
Simple space subdivision for faster ray tracing

Patrick S. V�arilly� and Francisco J. Torres-Rojas

varilly@mit.edu, torres@ic-itcr.ac.cr

Centro Nacional de Alta Tecnolog�ia (CENAT)

Costa Rica

Abstract

Traditional ray tracing is extremely slow: images take many minutes, even hours to render. Several methods
have been developed over the last 15 years to speed up ray tracing, but remain unused from either lack of
awareness or apparent complexity of implementation. In this paper, we examine one such technique: uniform
spatial subdivision, in which space is divided into a regular grid of voxels which can be traversed eÆciently.
We give a simple method for the preprocessing stage, and then examine a method of traversal not much
more complicated than Bresenham's line-drawing algorithm. We conclude with some empirical evidence of
the vast speed increase spatial subdivision can a�ord. We hope this exposition will allow a more widespread
use of spatial subdivision, resulting in shorter rendering times and more fruitful experimentation.

Keywords: computer graphics, ray tracing, optimization, spatial subdivision, octree, voxel

�Patrick S. V�arilly was an invited researcher at CENAT, currently he is a student at M.I.T.

1 Introduction

Ray-tracing, initially used for hidden surface removal by Appel [1], is a 3D rendering technique pioneered
by Kay [2] and Whitted [3]. It determines a pixel's color by tracing rays light from the viewer towards
the objects in a scene and performing illumination calculations on the visible surfaces, frequently spawning
new rays. This method, capable of handling re
ections, refractions and shadows in an elegant manner, has
produced some of the most realistic computer-generated images to date.

One of the main problems of traditional ray-tracing is the immense computational overhead that is in-
volved. It's not unusual for images to take many minutes, or even hours to render at very modest resolutions,
making it impractical for real-time 3D applications (such as gaming or scienti�c visualization) and anima-
tion. This e�ect is worsened by some more advanced techniques, such as distributed ray-tracing [4], where
each pixel requires 16 times as many rays to render than with traditional methods. The main bottleneck is
the number of ray-object intersection calculations. Whitted reports that as much as 95% of rendering time
is spent on these calculations.

Previous work (especially during the mid-80s) has managed to improve performance substantially by
performing space subdivision. Glassner [5] used a technique where space is hierarchically subdivided into an
octree (the three-dimensional analogue of the binary tree); the leaves of the octree are cuboidal regions of
space. Then each ray is tracked through the leaves of the octree, and intersection calculations are performed
only on the objects inside each leaf. This technique makes tracing as much as 35 times faster, but other
methods provide even greater speed boosts.

Fujimoto, Tanaka and Iwata [6] take a slightly di�erent approach which results in an order-of-magnitude
improvement. They divide space into a uniform grid of voxels they call SEADS. In the preprocessing stage,
one builds a list of objects which cross each voxel. For tracking the ray, they develop an algorithm called
a 3D-DDA which traverses the SEADS in an extremely eÆcient manner, much like the way Bresenham's
algorithm �nds the pixels closest to a 2D line. Their experiments reveal an improvement of over 400 times
in rendering speed. But, once again, coding the 3D-DDA is very error-prone, and not enough details are
provided in [6] to help the implementer.

This has created a situation where, although relatively simple methods exist to make ray-tracing many
times faster, very few people in the computer graphics community actually use them. Our purpose in this
paper is to give a simple exposition of standard space subdivision techniques, with enough detail to make it
easy to implement. We also provide some examples of the drastic improvement which the technique a�ords.

In Section 2, we give a method for initializing the voxel grid which spatial subdivision creates. In
Section 3, we explore how an arbitrary ray is tracked through this voxel grid eÆciently. We implement this
method and show the results we obtained in Section 4. In Section 5, we examine some possible enhancements
to the techniques given in the paper. Finally, Section 6 summarizes our conclusions.

2 Initializing the voxel grid

sx

sy

sz(xO; yO; zO)

(xD; yD; zD)

Figure 1: A ray traced through the voxel grid

We begin by establishing a suitable region of space (e.g., the union of all objects' bounding boxes) and
subdividing it at uniform intervals to create a voxel grid in space with sx � sy � sz voxels (see Fig. 1).

Our �rst task is to determine which voxels intersect a given object. Clearly, given a particular object,
we need only consider those voxels which intersect its bounding box. We thus test each such voxels for
intersection with the object.

For this test, we propose a general method to identify which voxels are crossed by a surface given in
implicit form (some extra voxels may also be
agged).

2

In general, a surface is de�ned implicitly by the formula

F (x; y; z) = 0: (1)

Let (x0; y0; z0) and (x1; y1; z1) be the coordinates in world space of the current voxel's corners. The point
(X;Y; Z) is in this voxel if

x0 � X � x1;

y0 � Y � y1; (2)

z0 � Z � z1:

We want to �nd whether F (X;Y; Z) = 0, given (2). This can only happen if

min(F) � 0 � max(F); (3)

because F is continuous. If this isn't true, F can never be 0 in the voxel, so the object never crosses it.
Our method provides simple estimates for min(F) and max(F) which we can insert into (3). We will

use capital letters to distinguish between the estimate (Min) and the true value (min) of the minimum of F
within the voxel.

Calculating Min and Max is relatively easy. We will use E1 and E2 as arbitrary expressions, and k an
arbitrary constant. Then we can apply the following simple rules:

Min(k) = k;

Min(E1 +E2) = Min(E1) +Min(E2);

Min(E1 �E2) = Min(E1)�Max(E2);

Min(kE1) =

(
kMin(E1); for k positive,

kMax(E1); for k negative,

Min(E2

1
) =

(
0; if Min(E1) � 0 � Max(E1);

min[Min(E1)
2;Max(E1)

2]; otherwise:

The rules for Max are analogous.
Our method can be easily extended to handle inequalities such as F (X;Y; Z) � 0 as conditions for

intersections. This can be used to implement cutting planes, where an object consists of an implicit surface
(e.g., a sphere), with the portions on the back sides of the cutting planes removed. The same principle can
be used to intersect CSG (Constructive Solid Geometry) objects with voxels.

We now apply this method to test for plane, sphere, disk and polygon-voxel intersections.

2.1 Plane-voxel intersection

A plane is de�ned by
P (x; y; z) := Ax+By + Cz +D = 0:

We wish to calculate Min(P) and Max(P). We proceed as follows:

Min(P) = Min(Ax) +Min(By) +Min(Cz) +D:

Then,

Min(Ax) =

(
Ax0 for A positive,

Ax1 for A negative.

The other terms are similar. A code listing for this intersection test is given in Fig. 2.

2.2 Sphere-voxel intersection

A sphere centered at (a; b; c) with radius r is de�ned by

S(x; y; z) := (x� a)2 + (y � b)2 + (z � c)2 � r2 = 0: (4)

We need Min(S) � 0 � Max(S). Let us calculate Min(S); Max(S) is similar:

Min(S) = Min[(x� a)2] +Min[(y � b)2] +Min[(z � c)2]� r2:

3

if(A > 0) minX = A*x0, maxX = A*x1;

else minX = A*x1, maxX = A*x0;

if(B > 0) minY = B*y0, maxY = B*y1;

else minY = B*y1, maxY = B*y0;

if(C > 0) minZ = C*z0, maxZ = C*z1;

else minZ = C*z1, maxZ = C*z0;

minP = minX + minY + minZ + D;

maxP = maxX + maxY + maxZ + D;

return (minP <= 0) && (0 <= maxP);

Figure 2: Intersecting a voxel with a plane

From the rules above, we see that

Min[(x � a)2] =

(
0; if Min(x � a) � 0 � Max(x� a);

min[Min(x� a)2;Max(x � a)2]; otherwise:

and so,

Min[(x � a)2] =

(
0; if x0 � a � x1;

min[(x0 � a)2; (x1 � a)2]; otherwise:

The other two terms are calculated in the same way. A partial code listing for testing whether a sphere
intersects with a voxel is given in Fig 3. It is easy to see how this method can be extended for a general
quadric.

// X coordinate

u = (x0-a)*(x0-a);

v = (x1-a)*(x1-a);

maxX = max(u, v);

if((x0 <= a) && (a <= x1)) minX = 0;

else minX = min(u, v);

// Y coordinate

...

minS = minX + minY + minZ;

maxS = maxX + maxY + maxZ;

return (minS <= 0) && (0 <= maxS);

Figure 3: Intersecting a voxel with a sphere

2.3 Disk-voxel intersection

A disk is simply the intersection of a plane and the interior of a sphere. We have already shown how perform
a plane-voxel intersection. The interior of the sphere is simply (4) modi�ed slightly:

S(x; y; z) � 0:

This requires only that Min(S) � 0. This can be done as in the case of a sphere.

2.4 Polygon-voxel intersection

Glassner suggests clipping the polygon to the voxel's faces using a Sutherland-Hodgman clipper [7]. While
this solves the problem exactly, we advise against it for two reasons:

� Its implementation is complicated and error-prone, and its execution is moderately expensive.

4

� Most polygons are quite small, and so intersect very few voxels.

This last condition is especially true of large polygon meshes. Hence, we have found that simply inter-
secting the voxels inside the polygon's bounding box with the plane of the polygon works extremely well,
and it's very simple to implement.

3 Tracking a ray through space

A ray has an origin (xO ; yO; zO) and a direction vector (xD ; yD; zD). We wish to �nd which object are hit
by this ray. We can do this by �nding out which voxels the ray goes through, and intersecting it with those
objects inside these voxels. A ray in general will start outside the voxel grid, enter the grid, and then exit
the grid. Any objects not completely surrounded by the voxel grid are kept in a list of outside objects.
Initially, we build a sorted list of intersections between the ray and the outside objects. If the ray doesn't
pass through the voxel grid, then intersection calculation is the same as in ordinary ray-tracing.

Otherwise, we calculate the entry and exit coordinates of the ray into the grid, using a standard ray-box
intersection test (see, for example, [8]). We then convert these into voxel coordinates (where the corners of
each voxel are located at integer coordinates) and proceed to track the ray along this segment. The subray
stretches from (x0; y0; z0) to (x1; y1; z1) and has direction vector (A;B;C).

To track it through the voxel grid, we use the \6-line tripod algorithm," due to Cohen-Or and Kaufman [9],
which we now describe brie
y. We'll assume A;B;C > 0; the generalization is straightforward.

x

y
z (a) (b)

x

y

x

z

y

z

(c)

Figure 4: The 6-line tripod algorithm (after Cohen-Or and Kaufman). (a) The tripod placed on a voxel's
corner. (b) The x, y and z faces of the voxel. (c) The projection of the ray on the coordinate planes; here,
clearly the ray doesn't exit through the y or z face, so it must leave through the x face.

Suppose we've already identi�ed one voxel through which the ray passes. The algorithm works by placing
a \tripod" on the corner of this voxel and determining which face the ray exits through by a method of
elimination (see Fig. 4). It uses the projections of the ray on the three coordinate planes, which are:

� On the xy plane, exy := Ay �Bx�D1 = 0.

� On the yz plane, eyz := Bz � Cy �D1 = 0.

� On the xz plane, exz := Az � Cx�D1 = 0.

For an arbitrary (x; y; z), the sign of exy, eyz and exz tells us whether the projected point is above or
below the projected line. In particular, if we choose the corner of the tripod, the sign tells us which face the
ray does not cross (Fig. 4(c)):

� if exy < 0, the ray doesn't cross the x face;

� if eyz < 0, the ray doesn't cross the y face;

� if exz < 0, the ray doesn't cross the x face.1

1Actually, these sign tests are misstated in [9].

5

// Initialization

exy = A*(floor(y0)+1-y0) - B*(floor(x0)+1-x0);

eyz = B*(floor(z0)+1-z0) - C*(floor(y0)+1-y0);

exz = A*(floor(z0)+1-z0) - C*(floor(x0)+1-x0);

ptr = &grid[floor(x0)][floor(y0)][floor(z0)];

voxelptr trackray(...);

...

while(n--) {

voxel = ptr;

if(exy < 0) // Not x

if(eyz < 0) // Not y

ptr += offsetz, eyz += B, exz += A;

else // Not z

ptr += offsety, exy += A, eyz -= C;

else // Not y

if(exz < 0) // Not x

ptr += offsetz, eyz += B, exz += A;

else // Not z

ptr += offsetx, exy -= B, exz -= C;

return voxel;

}

return NULL;

Figure 5: Tracking a ray through the voxel grid

Two of these comparisons are enough to establish which face the ray exits through. The tripod is moved
accordingly, suitable adjustments are made to exy, eyz and exz, and the algorithm begins again.

The �rst voxel crossed by the ray is (bx0c; by0c; bz0c), so the tripod's corner begins at (bx0c+ 1; by0c +
1; bz0c+ 1). We can calculate exy at this point by knowing that (x0; y0; z0) is exactly on the line. Hence,

0 = Ay0 �Bx0 �D1: (5)

Since we wish to determine,
exy = A(by0c+ 1)�B(bx0c+ 1)�D1; (6)

we subtract (5) from (6) to get,

exy = A(by0c+ 1� y0)�B(bx0c+ 1� x0): (7)

The initial values of eyz and exz are calculated similarly.
Finally, the last voxel crossed by the ray is (bx1c; by1c; bz1c). Let �x = bx1c � bx0c, �y = by1c � by0c

and �z = bz1c� bz0c. It's clear that the ray crosses j�xj+ j�yj+ j�zj+1 voxels (the �nal +1 accounts for
the initial voxel). This gives us a suitable stopping condition for the algorithm's main loop.

Generalizing the algorithm can be done in two steps. First, the tripod's initial position depends on the
signs of A, B and C (this a�ects the +1 in the initial values of exy, eyz and exz). Secondly, the sign tests
are reversed if the ray has a negative slope in the projected plane. Thus, if A;C > 0 and B < 0, the tripod
would start at (bx0c+ 1; by0c; bz0c+ 1) and the sign tests for exy and eyz would be reversed.

A code listing, similar to that in [9], is given in Fig. 5. Compared to Fujimoto et al.'s 3D-DDA, the
tripod algorithm is both faster and simpler to implement. The 3D-DDA can output up to 3 voxels per loop,
which requires some bookkeeping to handle.

4 Results

The algorithms described here were coded in C and tested on an Apple iMac with a 600MHz G3 processor.
We used three complex models to test the e�ectiveness of space subdivision. Figure 6(a) shows a sym-

metrical cow (with 5,804 triangles) commonly used in computer graphics tests. Figure 6(b) shows a more
complex dragon (with 50,761 triangles). Figure 7(a) shows the Stanford Bunny (with 69,451 triangles; avail-
able at [10]), while Figure 7(b) shows a metallic version of this bunny, re
ecting a menacing sky. All models
are rendered at 300� 300 resolution (except the cow, which is rendered at 300� 200). The cow and dragon
are illuminated by two light sources; the Stanford bunny has an additional light source behind it.

6

(a) A Cow (5,804 triangles) (b) A Dragon (50,761 triangles)

Figure 6: Some dense models

The techniques outlined in this paper show an order of magnitude increase in rendering speeds; the exact
timing results are given in Table 1 (based on Table 1 of [5]).

The resolution of the voxel grid used is important, both for memory considerations and even more so
for speed. Table 2 shows timing results and voxel occupancy statistics for the Stanford bunny at di�erent
grid resolutions (we used the same number of voxels in the x, y and z axis for the voxel grid, but this is
not necessary in general). Table 3 shows more detailed voxel content information for di�erent models at
di�erent resolutions. Memory requirements for the voxel grid are quite modest by modern standards. In the
100� 100� 100 Stanford Bunny test, for example, only 6.5Mb went to maintaining the grid. In contrast,
nearly 6 times as much memory was used by the mesh (this is, in general, not the case; it is simply that our
implementation of a polygon mesh was not optimized for memory).

It is interesting to see where the greatest computational e�ort is being exerted to render each image. To
that end, we've used density plots. These show the numbers of intersection calculations made per ray for
every pixel. Fig. 8 shows one such density plot for the cow model. It's deliberately rendered at a coarse
voxel resolution to display the individual voxels. Fig. 9(a) shows the same plot for the Stanford Bunny.
Here, we see the most complex parts of the model are those near silhouettes. This is because the rays here
cross many heavily populated voxels without touching any of the objects inside them; hence, many more

Model Standard Cow Dragon Stanford Bunny Stanford Bunny
Grid Resolution 50� 50� 50 100� 100� 100 50� 50� 50 100� 100� 100
Number of objects 5,804 50,761 69,451 69,451
Number of rays traced 106,758 170,330 204,609 204,609
Avg. objects per voxel 0.435 0.136 1.355 0.313
Number of voxels 125,000 1,000,000 125,000 1,000,000
Old intersections 619,623,432 8,646,121,130 14,210,229,659 14,210,229,659
New intersections 1,422,388 7,555,069 9,643,617 4,756,303
Avg. intersections/ray 13.3 44.4 47.1 23.2
Old Time 13m 02.37s 3h 30m 45s 4h 57m 00s 4h 57m 00s

(estimate) (estimate) (estimate)
Voxel Grid Build Time 0.09s 0.64s 0.46s 0.96s
New Rendering Time 1.79s 7.83s 8.51s 5.85s
Speed-up factor �435 �1615 �2092 �3044

Table 1: Timing statistics using uniform space subdivision

7

Voxel Grid Grid Init Rendering Total Average objects Average voxels Average inter-
Resolution Time(s) Time(s) Time(s)a per voxel per object sections/ray

10 0:31 130:53 130:84 84:943 1:22 509:1
20 0:32 31:02 31:34 12:900 1:48 165:9
30 0:36 15:58 15:94 4:571 1:78 91:2
40 0:40 10:63 11:03 2:269 2:09 61:7
50 0:44 8:52 8:96 1:355 2:44 47:1
60 0:50 7:33 7:83 0:900 2:80 38:2
70 0:58 6:65 7:23 0:646 3:19 32:5
80 0:69 6:18 6:87 0:488 3:60 28:3
90 0:79 5:98 6:77 0:385 4:04 25:4
100 0:95 5:80 6:75 0:313 4:51 23:2

aEstimated traditional rendering time: 4hr 57min � 17820s

Table 2: Timing statistics for the Stanford Bunny, using di�erent voxel grid resolutions

Objects Stanford Bunny Stanford Bunny Dragon Dragon Cow
in voxel 100� 100� 100 50� 50� 50 100� 100� 100 50� 50� 50 30� 30� 30

% # % # % # % # %
0 958296 95:83% 114662 91:73% 985405 98:54% 121422 97:14% 23103 85:57%
1 1549 0:15% 251 0:20% 100 0:01% 13 0:01% 262 0:97%
2 961 0:10% 133 0:11% 6902 0:69% 1123 0:90% 241 0:89%
3 2133 0:21% 267 0:21% 248 0:02% 64 0:05% 284 1:05%
4 3568 0:36% 266 0:21% 2630 0:26% 973 0:78% 399 1:48%
5 3369 0:34% 269 0:22% 170 0:02% 49 0:04% 383 1:42%
6 3036 0:30% 287 0:23% 106 0:01% 10 0:01% 359 1:33%
7 4357 0:44% 284 0:23% 130 0:01% 35 0:03% 366 1:36%
8 7624 0:76% 356 0:28% 372 0:04% 258 0:21% 406 1:50%
9 3997 0:40% 323 0:26% 115 0:01% 18 0:01% 242 0:90%
10 3311 0:33% 296 0:24% 127 0:01% 19 0:02% 224 0:83%
11 3206 0:32% 313 0:25% 112 0:01% 9 0:01% 142 0:53%
12 3391 0:34% 344 0:28% 130 0:01% 17 0:01% 128 0:47%
13 482 0:05% 335 0:27% 114 0:01% 11 0:01% 74 0:27%
14 262 0:03% 315 0:25% 116 0:01% 10 0:01% 70 0:26%
15 185 0:02% 355 0:28% 130 0:01% 11 0:01% 44 0:16%
16 82 0:01% 467 0:37% 138 0:01% 8 0:01% 44 0:16%
17 94 0:01% 407 0:33% 132 0:01% 8 0:01% 32 0:12%
18 96 0:01% 632 0:51% 139 0:01% 13 0:01% 25 0:09%
19 0 0:00% 393 0:31% 125 0:01% 11 0:01% 22 0:08%
20+ 1 0:00% 4045 3:24% 2559 0:26% 918 0:73% 150 0:56%

Table 3: Voxel occupancy for various models at di�erent grid resolutions

8

(a) Plastic (b) With a twist

Figure 7: The Stanford Bunny (69,451 triangles)

non-empty voxels need to be scanned per ray. This is shown in Fig. 9(b), where the number of non-empty
voxels crossed per ray traced is plotted for each pixel.

5 Evaluation and Future Work

The most important obstacle to the general use of spatial subdivision is its memory overhead, which becomes
signi�cant for voxel grid resolutions over 250� 250� 250 (where simply storing an empty grid takes up just
under 60Mb). We are currently experimenting on ways to remedy this problem. While many researchers use
octrees (or an octree-spatial subdivision hybrid algorithm) to reduce the amount of space wasted by large
regions of empty voxels, they are hard to implement eÆciently, and the amount of overhead they entail is
non-trivial. More importantly, though, the results of Fujimoto et al suggest that by using octrees, one incurs
a signi�cant speed penalty. However, we estimate the amount of space saved in the 100�100�100 Stanford
Bunny test to be around 50%, and this should increase with the voxel grid resolution.

A very simple approach to save memory is to store each voxel's object list in a compact manner. In our
tests, we used a simple linked list. Each node contained a pointer to an object and a pointer to the next node

Figure 8: Density plot of intersections per ray for the Standard Cow, using a 30� 30� 30 voxel grid. Scale:
white = 0 inters/ray; black = 60 or more inters/ray. Here, a coarse grid and a tight scale has been used to
show the underlying voxel grid structure.

9

(a) Density plot of intersections per ray needed for the
Stanford Bunny, using a 70� 70� 70 voxel grid. Scale:
white = 0 inters/ray; black = 100 or more inters/ray.
The most complex parts are the edges, since each ray
there intersects many populated voxels before hitting a
polygon or the background.

(b) Density plot of non-empty voxels crossed per ray
for the Stanford Bunny, using a 70� 70� 70 voxel grid.
Scale: white = 0 voxels; black = 20 or more voxels

Figure 9: Density plots for the Stanford Bunny

on the list; hence, half the memory for non-empty voxels (about a third of the total voxel grid memory) is
wasted. We suggest linking blocks of three or four nodes at a time. That is, each node holds pointers to the
next 3 or 4 objects on the list. In this way, we save space for voxels with many objects inside them, while
adding only a few lines of code and very small amounts of wasted space for voxels with just 1 or 2 objects.
Using this approach on the Stanford Bunny, we saved 9:4% of voxel grid memory.

Since spatial subdivision encourages coherent memory access, managing the processor cache eÆciently
becomes extremely important. The above method for storing voxel content lists allows more objects in
the lists to be in the cache simultaneously, thus improving performance. Another way to exploit coherent
accesses is to trace 5� 5 square blocks of the image at each point, since the rays traced for these pixels will
tend to travel through the same voxels.

The techniques described here fail for very large models, such as those freely available from Georgia
Tech [10]. These models, produced by automatic scanning of real-life objects, tend to have hundreds of
thousands, if not millions, of polygons. If we were to try and render them with spatial subdivision as
described here, the memory requirements would be so large so as to make it impossible on current hardware.
More ambitious models, such as the David from the Digital Michelangelo Project [11] (with over 2 billion
polygons), make this approach impossible in most foreseeable hardware. One possible solution is to divide
the voxel grid into \chunks" (e.g. of size 10� 10� 10) which are stored on disk. Then, as a ray is traced,
old chunks are deleted and new chunks are read in to �nd all the relevant voxel data. We have yet to test
this approach.

An interesting possibility which we are actively investigating is using the voxel grid to help speed up
animation. The voxel grid would �rst be extended to 4-dimensional spacetime (see Glassner [12] for details).
Suppose further that, for each object, we can �nd out how long that object will remain stationary. Then
each voxel is augmented with information as to how long the entire voxel's contents will remain stationary.
For each traced ray, we would record its \maximum lifetime" by �nding the minimum lifetime of all the
voxels the ray goes through. Thus, if the camera is not moving, and most of the background is stationary,
subsequent frames can directly reuse the ray's resulting color with no tracing as long as the ray's maximum
lifetime is greater than the time of the frame.

10

6 Conclusions

We have found uniform space subdivision to be an extremely useful technique to implement in any ray-
tracer. It provides enormous speed boosts for relatively little e�ort. The implementation of the ray tracker
is not much harder than that of Bresenham's line drawing algorithm: our entire implementation has around
300 lines of code. Furthermore, the method we outline for intersecting objects with voxels is also very
straightforward to code. We hope this simplicity allows the use of spatial subdivision techniques to become
more common.

References

[1] A. Appel, "Some Techniques for Machine Renderings of Solids", AFIPS Conference Proceedings, Vol.
32, 1968, 37{45.

[2] D. S. Kay, "Transparency, Refraction and Ray Tracing for Computer Synthesized Images", master's
thesis, Cornell University, Ithaca, N.Y., Jan. 1979.

[3] T. Whitted, \An Improved Illumination Model for Shaded Display," Comm. ACM, Vol. 23, No. 6, Jun.
1980, pp. 343{349.

[4] R. L. Cook, T. Porter, and L. Carpenter, \Distributed ray tracing," Computer Graphics, Vol. 18, No.
3, 1984, pp. 137{145.

[5] A. Glassner, \Space subdivision for fast ray tracing," IEEE CG&A, Vol. 4, No. 10, Oct. 1984, pp. 15{22.

[6] A. Fujimoto, T. Tanaka, and K. Iwata, \ARTS: Accelerated Ray-Tracing System," IEEE CG&A, Vol.
6, No. 4, Apr. 1986, pp. 16{26.

[7] I. E. Sutherland and G. W. Hodgman, \Reentrant Polygon Clipping," Comm. ACM, Vol. 17, No. 1,
Jan. 1974, pp. 32{42.

[8] A. Watt, 3D Computer Graphics, Addison-Wesley, Harlow, England, 1993; p. 283.

[9] D. Cohen-Or and A. Kaufman, \3D Line Voxelization and Connectivity Control," IEEE CG&A, Vol.
17, No. 6, Nov.-Dec. 1997, pp. 80{87.

[10] G. Turk and B. Mullins, \Large Geometric Models Archive,"
http://www.cc.gatech.edu/projects/large_models/.

[11] \The Digital Michelangelo Project," http://www-graphics.stanford.edu/projects/mich/.

[12] A. Glassner, \Spacetime ray tracing for animation," IEEE CG&A, Vol. 8, No. 2, Mar. 1988, pp. 60{70.

11

