Distributed Allocation of
Discrete-Event Simulation Servers

Mauricio Marin!?3 Carolina Bonacic??

!Centro de Investigaciones de la Web, Universidad de Chile
2Centro de Estudios del Cuaternario, Universidad de Magallanes

3Departamento de Computacién
Universidad de Magallanes

Casilla 113-D, Punta Arenas, Chile
E-mail: {mmarin,cbonacic}@ona.fi.umag.cl

Abstract

We present a scheme for efficiently administrating a set of distributed simulation servers which attend
requests from a number of users. These can be either sequential or parallel simulation models, or random
combinations of the two. We treat each server as a BSP machine and organize our scheduling strategy
upon the cost prediction and computation model supported by it. Empirical results show that the proposed
strategy is able to achieve near optimal performance. OQur aim was to develop a mechanism which be able
to work with minimum global information so that it can be utilized on Web based simulation systems.

Keywords: Distributed computing, parallel and sequential discrete-event simulation, BSP computing, para-
llel computing, scheduling.

1 Introduction

The Web has became an ubiquitous resource for distributed computing making it relevant to investigate
new ways of providing efficient access to services available at dedicated servers from Web pages. This paper
is concerned with the efficient administration of a set of discrete-event simulation servers which are able to
execute user’s simulation models in parallel or sequentially.

The scheme proposed consists of a number of instances of three basic entities which we call models,
managers and servers. The first one represents user simulation models that are sent to managers, which in
turn decide to which simulators (servers) the models are scheduled for execution. The metric to optimize
is response time defined as the total real time elapsed between model submission and simulation results
delivery.

Parallel simulations are carried out using bulk-synchronous parallel (BSP) processing [11] which not only
allows the achievement of high performance computation but also the accurate prediction of that performance
in advance, which is crucial to our scheduling purposes. At every server site, what we actually have is a
set of P processors (e.g., a cluster of PCs) which are treated either as a single machine for the case of
executing a parallel model requiring P processors, or as a set of P individual machines capable of executing
up to P sequential simulation models during a given period of time. Communication and synchronization
among these P processors is performed by ways of the paradigm supported by the BSP model of computing
[12, 11]. Communication among the many instances of model, manager and server entities is supported by
the CORBA technology.

The paper describes novel developments. First, it describes how to use (in this context) a cost pre-
diction methodology we have developed for predicting performance of parallel and sequential simulations.
This methodology provides the basic framework upon which the scheduling process is carried on. Second, it
proposes a way of representing simulation models, and in general a unifying way of dealing with their com-
plexity as a whole, which simplifies the scheduling process. Third, it proposes a method for administrating
the execution of parallel and sequential simulations models which is based on the organization of the avail-
able computers as a cluster synchronized using the BSP model of computing. This allows us to dynamically
allocate a number of computers (processors) to either simulate a sequential model each or a single parallel
model. The proposed framework allows managers to decide whether or not it is worth to execute in parallel
a given simulation model on the target machine. To the best of our knowledge the combination of these
topics has not been investigated so far, though the parallel simulation literature is extensive and diverse
(e.g., see surveys in [1, 8, 9, 10, 4]). None of this has been investigated in the BSP context, in particular,
the feasibility of using a BSP cluster of PCs to dynamically service simulation workloads in parallel and
sequentially.

The remaining of the paper is organized as follows. Section 2 presents formulae and methods for predicting
the running time of simulation models. Section 3 presents an object-oriented method for system modelling
and simulation. Section 4 describes our strategy for the efficient scheduling of sequential and parallel discrete-
event simulators onto a set of computers. Section 5 presents empirical results showing the performance
achieved by the proposed scheduling strategy, and section 6 presents conclusions.

2 Running times

The running time of parallel discrete event simulations is predicted in terms of the bulk-synchronous par-
allel (BSP) model of computing [12, 11]. In BSP, any parallel computer is seen as composed of a set of P
processor-local-memory components which communicate with each other through messages. The computa-

tion is organised as a sequence of supersteps. During a superstep, the processors may perform sequential
computations on local data and/or send messages to other processors. The messages are available for process-
ing at their destinations by the next superstep, and each superstep is ended with the barrier synchronisation
of the processors.

The total running time cost of a BSP program is the cumulative sum of the costs of its supersteps,
and the cost of each superstep is the sum of three quantities: w, hg and I, where w is the maximum of
the computations performed by each processor, h is the maximum of the messages sent/received by each
processor with each word costing g units of running time, and [is the cost of barrier synchronising the
processors. The effect of the computer architecture is cost by the parameters g and /, which are increasing
functions of P. These values along with the processors’ speed s (e.g. mflops) can be empirically determined
for each parallel computer by executing benchmark programs at installation time [11].

In [7, 6, 4] we have presented formulae for predicting the running times of different synchronization pro-
tocols for performing parallel discrete-event simulation on BSP computers. In particular, we have obtained
an expression for determining whether or not it is convenient to resort to parallel simulation for a given

model,
1

Sw = B+ Pu/r) + 2Py Pur oo + Psls

with % <Pp<1,0<Py<1,0<Ps<1,r>1,and z > 1. The parameter Ps is a measure of slackness,
namely it is the inverse of the average amount of events processed in each superstep. The parameter Pjs
accounts for locality, and it determines the fraction of communication that every simulated event generates.
The parameter Pp accounts for load balance where the optimum is reached at Pg = 1/P with P being
the number of processors. The granularity of events is captured by r > 1 which is a factor that increases
the lowest (feasible) cost Ce of processing an event in a particular machine. Similar to the BSP parameters
g and [the value of C, is determined by performing benchmarks on the target computer. We also define
ge = g/(rC.) and I, = 1/(r C.). Finally, z is the size of event messages transmited among the simulation

objects. The effectiveness of this strategy has been validated with empirical data from actual simulators
[6, 4].

In this way simulation models can be represented by an instance of the tuple (Pg, Ps, Py, 1, z,T;) where
T, is an estimation of total running time required by the simulation (below we explain how to calculate
this measure). The expression for the speedup S, is useful in the sense that it can let our manager entities
determine whether or not it is worth to route a given simulation model to a given parallel simulation server.
Models not only should be routed to the servers which offer the best possible speedups but also to those
which are not busy enough to make response time larger than that achieved by a more modest sever.

Similar arguments to those used in the determination of S, can be used to predict running times per
unit simulation time of simulation models to be executed sequentially or in parallel. The managers can use
these expressions to make decisions about which servers should be allocated to what models.

As explained in section3, we use information about the communication topology among simulation objects
to determine the tuples (Pg, Ps, Py, 7, 2,T,). The objects by themselves provide information about the
number of events to be executed during the simulation. As it is not generally possible to know the exact
sequence of events that take place during the simulation but until they are actually simulated, we assume that
these objects behave like PHold entities [2, 3, 4]. That is, initially each object causes the occurrence of one
event, and thereafter each event that takes place generates the occurrence of a child event in a neighboring
object selected uniformly at random. The interval of simulation time elapsed between father and child events
is, for example, exponentially distributed with mean one. This certainly provides just an approximation of
the real event process. However, all simulation models are treated the same way which provides a common
cost modelling framework. The outcome of this pre-simulation is an estimation for 7.

Thus the model entities send tuples (Pg, Ps, Py, 7,2, T,.) to their manager entities along with an estima-
tion of the total execution time required to complete the simulation. In turn the managers compute running
time expressions and determine in which server entities should the models be executed. This is effected by
considering the current models being executed at servers and the pending models waiting for execution. This
is detailed in section 4.

3 Worldview

A number of the above calculations depend on the way of constructing the simulation models. They are
built up by using a specific methodology which presents to the user a particular world-view. The one which
we have devised allows the automatic determination of the tuples (Pg, Ps, Py, 7, z) by means of performing
a pre-simulation of the models (one which only considers the communication topology among simulation
objects). This in combination with benchmarks oriented to determine lower bounds for event execution
times [6] provides the necessary data for the scheduling decisions.

In the world-view, any system is seen as a composed of a collection of objects that communicate with
each other via timestamped event-messages. Associated with each object there is a global instance identifier,
called object-id, and a class identifier, called entity-id. There exists a simulation kernel that is responsible
for efficiently delivering the messages in strict chronological order given by the message timestamps. Each
simulation object inherits from a base class called Device that provides methods for interfacing the kernel.
In particular, the kernel delivers messages to the simulation object by executing the Device’s method cause
with parameters such as event-type, object-id, entity-id, and the simulation time at which the event takes
place in the target object. For each simulation object, the user must provide an implementation of the cause
method so that events are handled in accordance with the behaviour defined for the particular object. The
entity-id parameter allows the user to split the event processing task into a set of private methods, each
handling different types of events for a given type of entity.

In addition, simulation objects contain output channels that they use for sending messages to other
objects connected to those channels. A message is sent out by executing the Device’s method schedule which
takes parammeters such as channel number, time in which the event must take place in the target object, and
sender’s object-id and entity-id. At initialization time, all output channels are connected to their respective
target objects. Note that the cause method could work on input channels as well. However, we have not
seen a need for including in our world-view the notion of input channels yet. In fact, the combination
object-id/entity-id appears to be very flexible as it allows objects to receive messages from multiple sources
without complicating too much the initialization process.

On the other hand, the notion of output channels makes it easier to the programmer to work on generic
implementations of the object without worrying about the specific object connected to the output channel.
Actually, all this is a tradeoff between generality and simplification of the initialization process and its
implicancies in code debuging and maintenance. Currently, we have C++ and Java implementations of this
approach and its effectivity has been proven with undergraduate level students’ simulation projects.

The Device class is instrumented to allow a rapid pre-simulation (PHold) of the simulation objects so
that the associated model tuple and total execution time are estimated (pre-simulation is two or more orders
faster than actual simulation). Currently, these pre-simulations are performed at the user site though they
could alternatively be effected at the manager site. Parallel simulations are performed by using the event
synchronization protocol described in [5].

4 Scheduling strategy

Users can submit sequential or parallel simulation models written in a especial purpose specification language
(a text file). First, a tuple (Pg, Ps, Py, 1, 2,T,) describing such model is sent to the manager associated
with the particular instance of the user entity. This tuple can be determined from the specification file either
at the user’s machine or at the manager’s machine. The file describes the communication topology and the
random number generators (mean values included) all of which are used by the pre-simulator to estimate all
parameters of the model tuple.

Each manager has the responsibility of administrating one server which is seen as a BSP machine com-
posed of P processors (e.g., a cluster of PCs administered with the BSPlib communication library [11]). The
scheduling process is effected in two levels as described in the following subsections.

4.1 Local scheduling

This level is related to individual manager-server pairs. The BSP machine (server) performs the simulation
of either up to P different sequential models or a single parallel model. The server performs its computations
using the above defined supertep concept. During a given superstep, we can have (up-to) P sequential models
being simulated until their respective ends, or this superstep being one of many supersteps associated with
the parallel simulation of a model requiring P or less processors. Instances of the user entities send their
sequential simulation objects to one of the P machines, whereas the parallel simulation objects are sent to
their respective processors as mapped by the programmer. This is effected after the manager has determined
a particular scheduling for a set of users requesting service. We propose a simple but efficient scheme for
this task.

Under a situation of intensive traffic we can expect to have a queue of user requests in a given manager.
As we have a method for estimating the total running time of sequential and parallel simulation models,
then the best thing to do comes from any operating systems textbook, namely, employing the optimal
scheme called the shortest job first. The manager has two queues. The first one maintains the incoming user
requests, say jobs, in FIFO order. The second one is feed periodically with batches of n jobs with n/P > 2 if
possible. Thus a given batch is sorted in accordance with the estimated running times, and then the batch is
re-ordered again trying to leave P sequential jobs between two parallel jobs (this is done to avoid having idle
processors between two parallel models). The batch is then sent to the server to be processed in alternate
runs of P sequential models (one superstep) and one parallel model (several supersteps). In practice, we
should expect a performance ranging between the above best case given by a batch composed by sequential
models only, and the worst case given by a batch composed of parallel models only.

4.2 Global scheduling

The set of managers keep record of the number and type of user requests they locally receive. Initially, all
BSP parameters (s, g,1, P) of simulation servers are known to all managers. During operation, periodically
managers engage in a global all-to-all communication to let each other know the number of sequential models
and parallel models they have received locally. Let Ny and IV, be the total number of sequential and parallel
models received in the whole system respectively.

The aim of this global communication is to emulate the same idea of the local scheduling strategy. That
is, for a global system composed of M managers/servers we want to approximate the operation of the whole
system to the one of a Hiper-BSP machine with M P processors having M batches to deal with. This for a

situation in which all M BSP machines are identical. The M different values (s, g,!, P) are used to normalize
things to this ideal scenario. Note that under this case it is sufficient to let each manager route every model
it receives to another manager selected uniformly at random.

The cost involved in the global communication is assumed to be much smaller than the running times of
simulation models (eventually some production simulation models are expected to be in the order of hours).
It is performed on a regular basis to follow changes in the workload generated by the users. Frequency will be
determined by the cost of the global communication. We choose this cost to be 1/10-th of the time elapsed
between two consecutive communications.

The result after every communication is the determination of new routing probabilities for sequential and
parallel models at each manager site. Thus a simulation model sent to a particular manager can be routed
to other manager’s FIFO queue with a certain probability calculated as follows. A job is routed to manager
k with probability Ry /Ry where Ry is the sum of all R;, and every R; is calculated as

1

Ri=——
N, + N,

(Ns Pisi + Nplsi+gi+1i])

Note that this is different to the naive strategy of routing jobs to the managers with the smallest queues.
Such strategy does not consider cases with imbalance in the number of parallel models and sequential models,
and the relative differences between the BSP machines. The BSP parameters (s, g,l, P) correct differences
among the machines so that a slower server site receives a smaller number of models. Also note that a model
requiring more processors than the actual ones of the machine can be mapped in BSP using the approach

of more than a process per processor. On the other hand, parallel models can become sequential models if
the predicted speedup S, in their target servers is less than one.

5 Empirical evaluation

A sample system was built for the experiments presented in this section. It is Web crawling model composed
by one scheduler and B robots running on a single host computer. Their mission is to gather documents
stored on W web sites, each residing on a different host and containing a collection of documents. The Web
is a graph with nodes split evenly on the W sites. Document lengths and number of links per document are
random variables. The H hosts are connected by a packet switched network consisting of E routers that
use two phase shortest path routing. That is, first a given packet is sent to a randomly selected neighboring
router, and then it is sent to its destination by following the shortest path. Links between pairs of routers
are bi-directionals and have a certain transmition rate in bits per seconds.

Relevant computer processing time arises in three cases. First, when the scheduler stores a set of urls
provided by one robot and then it retrieves the following url from the list. Second, when a robot receives
a new document and processes it to extract url pointers to new documents. Third, Web site hosts requires
some computer processing time when they retrieve a document and split it into a set of packages. Routers
are modelled as FCFS queuing facilities with a number of servers equal to the number of communication links
with other routers. Processing time is provided by objects of class computer implementing FCFS queuing
with round-robin discipline. This for considering the effect of processing requests from multiple processes on
a given host.

We first evaluated the effectiveness of our total running time estimation strategy. The results are shown
in the column 2 of table 1. They show the ratio [estimated running time / actual running time] for 10
instances of the Web crawling model. In all instances we kept fixed B = 50, H = 100, W/B = 10000,
and varied E from 1000 to 10000. The pre-simulations returned a particular event trace, and the running

| Instance | T, /real | dist/par | ratio 1 | ratio 2 |

1 0.45 0.81 17.25 16.74
2 0.41 0.89 11.36 11.26
3 0.46 0.83 10.13 9.99
4 0.52 0.84 9.54 9.46
3 0.48 0.87 9.19 9.11
6 0.46 0.88 8.97 8.91
7 0.53 0.86 8.83 8.77
8 0.53 0.89 8.71 8.67
9 0.56 0.91 8.63 8.59
10 0.58 0.90 8.57 8.53

Table 1: Empirical results.

time cost of each event was estimated as follows: After inserting m events in the event-list, we performed a
sequence of ¢m hold operations with ¢ > 1. Each hold operation (i) retrieves from the event-list the event
e with the least simulation time e.t, (ii) increases this time by e.t + X units where X is a random variable
with the distribution and mean value extracted from the specification file, and (iii) then re-insert this event
e into the event-list. An accurate value of the cost of processing each event e can be obtained by measuring
the total running time spent in processing the whole sequence of hold operations and dividing it by c¢m.
The results show that the pre-simulation predicted fairly with the same error the total running times in all
instances of the model, which is convenient as we are actually interested in the relative running times.

We employed simulation to evaluate the global scheduling strategy of the proposed scheduling strategy.
We defined (simulated) a distributed system composed of 10 simulation servers with 8 processors each, and
500 users. We uniformly at random generated servers which are two and three times faster than a base
server. In addition, for comparison purposes, we defined an average hiper-server with performance twice
faster than the base server and with 80 processors attending itself the requests of the 500 users. In the
column 3 of table 1 we show the ratio [performance distributed system / performance parallel system] for
10 instances of user behaviors and models, where performance is measured as the average response time
experienced by the users. The results show that the scheduling strategy applied by the distributed system
approaches well the parallel system.

The effectiveness of the local scheduling strategy was evaluated as follows. We implemented a simulation
model capable of applying three methods of servicing a queue of jobs. They were FIFO, Round-Robin (RR)
and shortest job first (SJF). The 10 instances of the experiments are given for the length of the queue, which
ranged from 10 to 200 jobs. The ratio FIFO/SJF approx 5 and RR/SJF approx 3 was fairly constant for
different combinations of the number of parallel and sequential jobs. Similar results were obtained for cases
with large (1-100) and small (1-10) range of running times. Evidence that batches of size twice or three times
P are more convenient than larger ones is in column 4 of the table. There it is shown the ratio [waiting time
one processor / waiting time P processors]. It is observed that in small size queues it is possible to achieve
the smallest time spent queuing. Column 5 shows the same but for a small range for random running times.

6 Conclusions

We have presented a scheduling strategy for the efficient administration of a set of simulation servers at-
tending a number of users distributed on (possibly) the Internet. Users only need to have a pointer to one
of a number of managers which are in charge of allocating servers to the users.

The proposed scheduling scheme is simple, requires little global information and, as the empirical results
show, it is near optimal. A crucial aspect is that its effectiveness depends on the ability to predict the
comparative performance of models on differing machines and types of models. This is possible due to the
adoption of the BSP model of parallel computing which provides an architecture independent way of costing
programs. We have developed sequential and parallel simulation models cost expressions which allows one
to predict such comparative performance. By applying a pre-simulation from data collected from a text file
with model specifications it is possible to estimate the parameters required by these expressions.

We currently have a prototypic implementation of the system which is composed of two cluster with 4
machines each, both residing in the same local network. We plan to extend this system in the near future.

Acknowledgement

This work has been partially funded by Fondecyt project 1010723.

References

[1] R.M. Fujimoto. “Parallel discrete event simulation”. Comm. ACM, 33(10):30-53, Oct. 1990.

[2] R.M. Fujimoto. “Performance of Time Warp under synthetic work-loads”. In SCS Multiconference on
Distributed Simulation V.22 N.1, pages 23—28, Jan. 1990.

[3] J. Liu, D. Nicol, B. Premore, and A. Poplawski. “Performance prediction of a parallel simulator”. In
13th Workshop on Parallel and Distributed Simulation (PADS’99), 1999.

[4] M. Marin. Discrete-event simulation on the bulk-synchronous parallel model. PhD Thesis, Programming
Research Group, Computing Laboratory, Oxford Unversity, 1998 (anonymous ftp at ona.fi.umag.cl).

[5] M. Marin. Time Warp on BSP Computers. In 12th European Simulation Multiconference, June 1998.

[6] M. Marin. Towards automated performance prediction in bulk-synchronous parallel discrete-event sim-
ulation. In XIX International Conference of the Chilean Computer Science Society, pages 112-118.
(IEEE-CS Press), Nov. 1999.

[7] M. Marin. Analysis of efficient synchronization in bulk-synchronous parallel discrete-event simulation.
In IASTED International Conference on Applied Simulation and Modelling. (ACTA Press), June 2002.

[8] D.M. Nicol and R. Fujimoto. “Parallel simulation today”. Annals of Operations Research, 53:249-285,
1994.

[9] D.M. Nicol, M.M. Johnson, A.S. Yoshimura, and M.E. Goldsby. “Performance modeling of the IDES
Framework”. In 11th Workshop on Parallel and Distributed Simulation (PADS’97), pages 38-45, 1997.

[10] D.M. Nicol, M.M. Johnson, A.S. Yoshimura, and M.E. Goldsby. “IDES: A Java-based distributed
simulation engine”. In International Workshop on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Feb. 1998.

[11] D.B. Skillicorn, J.M.D. Hill, and W.F. McColl. Questions and answers about BSP. Technical Re-
port PRG-TR-15-96, Computing Laboratory, Oxford University, 1996. Also in Journal of Scientific
Programming, V.6 N.3, 1997.

[12] L.G. Valiant. A bridging model for parallel computation. Comm. ACM, 33:103-111, Aug. 1990.

