as a specific example. The
Rete match algorithm is described in Section 4. Our prototype implementation of a parallel OPS5 compiler
is discussed is Section 5, as are design and implementation issues. Preliminary performance results are
presented in Section 6, which also contains a discussion of enhancements to our parallel compiler. The last
section concludes the paper.

2 Related Work

In early production system programs, matching was by far the most expensive phase. As a result, initial
research on parallelizing production system programs focused on parallelizing the match phase. Anoop Gupta
implemented an OPS5 compiler on the Encore Multimax [10]. The Encore Multimax has 16 processors, a
large shared memory, a fast bus and snooping caches, but the scheduler was implemented in software.
Another shared memory architecture proposed for production system execution was the MANJI machine
[11]. MANJI consisted of tens of 32-bit processors connected to a shared memory via a single bus. In
addition to the bus, MANJI provided a multicast mechanism. A parallel version of Rete (see Section 4)
considers the nodes of the Rete network as a set of interconnected objects passing partial and complete
matches as messages. These nodes are partitioned among the processors. Gupta and Tambe [9] proposed a
fine-grain mapping of Rete onto a group of message-passing processors. A small number of processors are
assigned for the tests of one-input nodes and the select and act phases; the majority of the processors is
used to implement the memory nodes and to perform the tests of two-input nodes. Examples of fine-grained
machines are Mosaic [14] and J-machine [15]. Acharya [3] examined low latency medium-grain message-
passing machines. In this mapping, there are no dedicated processors for the tests of the one-input nodes.



Instead, all the match processors perform the tests of the one-input nodes prior to performing memory
node operations or the tests of the two-input nodes. Examples of medium-grained machines are Nectar [16]
and Intel iPSC/2 [13]. They conducted their simulations of these two mappings of production systems on
message-passing computers, respectively. The simulation for the medium-grained was based on Nectar [16]
and the results indicated reasonable speedups.

3 OPS5

An OPS5 [1] production system consists of three major components, namely the working memory (WM),
the production memory (PM), and the inference engine.

The working memory serves as a global database. Each entry in the working memory, called a working
memory element (WME), represents a fact or assertion of the application domain.

The production memory is composed of condition elements corresponding to the if part of the rule (the
left-hand side or LHS) and a set of actions corresponding to the then part of the rule (the right-hand side or
RHS). There are two types of tests: constant tests and equality tests. The set of WMEs that conjunctively
match a production is referred to as an instantiation of the production. The set of all instantiations, active
at any given time, is called the conflict set. Actions do things such as create WMEs, change values in WMEs,
remove WMEs from working memory, print output, and stop the program.

The inference engine executes a production system by performing the so-called recognize-act cycle, until
no rule can be instantiated. The match phase uses the Rete algorithm [4] to find all of the instantiations
and stores them in the conflict set. The select phase uses a conflict resolution strategy [1] to choose a single
instantiation from the conflict set. The fire phase fires the chosen instantiation of a production after which
the right-hand side actions associated with the production are executed; then this instantiation is removed
from the conflict set.

4 Rete

The Rete match algorithm [4] trades space for time by saving the match state between recognize-act cycles.
When a WME is created, it is compared with all condition elements in the program; it is stored with each
condition element to which it matches. Therefore, only incremental changes to working memory are matched
in each cycle. There are three types of nodes in a Rete network; one-input nodes, memory nodes, and two-
input nodes. One-input nodes perform the constant tests of the condition elements. Memory nodes store
the results of the match phase from previous cycles as a state. This state consists of a list of the tokens that
match a part of the LHS of the associated production. Only changes made to the working memory by the
most recent production firing must be processed in each cycle. Two-input nodes test for joint satisfaction
of condition elements in the LHS of a production. New tokens are created for token pairs that have been
matched to the condition elements of the production; these flow down to the successor memory.

5 Parallel OPS5

Parallel OPS5 transforms a sequential production system into an equivalent parallel form which a multicom-
puter system can execute.

5.1 Match phase

We parallelized the Rete match algorithm in the match phase. There are two subphases in the match
phase, namely initiated Rete-network and revisited Rete-network. Each time a control WME is created [1],
the associated WMEs in this control state will be compared and the matched pairs will be stored in the
successor memory node; we call this subphase initiated Rete-network. The changes to working memory will
be matched in each cycle until this control WME is removed; we call this subphase revisited Rete-network.
Searching every two-input node is done by depth first search.

5.1.1 Initiated Rete-network
The initiated Rete match algorithm performs the following operations.

1. One-input test nodes: The master-slave paradigm [12] is used to assign a one-input test node to a
slave processor. When the test is done, the slave processor informs the master processor how many
elements have passed the test at that node and the master processor assigns an unexecuted one-input



test node to this slave processor. The process is complete when all the tests of one-input nodes have
been executed by the slave processors. Then the master processor determines which one-input node
has the maximal amount of WMEs passing the test and informs the slave processor who owns these
WMEsS to scatter them. Then the processors which conduct the tests of the other one-input nodes
broadcast their WMEs that successfully matched a condition element. Since the WM data which pass
the tests at the one-input nodes have been distributed, each processor can start working on the tests of
the two-input nodes and with n processors, the computation time of two-input nodes for each processor

should be 1/n of the computation time of a single processor.
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715 (salad_bar “conference red ~number 2 ~quantity 0) 716 (fruit_bar ~conference red ~number 1 ~quantity 8)
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Figure 1: An example of a Rete network

. Memory nodes: Each two-input node has two memories — one each for storing tokens from its two
inputs. A right memory holds tokens received from its one-input node. Each token contains a point to
a WME that matched the condition element. A left memory holds sets of tokens that were the result of
the work of a previous two-input node. These tokens contain addresses of WMEs which have matched
a group of condition elements earlier in the rule. Each memory node has a hash table to store tokens.
The hash function that is applied to tokens uses the variable bindings for equality. The tokens which
hash to the same slot will be put in a linked list in that slot. Figure 1 presents a complete example
used to explain how tokens are stored in the hash tables.

Example 5.1 In Figure 1, assume that there are 23 WMEs which will be executed by processor 0. The
right most side of each WM data is the address. In memory nodes 5, 6, 7 and 8, the hashing key is
Tconference and the WMEs with value Tconference red are stored in slot 3, blue and yellow in slot 8
and green in slot 5 of their corresponding hash tables. For example, the token stored in the left hash
table of the memory node 5 combines two WMEs whose addresses are 1 and 714. It will be mapped to
the 3rd slot of the left hash table, because the second WME whose address is 714 has value Tconference



red and Tconference is a hashing key for the two-input node C. Memory nodes 9, 10 and 13 are leaf
nodes and the resulting sets of tokens become instantiations and are placed in the conflict set.

Here, we employ hash tables on memory nodes; the right and the left memory nodes because the hash
value h(k) with key k can be computed in O(1) time and the time required to search for an element
with this key k depends linearly on the length of the list T/h(k)]. In order to avoid many keys hashing
to the same slot, we use the division method [8] to create hash functions and then we introduce the
tree structure to build memory nodes of a Rete network, so memory nodes can be accessed at once.

3. Two-input test nodes: There are four types of two-input test nodes called joint nodes, regular nodes,
N-joint nodes, and N-regular nodes. Notice that each processor conducts all the tests of two-input
nodes individually and no communication among processors is needed.

e Joint nodes: Each joint node accepts the tokens from its two memory nodes and combines the
WME pointers in both tokens to form a new one. This new token will be stored in the proper
slot of the successor left hash table. The two-input nodes A and B in Figure 1 are joint nodes.

e Regular nodes: A regular node joins a positive condition element which matches elements of the
previous condition element. Each consistent match that occurs causes the node to combine the
WME pointers in both tokens to form a new one which will be stored in the proper slot of the
successor left hash table. The two-input node C in Figure 1 is a regular node.

e N-joint nodes: Tokens in the left hash table pass through an N-joint node and are stored in the
proper slot of the successor left hash table as long as no tokens are in the right memory. The
two-input node E in Figure 1 is an N-joint node.

e N-regular nodes: N-regular nodes join a negated condition element which refers to variables bound
in previous condition elements. Each token in the left hash table must be matched against tokens
in the right hash table. The two-input node D in Figure 1 is an N-regular node.

5.1.2 Revisited Rete-network

The revisited Rete-network is used only when the same Rete-network is visited again. Each processor
conducts the test of each revisited two-input node independently; no communication among processors is
needed.

1. One-input test nodes: Each processor conducts the test of each one-input node whenever new WMEs
are created. The WMEs which pass the test are copied into a linked list called the added element list.

2. Two-input test nodes: We illustrate the following test operations of these four types of revisited two-
input nodes. Each revisited two-input node has four types of lists, namely the removed token list, the
added token list, the removed element list, and the added element list. The removed token list and
the added token list are generated from tests of the previous two-input node. The removed element
list stores removed WMEs which are the result of previous firings. The added element list holds new
WDMEs which have passed tests of one-input nodes.

(a) N-joint nodes (see Figure 2):
i. If the right memory is not empty and

A. if the right memory was empty last time, then all the tokens in the left hash table are
copied to the new removed token list, tokens in the removed token list are removed from
the left hash table and tokens in the added token list are added to the left hash table.

B. otherwise
. each token in the removed token list is removed from left hash table, and
. each token in the added token list is copied to the left hash table.
ii. otherwise
A. if the right memory was empty last time,
. tokens in the removed token list are copied to the new removed token list and removed
from the left hash table, and
. tokens in the added token list are copied to the new added token list and the left hash
table.
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B. otherwise
. each token in the removed token list is removed from the left hash table,
. each token in the added token list is copied to the left hash table, and
. all the tokens stored in the left hash table are copied to the new added token list.

the right hash table
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Figure 3: The remove function and the add function

(b) Joint nodes or regular nodes: Joint and regular nodes have the same test operations except that
the regular nodes conduct equality tests. Two functions are used, namely the remove function
and the add function. Note that the remove function is performed first.

i. The remove function (see Figure 3):
A. Each token in the removed token list is compared with tokens in the right hash table and
the new tokens which pass the test at this node are added to the new removed token list.
B. Each token in the removed token list is removed from the left hash table.

C. The elements in the removed element list are compared with tokens in the left hash table
and the new tokens are added to the new removed token list.

D. Elements in the removed element list are removed from the right hash table.
ii. The add function is analogous (see Figure 3).
(¢) N-regular nodes (see Figure 4): An array not-matched is used to store the state of each token in

the left hash table to see if the token has a match when it is compared against tokens in the right
hash table.

i. Set the array not-matched to 0 at each element.
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ii. Compare each token in the removed token list with the tokens in the right hash table. If the
token does not match any token in the right hash table, it is copied to the new removed token
list.

iii. Each token in the removed token list is removed from the left hash table.

iv. Compare each token in the left hash table with the tokens in the right hash table. If the
token does not match any token in the right hash table then a slot in the array not-match is
set to 1; this slot represents the given token.

v. Copy each element in the added element list to the right hash table.

vi. Remove each element in the removed element list from the right hash table.

vii. Compare each token in the left hash table with the tokens in the right hash table.

A. If the token has a match and the array not-matched shows that it did not have any match
last time, copy it to the new removed token list.
B. If the token has no match and the array not-matched shows that it had a match, copy it
to the new added token list.
viii. Compare each token in the added token list with the tokens in the right hash table. If the
token does not have any match, copy it to the new added token list.
ix. Copy each token in the added token list to the left hash table.

5.2 Select phase

The master-slave paradigm is also employed in the select phase. In this phase, each processor, including
the master processor, performs conflict resolution, using LEX (lexicographic-sort) or MEA (means-ends-
analysis), to choose an instantiation of a rule from the conflict set for firing. The slave processors send the
chosen instantiation to the master processor. Next, the master processor determines which instantiation
should be chosen to fire by conflict resolution. Finally, the processor who owns the chosen instantiation
broadcasts it to all the processors.

5.3 Fire phase
All the processors fire the same instantiation of the production rule. Working memory is updated immediately

as each action is performed. Whenever there are make or modify actions, new WMEs are copied to their
associated added element lists and removed WMEs are copied to their associated removed element lists.

6 Performance Analysis

We used an IBM SP for our preliminary tests. The IBM SP system used at PDC (Center for Parallel
Computers, KTH) at Sweden has 170 separate processor nodes. Most of the nodes are standard POWER 2
architecture RS6000 processors. We have run three benchmark OPS5 programs. The benchmark program
hotel simulates the operation of a large hotel for one-day-reservations, check in, maid service, laundry, and



banquet functions, etc. The benchmark program clusters operates on image regions that are characterized
by position and type (i.e., road, hangar, tarmac, etc.). The benchmark program make-teams operates on
a database of employees which contains information about their area of expertise and previous experience.
It also contains an overall numerical evaluation of each employee’s past performance. We summarize the
characteristics of each OPS5 benchmark program in Table 1.

programs |# of] # of # of # of
rulesclassesone-input nodestwo-input nodes
hotel 79| 64 112 180
clusters | 13| 6 14 16
make-teams| 9 4 11 13

Table 1: The characteristics of each benchmark

6.1 Experimental results

We have implemented two compilers, a parallel OPS5 compiler (called Parallel OPS5) and a sequential ver-
sion using the same approach as Parallel OPS5 but using a single processor. They were implemented on the
IBM SP2 and we evaluated the performance in terms of speed of the resulting code. We define speedup as
T”;fmfe Ogo’lr"a‘:fgglsz;fh;"oi s&"?}fof;o:::jor, where N is the number of processors (2, 4, 8, 16 or 32). The exper-
iments measure and compare the performance of Parallel OPS5 with Parallel OPS5 using a single processor
on the IBM SP2 over these three benchmarks. Since previous studies exploring parallelism in production
systems were based on simulators, we did not compare our experimental results with their simulation results.
We used the best compiler options: mpcc -038 -qarch=pwr2 -gstrict -qtune=pwr2 programl1.c, program2.c ....
We used the MPI_Wtime() primitive to measure the wall clock time. We compiled the OPS5 programs hotel,
make-teams and clusters using the Parallel OPS5 compiler, and then submitted the jobs with the number of
nodes ranging from 1, 2, 4, 8, 16 to 32 nodes. Table 2 shows how many initial WMEs of each benchmark are

programs # of # of

initial WMlfirings

hotel 2257 1903

make-teams with| 50 employees 50 2364

100 employees 100 18858
100 image regions 100 3015
clusters with 200 image regions] 200 10365
400 image regions 400 37975
500 image regions| 500 (168882

Table 2: # of initial WMEs and firings

invoked. The program hotel has a large data set and the programs make-teams and clusters have a scalable
data set. Table 2 also shows how many instantiations of each benchmark have been fired. We present our
experimental results in Tables 3 and 4.

Table 3 shows the run time of each benchmark program compiled by Parallel OPS5. Table 4 shows
the speedup of each benchmark program. The benchmark hotel consist of 79 rules, 64 classes, 2257 initial
WMEs and 1903 firings. The benchmark program clusters consists of 13 rules and 6 classes. The benchmark
program make-teams consists of 9 rules and 4 classes. Although the benchmark programs hotel and clusters
don’t scale well, make-teams with 100 employees, when using 8 and 16 processors, runs 6.61 and 7.76 faster

programs 1 2 4 8 16 32
proc |procs| procs | procs | procs | procs
hotel 71.41 |67.26| 64.42 | 61.50 | 62.67 | 65.79
make-teams 50 | 28.44 (17.62| 10.60 | 8.81 8.18 | 10.68
(employees)[1001384.83[776.23| 338.91 | 209.56 | 178.49 | 190.18
clusters [100| 10.28 [10.03| 9.95 9.84 | 10.28 | 12.89
(image [200) 91.97 [79.89| 76.56 | 76.03 | 76.06 | 74.72
regions) 1“00[1036.21850.20 778.82 | 759.26 | 767.59 | 744.43
500 | 12527.27]12045.92]11784.7311760.16

Table 3: The wall clock times (secs) of benchmark programs compiled by Parallel OPS5



programs 2 4 & | 16 | 32
[ProCSpProcsprocsprocsprocs
hotel 1.06/1.11|1.16(1.14|1.09
make-teams with{50|1.61 2.683(3.23 | 3.48|2.66
(employees) [100/1.78|4.09(6.61|7.76|7.28
clusters with [100/1.02|1.03|1.05{1.00{0.80
(image  [2001.15[1.20]1.21]1.21[1.23
regions) 400 1.2211.33|1.37|1.35|1.39

Table 4: The speedups of benchmark programs

than using a single processor (see Table 4). From our observations, we think that the performance of our
Parallel OPSS5 still can be improved. These experimental results also show that scalability of Parallel OPS5
is achieved primarily for large data sets. Below we explain why Parallel OPS5 at this moment does not scale
well in all instances.

6.2 Analyze parallel OPS5

We list strengths and weaknesses of our parallel OPS5 algorithms. This provides the starting point for
improvements.

6.2.1 Advantages

1. State transition graph: We use the rule-cluster control technique [1] to manipulate a large rule base.

start |—| create—team|—| select—team|—|count—teams|—| print-value |

Figure 5: State transition graph for program make-teams

A state transition graph generated by the partition of the control elements helps to reduce the work
space used by the left memory and the right memory. The parallel Rete match algorithm uses a lot
of work space; for example, the benchmark program clusters with 500 image regions and make-teams
with 200 employees consumes more than 4 Mbytes work space using multiprocessors. So, the state
transition graph introduced here addresses this problem. The state transition graph is based on the
idea of using control states to partition the OPS5 program into several control states. For example, the
program make-teams consists of five control states, namely start, create-team, select-team, count-teams
and print-value; its state transition graph is shown in Figure 5. The transitive relations of these control
states are obtained based on the timing of the control states created and deleted. We can use the state
transition graph to determine whether a current state will be revisited; otherwise all the hash tables
used in this state will be freed.

2. Partition WMEs approach: Because each processor has the whole piece of initial WMEs, so when the
WDMEs grow, the work space grows too much and which crashes the production system. For example,
we are unable to finish running programs clusters with 500 image regions using 1 or 2 processors and
make-teams with 200 employees. We introduce the partition WMEs approach to reduce the huge size
of WMEs. This method partitions the WMEs among the processors for those chosen classes which
own a huge size of data set. This method should resolve problems related to the excessive WM space.

3. The tree structure: We introduce a tree structure to build two-input nodes, the left memory nodes
and the right memory nodes of each Rete network, separately. The tree data structure of two-input
nodes described in C code is shown in Figure 6. Figures 7 and 8 present the tree structure of the left
memory nodes and the tree structure of the right memory nodes. It can be seen in Figures 6, 7, and
8, that these three tree structures are the same. This is why whenever a two-input node conducts
tests, its memory nodes can be accessed immediately. This approach also differs from that of previous
researchers.

6.2.2 Disadvantages

1. Parallel Rete is not well-parallelized: This is due to redundant work on each processor. We have discov-
ered this problem in our parallel Rete algorithm which makes parallel Rete unlikely to be parallelized
fully.
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Example 6.1 In Figure 9, assume there are 1 goal, 80 objects and 10 groups which have passed their
test respectively and 100 group-counts. If a Rete network is performed by a single processor, there are
80 comparisons in node A and 10 comparisons in node B. If the same Rete network is executed by a
multicomputer system (using 4 processors and applying our parallel OPS5), there will be 20 comparisons
in node A and 10 comparisons in node B. Consider production rules 0 and 1; since WM data of the
class object have been scattered, rules 0 and 1 can be done in 1/4 of the wall clock time which a single
processor takes. However, in production rule 2, we expect 250 comparisons instead of 1000 comparisons
(if every WME matches every condition element), therefore there is no timing saved by conducting tests
at any two-input node of production rule 2.

In order to make parallel Rete more effective, we propose the find_data_distribution_nodes method.
We illustrate the idea underlying find_data_distribution_nodes as follows (see Figure 9). Note that
each rule can have only one data distribution node.

(a) Sort the numbers of WMEs of each class (1 goal, 80 objects, 10 groups and 100 group_counts) in
decreasing order; we obtain 100 group-counts, 80 objects, 10 groups and 1 goal in sequence.

(b) Choose the first class in that order and choose the class group-count.

(c) Because 100 group-counts flow to nodes D and E, we mark node D for rule 1 and node E for rule
2, respectively.

(d) Next, the class object is chosen, 80 objects flow to node A; we mark node A for rule 0 and 1.
Because rule 1 has been assigned to node D, we drop node A and instead we pick the class groups
and mark node C for rule 0 and node B for rule 2. Since rule 2 has been assigned to node E, we
unmark node B.

(e) Therefore we obtain node C which is chosen for rule 0, node D for rule 1 and node E for rule 2,
f) and the data distribution nodes are nodes C, D and E.
(g) Then 10 groups and 100 group-counts are scattered when two-input nodes C, D and E are exe-

cuted. Therefore this parallel Rete algorithm can be more effective than its conventional parallel
implementation.

2. The Parallel OPS5 compiler consumes too much memory space: As we have mentioned above, each

processor has the same piece of initial WMEs and some production systems crashed because of the
uncontrolled growth of the WMEs. We use the partition WMEs approach to solve this problem.
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The chosen classes of WMEs will be partitioned among the processors. But this is not as easy as it
looks. For example, in Figure 9, the WMEs of classes group and group-count may be chosen to be
scattered, but if the WMEs of the class group are partitioned, when the two-input node B is executed,
the partitioned WMEs of the class group will be compared and this will lead to erroraneous results,
because the two-input node B is not a data distribution node. So, in this case, only the WMEs of the
class group_count can be partitioned among the processors and the whole set of WMEs of the class
group will still be in each processor. Before the two-input node C is executed, the whole set of WMEs
of the class group will conduct a one-input node test and then the passed matches will be scattered to
the processors. If the WMEs of the new class are created by using the associated partitioned WMEs
of say class group-count, then this new class will also be a partitioned class that corresponds to that
partition of the group-count class.

. Fire phase: In the fire phase, we have mentioned that all the processors fire the same instantion of

the production rule in each recognize-act cycle; this makes the Parallel OPS5 not fully effective. We
are certain that the methods find_data_distribution_nodes and partition WMFEs approach introduced
previously will solve the problem in fire phase automatically. Each processor can fire a different
instantiation which makes firing in fire phase be parallelized as well.

Conclusion

Our parallel OPS5 compiler transforms a sequential production system into an equivalent parallel form which
a multicomputer system can execute. The concept of data disribution is employed to partition workload
among processors. Data distribution processes will be executed on the one-input test nodes of the initiated
Rete-network; as a result, the computation time of two-input nodes for each processor should be 1/n of
the computation time of a single processor. The Rete match algorithm trades space for time by saving
the match tokens in memory nodes between recognize-act cycles. Since both the tokens and the WMEs
are stored in the memory, as the size of data set increases, WMEs and work space always grow too fast
and the explosion of the memory leads to an OPS5 program whose enormous data set may make it unable
to finish its work. We introduced the state transition graph and partition WMFEs to solve this problem;
as the results indicate, this did not alleviate this problem substantially. We will introduce the approach
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find_data_distribution_nodes. After WMEs are partitioned, each processor only owns 1/n WMEs which saves
a lot of WMESs space. The method find_data_distribution_nodes determines which two-input test node will
be chosen as a data distribution node. While a data distribution two-input node conducts testing, the
tokens arriving at the right memory will be partitioned evenly and then the workload and workspace of each
processor will be reduced to be approxmatically 1/n.

Currently, from our experimental results, the benchmark program make-teams with 100 employees
using 16 processors runs 7.76 faster than parallel OPS5 using a single processor; thus it is evident that the
Rete match algorithm is suitable for parallel processing on distributed memory systems and we also believe
that our revised parallel OPS5 compiler will work better in general. We will investigate the application of
our parallel pattern match algorithm to CLIPS. CLIPS is a rule-based programming language providing
interferencing and representation capabilities which are similar to those of OPS5. We expect the application
of our parallel Rete network algorithm to CLIPS to be feasible.
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