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Abstract
Pattern recognition has provoked a great interest in the last decades due to the use of the computers. As a consequence,
numerous engineering applications have been developed. The complexity of a pattern recognition system is high
because much of the information available in the real life is presented in the form of complex patterns, suffering from
linear transformations even nonlinear deformations. The objective of this paper is to develop a model for invariant
pattern recognition by combining Zernike moments and Fuzzy ART. The former works as invariant feature extractor
while the letter acts as a robust classifier. The considered model will efficiently recognize patterns without taking in
consideration the possible variations of position, rotation and scale. The experimental results shows the model can
achieve high classification accuracy.
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1 Introduction

Pattern recognition is the study of how machines can observe the environment, learn to distinguish patterns of interest
from their background, and reasonable decisions about the categories of the patterns [1]. The use in the last decades of
computers and electronic devices impulses the study of pattern recognition technics [2]. Interest in the area of pattern
recognition has been renewed due to emerging applications which are not only challenging but also computationally
more demanding. These applications includedata mining, document classification, financial forecasting, organization
and retrieval of multimedia databases, and biometrics [1]. Patterns that in the real life usually are presented in different
positions, having variations in rotation, scale and/or translation. So the research of invariant pattern recognition is
very important for real applications. Here term ”invariant” means a quantity which remains unchanged under a certain
transformation [1].

A pattern recognition system usually comprises three main components, namely preprocessing, feature extraction
and classification [3]. In the preprocessing stage the input image suffers from a variety of operations such as noise
removal, segmentation and image enhancement. Feature extraction aims to represent the image in terms of some
quantifiable measurements that may be easily utilized in the classification stage [3], there are many feature extractors
like template matching [5], Fourier descriptors [6], invariant moments [8]. In the classification stage the patterns are
grouped according to similar characteristics. Some of the classifiers are: neural networks, k-means algorithm.

The theory of algebraic invariants of linear transforms arose in connection with a number of problems in analytic
geometry and was first formulates by the work of Cayley and Sylvester in the last century [4]. Based on the work
of these two mathematicians, Hu published the first paper on the use of image moments for two-dimensional pattern
recognition applications [8]. In Hu’s publications, explicit formulas for invariant functions containing the second and



third image moments were presented as examples for the algebraic theory of moment invariants. These low-order
moments are seven in total and are known as Hu’s moment invariants in the literature [4]. Teague [9] suggested the
notion of orthogonal moments to recover a image from moments based on the theory of orthogonal polynomials, and
has introduced Zernike moments, which allow independent moment invariants to be constructed easily to an arbitrarily
high order [10].

Artificial neural networks(ANN) have proven to be powerful classifiers due to the characteristics of learning, fault
tolerance and robustness [11]. ART (Artificial Resonance Theory) was developed by Carpenter and Grossberg [12].
These kind of neural network can learn new patterns without forgetting old knowledge. Specifically, the Fuzzy ART
[13] has the capability to learn recognition categories rapidly, in response to arbitrary sequences of analog or binary
input patterns.

In these paper we present a model for invariant pattern recognition by combining Zernike moments and neural
network, Fuzzy ART. The former works as invariant feature extractor while the letter acts as a robust classifier. The
considered model will efficiently recognize patterns without taking in consideration the possible variations of position,
rotation and scale. The experimental results shows the model can achieve high classification accuracy.

The organization of this paper is as follows. Section II briefly reviews the Zernike moments. In section III we
discuss the use of Fuzzy ART as a classifier. Experimental results are presented in section IV. Section V concludes the
paper.

2 Zernike Moments

In this section, the Zernike moments descriptor is presented, including the definition and its invariant properties.

2.1 The Definition of Zernike Moments

Zernike introduced a set of complex polynomials which form a complete orthogonal set over the interior of the unit
circle, i.e.,x2 + y2 = 1. These polynomials are denoted byVnm(x, y), it could be express in polar coordinates as
[14]:

Vnm(x, y) = Vnm(ρ, θ) = Rnm(ρ)exp(jmθ) (1)

where
n Positive integer or zero.
m Positive and negative integers subject to

constraintsn− |l| = par, |m| ≤ l.
ρ Length of vector from origin to (x,y) pixel.
θ Angle between vectorρ andx axis in

counterclockwise direction.
Rnm(ρ) Radial polynomial defined as

The Zernike radial ponymonialsRnm(ρ) are defined as

Rnm(ρ) =
n−|m|/2∑

s=0

(−1)s.
(n− s)!

s!(n+|m|
2 − s)!(n+|m|

2 − s)!
ρn−2s (2)

Note thatRn,−m(ρ) = Rnm(ρ)
It can be easily verify that these polynomial are orthogonal [14].

Zernike moments are the projection of the image function onto these orthogonal basis function. The Zernike
moment of ordern with repetitionm for a continuous image functionf(x, y) that vanishes outside the unit circle is
[14]:

Znm =
n + 1

π

∫ ∫
x2+y2=1

f(x, y)V ∗
nm(ρ, θ)dxdy (3)

To compute the Zernike moments of a given image, the center of the image is taken as the origin and pixel
coordinate are mapped to the range unit circle. The pixels that follow outside the unit circle are not considered in the
computation [14]. So images transformed by this procedure are already translation and scaling invariant.

2.2 Rotation Invariant Property

Consider a rotation of the image through angleα. Lets denote the rotate image asfr, the relationship between the
original and rotated images in the same polar coordinates is

fr(ρ, θ) = f(ρ, θ − α) (4)
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We can express the Zernike moments in polar coordinates by changing the variables in (3).∫
A

∫
∂(x, y)dxdy =

∫
G

∫
∂[p(ρ, θ), q(ρ, θ)]

δ(x, y)
∂(ρ, θ)

dρdθ (5)

whereδ(x,y)
δ(ρ,θ) denotes the Jacobian of the transformation and is the determinant of the matrix

∂(x, y)
∂(ρ, θ)

=


∂x

∂ρ

∂x

∂θ
∂y

∂ρ

∂y

∂θ

 . (6)

Wherex = ρ cos θ andy = ρ sin θ, the Jacobian becomesρ. Hence

Znm =
n + 1

π

∫ 2π

0

∫ 1

0

f(ρ, θ)V ∗
nm(ρ, θ)ρdρdθ

=
n + 1

π

∫ 2π

0

∫ 1

0

f(ρ, θ)Rnm(ρ)exp(−jmθ)ρdρdθ

(7)

The Zernike moment of the rotated image in the same coordinate is

Zr
nm =

n + 1
π

∫ 2π

0

∫ 1

0

f(ρ, θ − α)Rnm(ρ).exp(−jmθ)ρdρdθ (8)

By a change of variableθ1 = θ − α

Zr
nm =

n + 1
π

∫ 2π

0

∫ 1

0

f(ρ, θ1)Rnm(ρ).exp(−jm(θ1 + α))ρdρdθ

=
[
n + 1

π

∫ 2π

0

∫ 1

0

f(ρ, θ1)Rnm(ρ).exp(−jm(θ1))ρdρdθ1

]
exp(−jmα)

= Znmexp(−jmα) (9)

Equation (9) shows that Zernike moments have simple rotational transformation properties; each Zernike moment
merely acquires a phase shift on rotation. This simple property leads to the conclusion that the magnitudes of Zernike
moments of a rotated image function remain identical to those before rotation.

3 Fuzzy ART

Fuzzy ART inherits the design features of other ART models, and incorporates computations from fuzzy set theory
into the ART1 neural network. As a consequence Fuzzy ART can learn and classify analog patterns.

3.1 Fuzzy ART Algorithm

Figure 1 shows the basic architecture of Fuzzy ART. Each input patternI is a m-dimensional vector (I1, I2, I3, . . . , Im),
Each cluster (j) corresponds to a vectorWj = (Wj1,Wj2,Wj3, . . . ,Wjm) of adaptive weight. The number of pos-
sible clustern(j = 1, 2, . . . , n) is arbitrary. The Fuzzy ART weight vector is equivalent in one vector to both ART1
weight vectorsbottom-up, top-down, that is, subsumes both vectors [15]. Each ART system includes a field,F0,
of nodes that represents a current input vectorIT ; a field,F1, that receives both bottom-up input fromF0 and top-
down input from a field,F2, that represents the active code, or cluster (Figure 1). TheF1 activity vector is denoted
x=(x1, . . . , xm) and theF2 activity vector is denotedy=(y1, . . . , yn). The number of nodes in each field is arbitrary,
see Figure 1.

1. Initialize

(a) Initially, each cluster is said to beuncommitted, after a category is selected for coding it becomes
committed, and the weight vectorWj is set as

Wj1(0) = Wj2(0) = . . . = Wjm(0) = 1 (10)

(b) Then, a choice parameterα, a learning rateβ, and a vigilance parameterρ are set.

α > 0, β ∈ [0, 1], ρ ∈ [0, 1].
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Figure 1: Fuzzy ART

2. Complement Coding

(a) To improve the reliability of category choice, inputa is expanded with complement coding as in Eq. 11

I = (a, ac), ac = 1− a (11)

3. Category choice

(a) For eachI and cluster (F2 node)j, the choice functionTj is defined by

Tj(I) =
|I ∧Wj |
α + |Wj |

, (12)

where the fuzzy AND operator∧ is defined by(x ∧ y)i = min(xi, yi) and| | is defined by

|x| =
m∑

i=1

|xi| (13)

(b) The system makes a cluster selection when more than one cluster could be selected at a given time. The
indexJ denotes the chosen cluster, where

TJ = max{Tj : j = 1, . . . , n}. (14)

If more than oneTJ is maximal, the system chooses the category with the smallestj index. Nodes become
committed in orderj = 1, 2, 3, . . . .

4. Resonance or Reset

(a) The resonance occurs if the match function of the chosen cluster meet the vigilance criterion; where

|I ∧WJ |
|I|

≥ ρ. (15)

The learning processes is done according to the equation

W
(new)
J = β(I ∧WJ) + (1− β)W (old)

J . (16)

Fast learning corresponds toβ = 1, which is the learning rule in Eq. 17

W
(new)
J = β(I ∧WJ). (17)

(b) Mismatch resetoccurs if
|I ∧WJ |

|I|
< ρ. (18)

Then the value of the choice functionTJ is set to 0 for the duration of the input presentation to prevent the
persistent selection of the same category selection during search. A new indexJ is chosen by (14). The search
continues until the chosenJ satisfies (15). If no one of the clusters is selected, then a new cluster must be
incremented inF2 field.
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3.2 Fast-Commit Slow-Recode Option

For efficient coding of noisy input sets, it is useful to setβ = 1 whenJ is an uncommitted node, and then to take
β < 1 after the category is committed. ThenW

(new)
J = I the first time categoryJ becomes active [16], this is done

for guaranty fast initial learning and slow forgetting rate.

3.3 Input Normalization/ Complement Coding Option

Proliferation of categories is avoided in Fuzzy ART if inputs are normalized; that is, for someγ > 0,

|I| ≡ γ (19)

for all inputsI. Normalization [16] can be achieved by preprocessing each incoming vectora, for example, setting

I =
a

|a|
(20)

Complement codingis a normalization rule that preserves amplitude information, solves the category proliferation
problem, that can occur when a large number of inputs erode the norm of weight vectors. Complement coding repre-
sents both the on-response and the off-response to an input vectora. Let a represent the on-response, andac the off
response, where

ac
i ≡ 1− ai (21)

The complement coded inputI to the fieldF1 is the 2m-dimensional vector.

I = (a, ac) ≡ (a1, . . . , am, ac
1, . . . , a

c
m) (22)

4 Experimental Results

The database consist of 128x128 bits monochromatic images representing the digits from 0 to 9 inArial andTimes
new romanfont, Figure 2(a), and four animals images, Figure 2(b).

(a)

(b) (c)

Figure 2: (a) and (b) First database consists of patterns representing digits from 0 to 9 inarial andtimes new roman
font. (b) Second database is formed for four different patterns of animals.

In the first data set six different images were generated for each digit considering different orientation, scale and
translation. In Figure 3 we can see some variations generated from the digit 1. Following the same process, 56 different
images were generated for each digit. The whole numerical database has 560 patterns. In the second data set similar
geometric modifications occurred with the images of animals, that’s it, were rotated, translated and/or scaled. In the
animals database also six different images were generated. The modifications done to every pattern in animal data
set were as follow: rotation angles were20◦, 45◦, 90◦, 120◦, scale and rotated, 0.5 scale. The whole animal data set
consist of 576 patterns.

In numerical (Arial font) and animal data set not only have been applied geometrical transformations also we
increment noisy patterns, Figure 4. Patterns with salt and pepper noise were used for training. The noise density were
of 0.02, 0.05, and 0.1. We only apply noise toArial font and animal data set.Times new romanfont only suffered
rotational, scale and translation modifications. The objective for leavingTimes new romanfont noiseless is to compare
classification results with noisy data sets.

Figure 5 shows 7 different feature vectors obtained from the images showed in Figure 3 (a) through the Zernike
moments. All vectors are very similar, demonstrating graphically the invariance in rotation, translation and scale of
Zernike moments. It is important to notice that Zernike moments are only rotational invariant. Translation and scaling
invariance is achieved using regular moments [14]. In this work regular moments was used only for supplying the

5



(a) (b)

Figure 3: (a) Geometrical deformations of pattern “1”. The rotated images of pattern “1” and a scale version. From
top left to right, rotation angles are20◦, 30◦, 45◦, 60◦, 90◦ and a 0,5 scale version. (b) Scale, rotation and translate
transformations of animal pattern.From top left to right, rotation angles are20◦, 45◦, 90◦, 120◦, 0.5 scale, scale and
rotated.

Figure 4: One example of noisy versions of patterns “1” and “bat” with 0.02, 0.05 and 0.1 noise density.

centroid of every pattern. As we see in Figure 5 experiments based on Zernike moments vector is well carried out for
scale change up to 50%. For bigger scale modifications it is necessary to normalize (scale and translation) the image
using regular moments [9].

Figure 5: All Zernike moments of the seven different silhouettes.

On the other hand Figure 6 shows three feature vectors extracted from three different patterns “0”, “1” and “2”
shown in Figure 2(b) using the 8th-order (25 features) Zernike moments. The difference among those vectors is visible
allowing to classify them in different groups.

It is important to note that low order moments are similar for different patterns, even though they belongs to
different classes. On the other hand high order moments are able to distinguish different patterns, but the computational
cost is high too.

In this study we work with 8th-order moments having 25 features. It may be noted that the total number of moment
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Figure 6: 8th-order Zernike moments of patterns “0” through “2”.

Times Arial Animals
Choice parameter (α) 40 40 0.1

Learning rate (β) 1 1 1
Vigilance parameter (ρ) 0.95 0.94 0.934

Table 1: Parameters values.

terms from zero order up to ordern, is

Ω =
(n + 3)(n + 1)

4
n is odd (23)

Ω =
(n + 2)(n + 2)

4
n is even. (24)

The selected parameters for experiments are described in the Table 1 The choice and learning rate parameters are
identical in numerical data base. As Fuzzy ART uses a non-supervised training algorithm, the clusters have to be
detected by the network. The Fuzzy ART grouped pattern with similar characteristics, as we see in the Table 2. The
patters representing “6” and “9” digits present similar Zernike moments, consequently, they were grouped in the same
cluster. Figure 7 describes graphically the features vectors of patterns “6” and “9”, both of them are very similar.
Those two patterns are similar because the digitsixcan be obtained rotating the number “9” 180 degrees. Even for the
human eye, it is difficult to notice the difference. We need a mark in the roof of the background to difference both of
them “6” and “9”.

Figure 7: Plotting Zernike moments of patterns “6” and “9”.

The performance of the 8th-order Zernike moments and the Fuzzy ART classifier on different data sets is shown
in Table 3. The classification accuracy achieved in this work was satisfactory, in numerical set 100.00% and 86.5%,
and in animal set 99.65%. Patterns with bigger density noise than we used in this work were classified in different
clusters. Reducing the ratio when the Zernike moments were extracted reduce the influence of noise in the image.
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Pattern ”6” Pattern ”9”
Z20 0.273 0.269
Z22 0.031 0.034
Z31 0.033 0.030
Z33 0.019 0.021

Table 2: Zernike moments of patterns “6” and “9”.

Order Moment Classification Accuracy %
Times new roman 100%

Arial 86.5%
Animal database 99.65%

Table 3: Classification results of data sets.

5 Conclusions

The proposed model can efficiently recognize patterns regardless of their possible position, rotation and scale varia-
tions. This model consists of two systems: feature detection and classification system. The former works as invariant
feature extractor while the letter acts as a robust classifier. It is necessary increase the number of Zernike moments
(higher orders) when the images are similar they belongs to different classes. Low order moments describe global
characteristics and high order patterns details. The obtained classification accuracy for a 10-class digit data set is
100% inTimes new romanfont (noiseless) and 86.5% inarial font with noisy patterns, and in 4-class animal data base
also with noisy patterns is 99.65%. We can conclude that the proposed features set and the accompanying features
selection method are effective for pattern classification problem.
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