
An Object-Oriented Microscopic TraÆc Simulator

Gustavo K. Andriotti

and

Ana L. C. Bazzan

Instituto de Inform�atica, UFRGS

Caixa Postal 15064

91501-970 { Porto Alegre, Brazil

ffgka,bazzang@inf.ufrgs.br

Abstract

The aim of this paper is to outline the basic concepts of an object{oriented microscopic traÆc simulator

under development by us, and report the preliminary results. The motivation behind the development of

such a simulator is the increasing utilisation of microscopic simulators based on Cellular Automata. We

propose an object{oriented version, integrated with database and visualisation capability, thus facilitating

its usage by technicians of the traÆc simulation branch. We focus on the classes design, and especially on

the driver class, which is integrated in the proposed framework. We then compare our implementation with

previous ones at the conceptual level, showing that the object{oriented paradigm permits an easy change of

speci�cation of the model of the driver, without having to rewrite signi�cant parts of the code.

1 Introduction

It is a fact that the increasing computational power of the machines available has allowed the development

and eÆcient run of microscopic traÆc simulators ([2], [5], [6], [7], [8], [10], [13], [14]). The main advantage

of a microscopic simulation is the possibility of describing the components at an individual level, which is

normally more realistic.

However, this kind of approach may not be suitable enough to model more complex interactions like for

instance giving advice to drivers. This happens due to the lack of a modelling of driver's goals, preferences

and intentions when it comes to route choice. We propose to integrate a model of drivers based on multi{

agent techniques, i.e., we try to model the driver as close as possible to the cognitive level. For this purpose,

we implement a new module in the simulator, which deals with all issues related to the intelligent being

behind the wheels of the vehicle.

The remaining of this paper is organised the following way: in the next section we brie
y review the

model which provide most of the ideas for our implementation. Section 3 presents our proposal and the state

of its implementation. In Section 4 a comparison between the two simulators is discussed, and Section 5

presents some application scenarios for our simulator. Section 6 thus concludes discussing future directions

of this work.

2 The Nagel{Schreckenberg Model

2.1 Overview

Microscopic models for traÆc simulation are in general more complexes than the macroscopic ones. In

order to cope with this complexity, cellular{automata (CA) based models have being proposed such as the

Nagel{Schreckenberg ([8]) one. In short, each road is divided in unit cells with a �xed length (normally 7.5

meters). This permits the representation of a road as an array where positions show whether a car is present

or not, at each given time. Each vehicle travels with a speed which is always represented by the number of

cells it can advance at each time step. This characterises the model as discrete and, moreover, most of the

quantities are integers, turning the eÆciency good enough for real time simulation and control of traÆc.

The Nagel{Schreckenberg model ([8]) was originally created to tackle the single{lane, highway scenario.

By now, many enhancements were added so that it can also deal with urban, multiple{lane scenarios ([9]).

However, for the sake of comprehension, let us focus on the simplest model. The extensions are easily

deduced.

As for the network representation, each road is described as a composition of nodes and edges representing

intersections and roads. The expression edge is used to refer to directed edges representing one direction of

motion on a road, i.e., one road usually consists of two (oppositely directed) edges. The road is subdivided

into cells of length 7.5 meters, which can be either empty or occupied by one vehicle. This represents the

average space a vehicle takes in a traÆc jam, but can be suitably adjusted. It is important to do this

adjustment so that each time step in the simulation corresponds to the desired time frame. Every vehicle

has a nonnegative integer speed. For one update of the totality of cells, the following four steps are performed

simultaneously for all vehicles:

1. Accelerate with probability 1� p, where p is the non-acceleration probability (de�ned on driver);

(a) If the car will accelerate, then vtemp vcurrent + 1, where: vcurrent is the current velocity;

(b) If the car will not accelerate, then vtemp vcurrent;

2. New velocity will be: vnew min(gap;min(vtemp; vmax)), where: vnew will be the next velocity, vmax

is the maximum velocity allowed and gap is the distance (in cells) to the vehicule ahead;

3. Move vnew cells foward.

Investigations reported in the literature (references cited above) showed that despite its simplicity the

cellular automaton model is capable of reproducing macroscopic traÆc
ow features including realistic lane

changing behaviour (for an overview see [9]). Later on, this basic model was extended to deal with enhanced

scenarios ([5], [6], [11]). In the urban traÆc scenario, there was the need to add more elements such as traÆc

lights and more complex intersections. The overall simulation tool consists of di�erent elements explained

in detail below.

� Singlelane edges: work as the basic cellular automaton. In addition, turning sections can be connected

for each direction at the end of the edge. Vehicles that have to use such a section appear on to the

2

beginning of it; if the vehicle is hindered at entering, it has to wait at a kind of bu�er or virtual position

until an entering is possible.

� Multilane edges: at the end of multilane roads, the lane{changing behaviour strongly depends on the

desired driving direction; for this purpose, multilane edges are subdivided into di�erent regions.

� Direction change: lane changes are unconstrained; a car only changes lane according to the destination

directions allowed; sometime vehicles have to wait if they are not on the desired lane, so such waiting

vehicles lock positions and can cause deadlocks.

2.2 Priority Rules

Urban road networks di�ers from freeway networks by various features but one of the most important

is the high density of intersections. It is important for the simulation to have realistic throughputs at the

intersections, which requires realistic traÆc light plans and the consideration of complex priority rules. In the

model described in Esser and Schreckenberg ([5]) and Esser et al. ([6]), each edge in the network has a driving

direction dependent
ag at its end, by which vehicles may be prevented from advancing further. TraÆc lights

actions are simulated by switching the
ags which correspond to prede�ned plans. Further priority rules

are realised by switching leave
ags depending on vacant cells on other edges. Here an additional important

parameter is the number of gaps prior of cells.

Finally, it is possible that vehicles waiting at an intersection hinder the further advance of each other; in

this case one of these is randomly chosen to advance in order to clear the deadlock. A similar problem arises

if a vehicle has priority, but cannot drive on (e.g., due to red traÆc light or a crowded destination edge);

then its priority is neglected for other vehicles.

2.3 Vehicle Types

Vehicles are characterised by their maximum speed, length (number of occupied cells) and a probability of

carrying out risky lane changes. In the standard version, the deceleration probabilities are not individual,

but assigned to the driver. There are two special kinds of vehicles: those which can be guided periodically

along prede�ned routes following timetables to simulate public transport (bus or tram stops), and arti�cial

vehicles which cover hindrances such as accidents or road works (these vehicles have special length and vmax

=0).

2.4 Sources and Sinks

Sources and sinks are a way to model the appearance and disappearance of traÆc
ow, respectively. Basically,

sources and sinks can be linked to every cell in the network. At sources, when vehicles are created, they

are also characterised by type, guidance mode and other necessary information on demand. As for sinks,

probabilities for leaving the network are attributed to every edge for randomly driven vehicles. This is aimed

at various purposes like e.g. the modelling of parking lots.

2.5 Sensors and Detectors

An essential requirement for traÆc simulation is to have input data about the traÆc state. For this purpose,

detection devices like inductive loops or camera sensors are incorporated in the simulation: at measure points.

The input are local data like number,
ow, or density of vehicles as well as average speed are collected for

di�erent vehicle types.

2.6 Simulation Control

The overall simulation tool consists of two main processes. The master controller maintains the overall

coordination: it checks static and dynamic network data read from the database for consistency and initialises

the scenarios. During the simulation it receives and updates dynamic data like turn counts, handles the

simulation output including updates of the graphics and if necessary provides current data to the routing

module, which updates of route plans for the vehicle guidance system. The current network dynamics is

carried out by the microsimulation process, which involves vehicle motions, traÆc light updates, and data

collection for statistics. The advantage of this subdivision is twofold: On the one hand, it speeds up the

simulation, since the microsimulation can be parallelised. Furthermore, in practice, it facilitates the overall

handling because it is possible to rearrange graphical output or data formats, among others, without caring

about the complex structure of the microsimulation.

3

Simulation.cppConstants.h

classe C++

arquivo contendo função main

especialização, herança

arquivo de cabeçalho

SimulObj

Edge Topology ConnObjDriverCar

Connector Detector

Sink Source

Figure 1: Organisation of Classes

3 The Object{Oriented Implementation of a Microscopic Simulation

3.1 Overview

The traÆc simulator proposed here follows a microscopic and discrete simulation approach, combined with

an object{oriented paradigm. The simulator is under development using C++/MySQL platform. MySQL

was chosen to be the database support for this project phase. The object{oriented paradigm was chosen

owing to its ability to hide the implementation details inside classes (there is no need to know how it

was designed, just what it does). Besides, one can encapsulate a given behaviour, i.e., all that relates

to the object Driver, for example, will be on Driver class and one can create "isolation rings" and solve

implementation problems one at time. Moreover, the debugging process is speeded up on this approach as

one can (precisely) isolate bugs on certain class. Moreover, with classes it is possible to extend actual classes,

implement interfaces (abstract classes) and substitute standard classes. The SQL database model provides

an extensive language to manipulate data in form of tables and in a timely fashion. Performance is an issue

on real{time simulation, so a database with simple interface and quick response is required. MySQL is a

free implementation of SQL/92 standard with a fair time response on database queries.

3.2 The Architecture and Components

All over the simulation, the concept of templates and inheritance were used. Templates are structures which

are independent of the data type. For instance, a sum function can be implemented without specifying over

which data type that sum function (can be a integer type or
oating point type); this will be speci�ed just

when it will be necessary. Inheritance is the property to take an already speci�ed behaviour from other

classes. Hence, if there is a class that implements sum and one wants to add the subtraction function, one

should just extend that class (and add the subtraction function) by allowing it to inherit the properties of

the former.

In the programming task, almost every class is a template. This choice was made to increase the

exibility of the simulator and to add di�erent implementations for a given class. This means that classes

can be replaced without code rewriting.

3.2.1 Overview of the Organisation of Classes

In the simulator core, there are few classes that are responsible for the entire simulation. This classes are

abstraction from reality, inspired on traÆc simulator implemented by Nagel, Schreckenberg, and collaborators

([6], [8], [10], [11]). These classes are organised by dependency, not inheritance. Usually, a class needs some

methods from other classes. For example, the Driver needs some methods from the Car class in order to

know its location and decide what to do next. There is inheritance too, although just to establish a common

interface to similar classes (for example, in Connectors, Sources and Sinks there is common methods) and

to save time at the programming task.

For all classes, there is an unique ID that obey a mask to quickly identify the class type assigned

accordingly to the database or dynamically created (used on Car class).

4

The whole simulator was designed to use discrete time steps and discrete space segmentation. The entire

behaviour of the simulation was designed to use Schreckenberg model ([8]).

3.2.2 Class Topology

Like a centralised manager, this class controls the whole simulation, setting time steps and coordinating all

update procedures. On this class resides the network creation and control. All other classes are subordinated

to Topology, as depicted in Figure 1.

3.2.3 Class Edge

On Edge we have a homogeneous roadside segment, i.e., the number of lanes, orientation (road hand) are the

same for a particular Edge. Actually the number of lanes can vary in the Edge but restricted to a limited

number of variations. This lane number variation just can mimic an Edge obstruction, using stopped Cars.

Edge data carry Cars and let them know about its state. This state include its position, gap to nearest

Cars, length and its target ending direction (when the car reach the edge's limit). Moreover, edge does not

allow Cars to pass through each other, and control turning probability (set by Topology).

3.2.4 Class Connector

Connector simulates a road intersection. In this class we have all priority rules to allow a Car to use

that Connector. Basically, Connectors are used to connect Edges in a pairwise way as to compose a road.

Connectors have no dimension, i.e., a Car do not consume time to pass through it. This implementation was

chosen to avoid deadlock on Connectors. Connectors can have up to 16 Edges connected to each, 8 to get

in and 8 to get out, but it can be increased or decreased (just resetting a parameter at compilation time).

3.2.5 Class Detector

On a detector traÆc
ow controlers and counters are mimic. So it can act like and �ne tune traÆc
ow

controle or and data colector. On the �rst case suppose that there are real traÆc
ow data available so a

detector will remove extra vehicles or add the missing ones. And the other case it will be used to collect

data from the traÆc network.

3.2.6 Class Source

This class is designed to allow a Car to be inserted on a traÆc network. Its function is to insert Cars at a

given rate into the Edge that it is connected to. Sources are a special kind of Connector. Moreover, Sources

bind Cars to Drivers. These Sources, in the near future, will get their rates from a database and set them

on the
y. For purpose of tests, they just have a �xed rate of insertion.

3.2.7 Class Sink

Sinks perform Car collecting. Each Sink collects all Cars that leave the Edge it is connected to, and delete

them. On this removing process it guarantees that there is no classes attach to it.

3.2.8 Class Car

This class just carries the car state, i.e., it has all data to precisely locate a car. There are data that indicate

which direction that car will take, by asking Edge and Driver for information. Car is a "static" entity, which

means that a Car cannot change its state by itself. This will be performed by the Edge and Driver classes.

It plays a dummy role on simulator, because it is just act like a temporary memory, or
ags, to the system.

3.2.9 Class Driver

The Driver guides the Car direction by setting its properties. It decides whether a Car will change its actual

lane or accelerate and, in richer scenarios, which direction it will take at an intersection. A (type of) Driver

can control several Cars without limitation, because Cars carry all vital data to decide next state. There

are many di�erent aspects, which are handled by the Driver Class, as discussed below.

First, the Driver focuses on accelerating, breaking, bypassing, or changing lanes. This behaviour is usually

described by a microscopic traÆc
ow model such as the Nagel{Schreckenberg model or other car{following

model. However, this implementation allows for exchanging these models easily, i.e., the architecture is open.

5

Second, the Driver manages the navigation through the network. This can be done in two ways: the

Driver can statistically decide at every intersection, or it can follow a pre{de�ned route. For the former

approach, turning probabilities have to be determined. The latter approach needs origin{destination data

as input. The implementation also allows for assigning a mental map to the Driver, which represents the

knowledge about the network.

Third, the Driver has to communicate with for instance traÆc control centres, which send traÆc messages

to help to navigate through the network. These messages need to be processed by the Driver with regard to

its mental map. In general, this class will be a repository for di�erent kinds of information: the type of driver

(i.e. aggressive, calm, passive, in a hurry, etc.); his/her mental states (i.e. beliefs, preferences, goals, etc.);

and possibly some sort of on{board information system (e.g. radio, Internet, or other navigation system).

The main advantage of this implementation is that the models can be exchanged easily and di�erent

models can be used at the same time. Our overall goal here is to provide a public class so that the user

can insert his model of the driver. For instance, we will incorporate the inference engines which use the

information provided by mental states based approaches to model drivers (e.g. [1], [3], [12]), or decision{

making under dynamic traÆc scenarios ([15], [16]).

3.3 The Database

The database is designed to perform queries to receive all network parameters. The main motivation is

that not all the data will �t on a generic database model used on the simulator. To provide a
exibility

level on this issue, there are auxiliary programs to automatically generate classes that implement database

interface. For example, in the simulator database we expect to deal with probabilistic measurement of
ow,

but not all provided data correspond to
ow (one can have data regarding occupancy rate, density or travel

time for instance). To solve this, a function can be speci�ed to convert one system to another, so that

the database will be �lled with occupancy measures or density, while the simulator receives converted data

(
ow). Alternatively, we can generate a new database and the auxiliary programs make all proper classes to

use this new database.

3.4 Description of the Simulation

Each step of the simulation performs a sequence of procedures as shown above. After that we have the

simulation process. All steps above are performed once per simulation cycle, not on every simulation step.

1. Eliminate all cars on Sinks ;

2. Insert new cars throught Sources ;

3. Verify all Detectors ;

4. Update inter-Edges gap;

5. Perform lane change on Edges (if is an even simulation step perform left-to-right lane change, else

right-to-left lane change);

6. Update intra-Edges gap (inter-Cars gap);

7. Apply Cars linear movement.

4 Comparison

Most of the current implementations of CA{based microscopic simulators (see all references of works by

Schreckenberg and colleagues as well as TRANSIMS2, [18]) are based on more or less common rules for the

evolving of the vehicles in a given network. Our implementation basically follows the Nagel{Schreckenberg

model, both the original one as well as the further additions (e.g. to cope with traÆc signals, lane change

and so on). However, a basic di�erence is that our version was designed to be as general as possible pro�ting

from the concept of object{orientation and hierarchy of classes.

The object{oriented paradigm allows us to hide the implementation details inside the classes. In practice,

this means that any maintenance in the functionality of any class can be easily implemented, without having

to rewrite code which is not related to the actual change or addition. This might look simple and obvious but

it has been not the case. Our experience shows that most programmers rewrite entire modules from scratch

because they cannot understand the existing code. The paradigm of object{orientation, if well understood,

might put an end in this possibly ineÆcient way of software development.

6

Besides, one can encapsulate a given behaviour inside a single class and solve implementation problems

one at time. Hence, the debugging process is speeded up with this approach as one can isolate bugs on

certain class. The second point in which our implementation di�ers from others is in the design of a database

especially constructed to this application. This can eliminate the time{consuming tasks of converting units

(e.g. occupancy rate to
ow of vehicles), and of designing a database for each scenario. Moreover, the

database we use relies on open technologies like MySQL, and a tripple-layered architecture that isolate

database technology from the simulator. That means that is possible to change the database for another

one like: Oracle, DB2, mSQL, etc.

The major di�erence however, is that we propose a class called Driver. Such class does not exist in other

implementations, in which drivers and vehicles are modelled indistinguishably. We depart from the idea

that a vehicle can do something by itself. Rather, we open the possibility for the user to model drivers as

it pleases. For instance, the easiest way would be to follow the well known version of the so{called driver{

vehicle{unit, where both driver and vehicle are seen as a single agent which acts basically in a reactive way

using standard models like the car{following.

On the other hand, if necessary, the user of the simulator can implement more complex models for the

drivers like BDI{based ones as proposed in Bazzan et al. ([1]) and Rossetti et al. ([12]). To do so, all that

is necessary is to design new instances of the class Driver and give the corresponding semantics to the slots

of these instances.

Here we see the major advantages of the object{orientation: using standard programming techniques,

signi�cant portions of the code have to be rewritten or revised to cope with such a change in the way a

driver behaves. Using the object{oriented paradigm, only the class driver has to be modi�ed. And even

this modi�cation is much simpler here: only the functionality of the class change, the interfaces with other

classes remaining the same. That let methods to be override and have another semantic.

We are aware of the performance of other simulators. It is reported, for instance in [6], that the simulation

of the inner ring of Duisburg city using an implementation of the Nagel{Schreckenbergmodel for that scenario

runs a whole day of typical traÆc in about 20 minutes on a PC (Pentium P133). This scenario involves

more than 100 nodes, about 300 edges, and more than 20000 cells. Although we cannot draw quantitative

conclusions at this point, we would say that the performance of our version would be lower due to the need

of message passing between objects. This is a trade{o� we are willing to make since we know that the

computational power of PCs is increasing in a way which permits us to simulate x time steps in less than

this time by several orders of magnitude.

5 Results

The scenario depicted in Figure 2 were simulated in four di�erent con�gurations. These are the result of

the combination between a loop and a straight trajectory, and two situations of traÆc
ow: jammed and

free-
ow. In order to gain information about the network we have used a
oating car, i.e. a car which travels

in the network and returns some information regarding its speci�c position at each time step (such as speed,

position, density of the network in that position).

2

0 1

3 4

5

6

7 8 9

10 11

Sink

Source

Figure 2: Topology of Simulation

7

The chosen routes were:

� Loop: passing through Edges 2, 3, 6, 8, 5 and back to Edge 3 (doing a loop circiut).

� Straight: the Edges are 2, 3, 6, 8, 5 and 0 (been eliminated by the Sink at the end of Edge).

The probabilities of vehicles going to each possible direction, on each Edge, is shown on Table 1.

Edge direction

0 1 2 3 4 5 6 7

0 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

1 0,0 0,0 0,2 0,0 0,8 0,0 0,0 0,0

2 0,1 0,0 0,9 0,0 0,0 0,0 0,0 0,0

3 0,0 0,0 0,4 0,0 0,6 0,0 0,0 0,0

4 0,0 0,0 1,0 0,0 0,0 0,0 0,0 0,0

5 0,3 0,0 0,7 0,0 0,0 0,0 0,0 0,0

6 0,0 0,0 0,0 0,0 0,5 0,0 0,5 0,0

7 0,0 0,0 0,0 0,0 0,0 0,0 1,0 0,0

8 0,2 0,0 0,0 0,0 0,0 0,0 0,8 0,0

9 0,0 0,0 0,0 0,0 0,4 0,0 0,6 0,0

10 0,5 0,0 0,0 0,0 0,0 0,0 0,5 0,0

11 0,0 0,0 0,0 0,0 1,0 0,0 0,0 0,0

Table 1: Table of turning probabilities

To simulate the free-
ow scenario a 0:3 insert rate was set on the Sources , each simulation step (or, given

the simulator semantic, 30% of chance that a Car will be inserted on the actual step). And for a jammed

scenario a 0:7 insert rate was adopted. The other parameteres, maintained the same on all simulations, are:

nonacceleration probability equals 0.0; a 5 cells per time step of maximum velocity; 20 cells of Edge length

(for all Edges); all vehicles with 1 cell of length and all Edges with just one lane. Connectors are on each

Edge intersection, on �gure 2. Sources and Sinks are disposed according to that diagram.

6 Further Application Scenarios

The performance of the simulator will be tested in the near future within at least other two of the three

following scenarios. First, an urban one where we have continuous data for a dense network of detectors

(city of S~ao Paulo, Brazil). The second one is an urban scenario in which the data is sparse and the detectors

located far apart, giving us the possibility to mimic a macrosimulation (city of Porto Alegre, Brazil). Finally,

a highway scenario composed of two alternative routes to be used for travelling between the cities of S~ao

Paulo and Campinas, two important industrial and technological centres in the Southeast of Brazil.

7 Conclusion and Future Work

We have presented the concept of a CA{based microscopic traÆc simulator, entirely designed to be object{

oriented. We have discussed the function of the main classes, the simulation procedures, as well as the

database aimed at storing the data related to each scenario to be simulated. We have shown the advantages

of such a concept, especially if we want to give di�erent functionalities to the main actor in this system, the

driver. The next step of this work is to simulate those scenarios discussed above, initially with standard

models for the driver in order to compare both the results and the performance of the simulator with existing

versions. We further plan to integrate a more complex version of the driver, possibly using a BDI{based

approach.

References

[1] A. Bazzan, J. Wahle, F. Klgl. Agents in TraÆc Modelling { From reactive to Social Behaviour, in:

Proc. of KI{99, eds. W. Burgard, A.B. Cremers, T. Christaller, LNAI 1701 (Springer, Berlin, 1999),

pp. 303{306.

[2] J. Barcelo, J. Casas, J.L. Ferrer, and D. Garcias. Modelling advanced transport telematic applications

with microscopic simulators: The case of AIMSUN2. In W. Brilon, F. Huber, M.Schreckenberg, and H.

8

Wallentowitz (eds.), TraÆc and Mobility: Simulation { Economics { Environment. Springer, Heidelberg

(1999).

[3] H. Dia and H. Purchase. Modelling the impacts of advanced traveller information systems using intel-

ligent agents. Road and Transportation Research, 8 (3): 68{73, (1999).

[4] D. Chowdhury.; D. E. Wolf; M. Schreckenberg. Physica A, 235, 417.

[5] J. Esser and M. Schreckenberg. Microscopic Simulation of Urban TraÆc based on Cellular Automata.

Int. J. of Mod. Phys. C 8 5, 1025 (1997)

[6] J. Esser, L. Neubert, J. Wahle, M. Schreckenberg. Microscopic Online Simulation of Urban TraÆc. In:

Proc. of the 14th ITS, ed. A. Ceder (Pergamon, 1999), pp. 535{554.

[7] I. Kosonen. HUTSIM { a simulation tool for traÆc signal control planning. HUT Transportation

Engineering Publication 89, 1996.

[8] K. Nagel and M. Schreckenberg. A Cellular Automaton Model for Freeway TraÆc. J. Phys. I France

2, 2221 (1992)

[9] K. Nagel, D.E. Wolf, P. Wagner, and P. Simon. Two{lane traÆc rules for cellular automata: A sys-

tematic approach. Phys. Rev. E 58, 1425 (1998).

[10] K. Nagel, J. Esser, and M. Rickert. Lagre{scale traÆc simulations for transport planning. In: D.

Stau�er (ed.) Ann. Rev. Of Comp. Phys. VII, 151{202, Singapore (2000). World Scienti�c

[11] M. Rickert; K. Nagel; M. Schreckenberg; A. Latour (1997). Physica A, 231, 534.

[12] R. J.F. Rossetti, R. H. Bordini, A. L.C. Bazzan, S. Bampi, R. Liu, and D. Van Vliet. Using BDI Agents

to Improve Driver Modelling in a Commuter Scenario. To appear in: Trasnp. Res. C (2001).

[13] P. Wagner, K. Nagel, and D. Wolf, Physica A234, 687 (1996).

[14] P. Wagner, TraÆc Simulations Using Cellular Automata: Comparison with Reality, in TraÆc and

Granular Flow, D. E. Wolf, M. Schreckenberg, and A. Bachem (eds.) (World Scientic, Singapore,

1996).

[15] J. Wahle, A. Bazzan, F. Klgl, M. Schreckenberg. Anticipatory TraÆc Forecast Using Multi{Agent Tech-

niques. In TraÆc and Granular Flow '99, pp. 87{92, eds. D. Helbing, H.J. Hermann, M. Schreckenberg,

D. Wolf (Springer, 2000a).

[16] J. Wahle, A. Bazzan, F. Klgl, M. Schreckenberg. Decision Dynamics in a TraÆc Scenario. Physica A

287, 669{681 (2000b).

[17] Provided on MySQL documentation, see www.mysql.com for further information.

[18] TRANSIMS Home Page, http://studguppy.tsasa.lanl.gov

[19] Duisburg Online Simulation Home Page, http://www.comphys.uniduisburg.de/OLSIM/

9

