
 
 
 

Towards the Mapping of Dynamic Properties of Objects, described 
by UML State Diagrams, on Relational Databases 

 

 

José M. Maciel 
University of Caxias do Sul, Social Sciences and Communication Dept., 

Vacaria – RS, Brazil, 95200-000 
jmmaciel@ucs.br 

 
and 

 
Duncan D. Ruiz 

Pontifical Catholic University of RS, Dept. of Applied Computing, 
Porto Alegre – RS, Brazil, 90619-900 

duncan@inf.pucrs.br

Abstract 

The work presents an approach to map objects behavior, described by UML State Diagrams, to Relational Database 
Systems description models by the use of SQL Triggers (E-C-A rules of active databases). The UML State Diagram 
concepts properly handled by our approach are: states, composite states (without concurrent sub-states), events, 
simple transitions and transitions to and from composite states, according with the terminology presented by the 
latest OMG-UML standard (1.4). We argue the intra-objects dynamic properties can be properly implemented using 
triggers, by the use of implementation patterns and well-defined mapping rules. The contribution of this research is a 
method to describe a larger part of an application being modeled into the application database and managed by the 
corresponding DBMS. This approach relieves the amount of programming needed and improves the autonomy of 
such application database. In addition, such approach improves the robustness of databases against undesirable 
changes. 

Keywords: Relational databases, Active databases, SQL Triggers, UML. 



 2

1. Introduction 
One of the present challenges in computer science is to reduce costs and improve the quality of the solutions based 
on computer systems – solutions that are basically implemented by computer software [1]. The object-oriented 
paradigm applied to software engineering intends to satisfy the needs of improving the quality for the development 
and maintenance of computer software and to succeed the structured methods of analysis and design [2] [3]. After 
few years, the Unified Modeling Language - UML emerged as the dominant language in the software industry and 
has been adopted as an object-modeling standard by OMG [4]. UML offers a set of integrated diagrammatic tools 
permitting the representation and specification of information systems [5]. In this sense, it is observed a growing use 
of the object-oriented paradigm, and hence of the UML, during the modeling process of systems with data 
persistence. To obtain such persistence, it is recommended the use of some DBMS technology. 

Today the relational database approach is currently the “de facto” standard for the management of data by small and 
large companies. This situation occurs due to several reasons: (1) legacy databases need to remain available [6], and 
(2) it is a well-tested and reliable technology, for a long time, and it is well understood. Mapping objects to 
relational database description models is a problem that requires better solutions because the software designers use 
object-oriented models during the software analysis and project design, and implement such software over relational 
databases. There are several conceptual differences between object-oriented paradigm and the relational model. 

Due to the growing use of UML to model information systems, it is important the development of mapping methods 
from UML models to database implementation models, especially with respect to the mapping of dynamic 
properties described by state diagrams. We believe that the mapping of these dynamic properties into the database 
description model will permit that such database becomes selective with respect to changes of their data, accepting 
only that changes previously modeled and, consequently, considered suitable. The mapping of dynamic aspects into 
the description model of the DBMS is a valuable feature to be accomplished during the database design because a 
larger part of the application semantics will be supported by the DBMS. As a consequence, the implementation of 
the application programs may be alleviated. Other advantages of this approach are: (1) speeding up the building of 
applications based on databases, (2) better managing of the integrity constraints of the attributes, and (3) better 
representation of the application real world into its programs.  

Several authors have devoted their time to describe how to translate objects to the relational description model. They 
have proposed different ways to perform this mapping and, recently, some of them are using pattern languages. 
Almost all approaches are centered on mapping the static properties of objects [7] [8] [9] [10] [11] [12]. Few authors 
address the mapping of some dynamic properties. [13] proposes a mapping model to object-oriented programming 
languages. [14] describes a generic pattern language to map state diagrams to an object-oriented language. [15] 
discusses the mapping of static properties of UML classes using a new normal form called Nested Normal Form 
[16], and addresses some desirable aspects to be satisfied by a set of triggers that implement dynamic properties 
described by UML state diagrams. 

In this paper we present a method to help application designers, which uses UML state diagrams to model dynamic 
properties of applications, in the task of mapping such properties automatically into the relational description model. 
As we will see ahead, our approach deals with states and composite states without concurrent sub-states, events, 
simple transitions and transitions to and from composite states. To make it feasible, we are considering the 
functionality offered by SQL-triggers, conforming to the current SQL/ANSI standard: SQL:1999 [17]. To validate 
our approach we used the DBMS Oracle, which almost conforms to such SQL standard.  

The paper is organized as follows. Section 2 briefly presents the basic notation of UML state diagrams and the case 
study used to demonstrate the quality of our approach. The method proposed is presented in Section 3. Section 4 
presents the related work concerning the implementation of classes and state diagrams and Section 5 presents the 
conclusions and future work. 

2. UML State Diagrams 
In this section it is presented the basic notation for UML state diagrams as documented in [18] and [19]. The goal is 
to briefly describe the UML state diagram concepts targeted by our approach. Also, it is described a case study that 
will be used in Section 3 to document the application of the proposed method. Such case shows an UML class and 
its state diagram to demonstrate the effectiveness of our approach. The case is the document digital publishing of a 
university [23,24]. 

UML state diagrams intend to represent the entity behavior through a sequence of states that a particular object can 
be during its life cycle. The notation and semantics of state diagrams is based on Statecharts [20][21], and 
Statecharts are based on Automata theory [22]. According with [18], UML state diagrams presents the concepts of 
states and composite states (with or without concurrent sub-states), events, actions, activities, guard conditions, 



 3

invocation of nested state machines, simple transitions, transitions to and from concurrent states, transitions 
to and from composite states, factored transition paths, submachine states, synch states and history state 
indicator. Figure 1 depicts an UML state machine, similar of the presented by [19]. Such state machine was used by 
[19] to show the main concepts of the UML graphical notation. 

 

internal transition 

state 

Idle 

keepAlive / check() 

off 

Connecting

Connected

Working

ready(3) [signalOK]

onHook 

offHook / reclaimConnection() 

initial state 

final state 

simple transition

event action

guard conditionnested state 

composite state 

transition from 
Composite state

 

Figure 1: Main concepts of UML State Diagrams. 

We do not address the mapping of UML state diagram concepts that need some level of programming. Actions and 
activities imply the development of functions on some programming language. Also, Boolean functions can be used 
on guard conditions. Similarly, history state indicator needs some new attributes to be included in the class 
specification. In spite of the syntax of SQL triggers offered by the main relational SGBDs are almost conform the 
SQL:1999 standard, we do not address concurrent states because such SGBDs differ on the ways concurrent 
triggers are handled. These concepts mentioned above plus the advanced ones presented in the latest version of 
OMG-UML standard (factored transition paths, submachine states, synch states) will be addressed in our future 
work. All other concepts are used in their standard meanings. 

2.1 A case study: document digital publishing system 

The goal of this system is to monitor the digitalizing, formatting and indexing process of documents, e.g., PhD 
thesis and MSc dissertations, research reports, technical manuals, etc. Document is the main class of such system for 
digital publishing by a digital library [23] [24]. Figure 2 shows the class Document and its state diagram for a 
document preparation system.  

 

Not Digital Digitalizing

Digital
digitalization

completed
start digitalization

Not
Formatted

Formatting

Not 
Indexed 

Indexed 

Indexing

Formatted 

start 
formatting

formatting
completed

indexing

indexing
 completed

Unclassified

classified not
digital classified

digital

Document 

title 
author 
insertDate 
lastUpdateDate 
digital 
formatted 
indexed 

 
Figure 2 UML Class Document and corresponding UML state diagram. 

Document dynamic properties description: 

The preparation activities start at receiving one document to be included into the collection of the Digital Library. 
This document may be received by two different ways: Not Digital (paper document) or Digital (computer file). 
After its classification, in case of a not digital document, it is necessary to scan it and generate its corresponding 



 4

digital file (.PS, .PDF, .HTML, etc.). With the digital version of the document, it is formatted according with the 
rules and standards defined by the Digital Library. The document formatting stage will permit the access of any 
document by the same interface type, e.g., HTML, XML, etc. Finally, the document is indexed by the creation of 
entries into the several access structures of the system, typically indexes by authors, subjects, keywords, years of 
publication, etc. After these stages, the document will be available to be retrieved and accessed. 

The digitalizing process may spend from few minutes to various days, according several factors such as size and 
complexity of the document. To be considered ready to be electronic published, an object must follow several 
stages, modeled as states, according with the state diagram showed in that is detailed above. When the document 
become ready for electronic publishing, it is moved to the digital library system, whose functionality will not be 
discussed here due to the lack of space. More details may be found at [25].  

Figure 2 depicts the following UML state diagram concepts: state, composite state, event, simple transition and 
transition to composite state. We have chosen the class Document of this system because document objects have 
interesting behavior and present several possible configurations into its attributes that characterize different states in 
which these objects must follow during the preparation process. The class Document is implemented in SQL using 
simple attributes to better demonstrates the process mapping. 

3. The mapping process 
To map UML classes and its dynamic aspects modeled by state diagrams, our mapping process is divided into four 
steps to be applied on each UML class with state diagrams.  

1. The mapping of the static properties to relational tables.  

2. The definition of the semantics for each object state, presented in its state diagram, and the insertion into a 
Dictionary of states.  

3. The definition of the semantics of each valid transition, among object states, and the insertion into a 
Dictionary of valid transitions.  

4. The creation of database triggers based on the dictionaries built at previous steps. 

3.1 Mapping of the static properties 

The first step of our mapping process is the mapping of static properties to relational tables. Such mapping of each 
UML class to the relational description model is done according to the approach presented in [25], which is a well-
known and well-accepted approach. Due to the lack of space, we will concentrate the explanation of the static 
mapping considering only UML classes with atomic attributes and with simple domains. In special, we considered 
that the object identity is mapped by inserting an object identifier – OID (it is chosen char(5) as OID domain 
only for explanation purposes). As a result, for each UML class corresponds to one table into the relational database. 
Considering the class Document presented in Figure 2, the resulting relation may have the following description, in 
Oracle SQL: 

 

3.2 Definition of the semantics of each object state  

The second step of our mapping process is the definition of the semantics for each object state. In this step the 
semantics of each object state must be defined in terms of its attribute values. It is considered that all object states 
can be defined considering the combinations of its attribute values. The resulting semantics is stored in a Dictionary 
of states. Each entry of this dictionary is a 4-uple (Class name, State, Parent state, Semantics). Class name is the 
name of the class being mapped. State is a valid state name of Class name. Parent state, if present, is the super-
state of State. Semantics is the definition of the State in terms of Class name attribute values. If State has Parent 
states, its actual semantics is the combination of its proper Semantics with the Semantics of all its parent states. 

The Dictionary of states, for each UML class, must satisfy the following consistency rules.  

• All states defined in the state diagram must be presented.  

• One state must not be presented more than once.  

create table Document(  OID   char(5)  not null,   author        char(30) not null, 
                        title char(30) not null,   insertDate    date     not null, 
                        lastupdateDate  date,      digital         char(1), 
                        formatted       char(1),   indexed         char(1), 
primary key (OID)); 



 5

• The semantics of each elementary state, defined according possible combination of values of the object 
attributes, must be mutually exclusive regarding the semantics of all other elementary states. 

For our case study, the semantics of each Document state is stored in the Dictionary of states in the way presented 
by Table 1. For example, the actual semantics of state Indexing is “Digital = 'Y' and Formatted = 'Y' and Indexed = 
'I'”. 

Table 1- Dictionary of states - semantics of each Document state. 

Class name State Parent State Semantics 

Document Unclassified  digital is null and formatted is null and indexed is null 

Document Not Digital  digital = 'N' and formatted is null and indexed is null 

Document Digitalizing  digital = 'D' and formatted is null and indexed is null 

Document Digital  digital = 'Y'  

Document Not Formatted Digital formatted = 'N' and indexed is null 

Document Formatting Digital formatted = 'F' and indexed is null 

Document Formatted Digital formatted = 'Y' 

Document Not Indexed Formatted indexed = 'N' 

Document Indexing Formatted indexed = 'I' 

Document Indexed Formatted indexed = 'Y' 

 

3.3 Definition of the semantics of each valid transition  

In this step, it is identified the semantics of each transition considered valid to occur in the state diagram of an UML 
class. In our approach, it is considered that each transition is a modification operation, e.g., INSERT, UPDATE or 
DELETE, on an object of the class. A correct transformation of attribute values of an object must correspond to one 
valid event in its state diagram. The creation of an object, e.g., the transition from <initial state> to the first valid 
state, is an INSERT operation. The transition to one <final state>, if present, is a DELETE operation. We have 
chosen to consider the <final state> as a deletion of the object, instead of consider it as a frozen state, to permit the 
real exclusion of the object from the database. If there is a real situation where it must not be done, it is enough that 
the state diagram of the corresponding UML class does not have any <final state>. All other transitions among 
states, excluding <initial state> and <final state>s are UPDATE operations. The resulting semantics is stored in a 
Dictionary of valid transitions. Each entry of this dictionary is a 5-uple (Class name, Event, From State, To State, 
Operation). Class name is the name of the class being mapped. Event is the name of the event, if present. From 
State and To State are valid States of the class and record the start and the end of each transition arrow. Operation 
is the modification operation to be monitored by the trigger. 

The dictionary of valid transitions must satisfy the following consistency rules.  

• All valid events of the state diagram must be presented. <initial state> must occur only once and in the 
column From State.  

• <final state> may occur zero or more times, every in the To State column.  

• The states that occur in the To State column can’t have sub-states. In state diagrams without concurrent 
sub-states, it is always possible to find an elementary state as the destination state for any event. 

• The Operation in the row with <initial state> is INSERT compulsorily.  

• The Operation in the rows with <final state>, if present, is DELETE compulsorily.  

• The Operation in the rows without <initial state> and <final state> is UPDATE.  

• All the states listed into the Dictionary of valid transitions must appear into the Dictionary of states, except 
the <initial state> and <final state> states. 

For our case study, the semantics of each Document event is stored in the Dictionary of valid transitions in the way 
presented on Table 2. 



 6

Table 2- Dictionary of valid transitions - semantics of each Document event. 

Class name Event From State To State Operation 

Document <creation of the object> <initial state> Unclassified INSERT 

Document classified not digital Unclassified Not Digital UPDATE 

Document classified digital Unclassified Not Formatted UPDATE 

Document start digitalization Not Digital Digitalizing UPDATE 

Document digitalization completed Digitalizing Not Formatted UPDATE 

Document start formatting Not Formatted Formatting UPDATE 

Document formatting completed Formatting Not Indexed UPDATE 

Document indexing Not Indexed Indexing UPDATE 

Document indexing completed Indexing Indexed UPDATE 

 

3.4 Creation of database triggers 

In this step the database triggers for the relational table resulted from the mapping of an UML class are 
automatically built considering the contents of both dictionaries – Dictionary of states and Dictionary of valid 
transitions. These triggers will guarantee that only valid events will be accepted, i.e., only previously defined 
attribute changes can occur.  

3.4.1 General rules for triggers creation 

The triggers must be of the type BEFORE because such triggers must reject invalid changes and, hence, it is better 
that the rejection happens before the physical update of the object. And it is necessary to prefix all the attributes with 
:old or :new properly to refer the attribute values before or after the modification. The triggers are built with the 
clause FOR EACH ROW because we are mapping the dynamic properties of one object (one UML class instance). 
The list of monitored attributes, into the definition of the trigger for UPDATE operations, permits the selective 
execution of this trigger. Indeed, the changes into the attributes that do not influence on the semantics of the states 
need not be monitored. In the case of a State with a valid Parent state, its actual semantics is its own semantics 
combined with the semantics of all of its parent states.  

3.4.2 INSERT triggers 

This trigger monitors the creation of objects with acceptable values in its first state. An algorithm able to produce an 
INSERT trigger, for each Class name, is the following. 

1. Search the row r-vt in the table Dictionary of valid transitions where From State equals “<initial state>”. 

2. Retrieve r-vt.To State value in the row found by step 1. 

3. Search the row r-s in the Dictionary of states where r-vt.To State equals r-s.State. 

4. Create a BEFORE INSERT trigger named insert<r-vt.Class name> on relation r-vt.Class name. 

5. In the trigger body, insert an if statement where NOT(r-s.Semantics) is the condition and the attributes 
present in r-s.Semantics must be prefixed by “:new.”.  

6. Complete properly the trigger definition and insert a command to abort the transaction in case of invalid 
transition. 

The trigger built for the INSERT into the Document relation, using the SGBD Oracle, is: 

create or replace trigger insertDocument 
before insert on Document for each row 
begin 
 if not(:new.digital is null and :new.formatted is null and :new.indexed is null) 
 then raise_application_error(-20500,'Invalid State Transition',true); 
 end if; 
end; 



 7

 

3.4.3 DELETE triggers 

This trigger monitors the possible deletion of objects. A Class name object can only be deleted if there is <final 
state> in the column To State on some row of the table Dictionary of valid transitions regarding Class name. In 
addition, the Class name object must be in one state connected to a <final state> by a valid transition. An algorithm 
able to produce DELETE triggers, for each Class name, is the following. 

1. Search the rows r-vt in the table Dictionary of valid transitions where To State equals “<final state>”. 

2. Create a BEFORE DELETE trigger named delete<Class name> on relation Class name. 

3. If exists at least one r-vt then: 

3.1. In the trigger body, insert an if statement.  

3.2. For each r-vt found. 

3.2.1. Retrieve r-vt.From State value. 

3.2.2. Search the row r-s in the Dictionary of states where r-vt.From State equals r-s.State. 

3.2.3. Prefix the attributes present in r-s.Semantics by “:old.” and insert NOT(r-s.Semantics) in the 
if condition of the inserted if command by step 3.1. 

3.3. Insert AND operators between each pair of NOT(r-s.Semantics) inserted by step 3.2. 

4. Complete properly the trigger definition and insert a command to abort the transaction in case of invalid 
transition. 

The trigger built for the DELETE from the Document relation is: 

 

3.4.4 UPDATE triggers 

The basic structure for building the UPDATE trigger starts with checking if the UPDATE statement really wants to 
change the object state. If the answer is yes then such trigger checks if there is a valid transition defined between 
From State and To State. An algorithm able to produce UPDATE triggers, for each Class name, is the following. 

1. Create a BEFORE UPDATE trigger named update<Class name> on relation Class name. 

2. Insert all attributes presented in r-s.Semantics of any r-s row of Dictionary of states into the trigger clause 
UPDATE OF, for r-s.Class name equals Class name. 

3. For each attribute found by step 2, insert a condition to check if the UPDATE statement changes its value.  

4. Combine properly the conditions inserted by step 3 to determine if it is necessary to check if there is a valid 
transition between From State and To State. 

5. If it is necessary to check if the transition is valid, then: 

5.1. For each row r-s of Dictionary of states where r-s.Class name equals Class name and r-s.Parent 
State is not defined. 

5.1.1. Insert an if statement in the trigger body where its condition is r-s.Semantics and prefix all its 
attributes by “:old.”. 

5.1.2. For each row r-vt of Dictionary of valid transitions where r-vt.Class name equals r-s.Class 
name and r-vt.From State equals r-s.State. 

5.1.2.1. Retrieve row r-s1 of Dictionary of states where r-s1.Class name equals r-s.Class name 
and r-s1.State equals r-vt.To State. 

5.1.2.2. Insert an if statement, nested to the inserted by step 5.1.1, where its condition is 
 r-s1.Semantics and prefix all its attributes by “:new.”. 

create or replace trigger deleteDocument 
before delete on Document for each row 
begin  
  raise_application_error(-20500,' Invalid State Transition',true); 
end; 



 8

5.1.2.3. If is there some row r-s2 of Dictionary of states where r-s2.Class name equals r-s.Class 
name and r-s2.Parent State equals r-s.State, then apply recursively steps 5.1.1 and 
5.1.2 considering r-s2 the new r-s. 

6. Complete properly the trigger by connecting if statements and inserting commands to abort the transaction 
in case of an invalid transition. 

The trigger built for the UPDATE of Document relation is listed in [25]. It is presented below the code lines with 
additional comments to show how the above method generates the trigger. 

• Trigger header – steps 1 and 2: 

create or replace trigger updateDocument 
before update of digital, formatted, indexed on Document for each row 

• Check if it is necessary to check the transitions – steps 3 and 4: 

begin -- checking if it is a real state transition 
if (:old.digital is null and :new.digital is not null or :old.digital is not null and 
    :new.digital is null or :old.digital is not null and :new.digital is not null and  
    :old.digital <> :new.digital) 
or (:old.formatted is null and :new.formatted is not null or :old.formatted is not 
null 
    and :new.formatted is null or :old.formatted is not null and :new.formatted is  
    not null and :old.formatted <> :new.formatted) 
or (:old.indexed is null and :new.indexed is not null or :old.indexed is not null and 
    :new.indexed is null or :old.indexed is not null and :new.indexed is not null and 
    :old.indexed <> :new.indexed) 
then 

• Check the acceptable events for the state unclassified – step 5: 

if (:old.Digital is null and :old.Formatted is null and :old.Indexed is null) 
 then -- From State UNCLASSIFIED -- 
  if (:new.Digital='NO' and :new.Formatted is null and :new.Indexed is null ) 
  then -- Event CLASSIFIED NOT DIGITAL --   
  elsif (:new.Digital='YES' and :new.Formatted='NO' and :new.Indexed is null) 
  then -- Event CLASSIFIED DIGITAL --   
  else raise_application_error(-20501,'Invalid State Transition',true); 
  end if; 

• Check the acceptable events for the state not digital – step 5: 

elsif (:old.Digital='NO' and :old.Formatted is null and :old.Indexed is null) 
 then -- From State NOT DIGITAL -- 
  if (:new.Digital='DIGITALIZING' and :new.Formatted is null and :new.Indexed is null) 
  then -- Event START DIGITALIZATION -- 
   dbms_output.put_line('State Transition START DIGITALIZATION'); 
  else raise_application_error(-20502,'Invalid State Transition',true); 
  end if; 

• Check the acceptable events for the state digitalizing – step 5: 

elsif (:old.Digital='DIGITALIZING' and :old.Formatted is null and  
       :old.Indexed is null) 
then -- From State DIGITALIZING -- 
  if (:new.Digital='YES' and :new.Formatted='NO' and :new.Indexed  is null) 
  then -- Event DIGITALIZATION COMPLETED -- 
   dbms_output.put_line('State Transition DIGITAL and NOT FORMATTED'); 
  else raise_application_error(-20503,'Invalid State Transition',true); 
  end if; 

• Check the acceptable events for a composite state digital – step 5: 

 elsif (:old.Digital='YES') 
 then -- From State DIGITAL – 



 9

• Check the acceptable events for a composite state digital / not formatted – step 5 recursively: 

  if (:old.Formatted='NO' and :old.Indexed  is null) 
  then -- From State DIGITAL and NOT FORMATTED -- 
   if (:new.Digital='YES' and :new.Formatted='FORMATTING' and :new.Indexed is null) 
   then -- Event FORMATTING -- 
    dbms_output.put_line('State Transition DIGITAL and FORMATTING'); 
   else raise_application_error(-20504,'Invalid State Transition',true); 
   end if; 

• Check the acceptable events for a composite state digital / formatting – step 5 recursively: 

  elsif (:old.Formatted='FORMATTING' and :old.Indexed is null) 
  then -- From State DIGITAL and FORMATTING -- 
   if (:new.Digital='YES' and :new.Formatted='YES' and :new.Indexed='NO') 
   then -- Event FORMATTING COMPLETED -- 
    dbms_output.put_line('State Transition DIGITAL,FORMATTED and NOT INDEXED'); 
   else raise_application_error(-20505,'Invalid State Transition',true); 
   end if; 

• Check the acceptable events for a composite state digital / formatted  – step 5 recursively: 

  elsif (:old.Formatted = 'YES') 
  then -- From State DIGITAL and FORMATTED -- 

• Check the acceptable events for a composite state digital / formatted / not indexed – step 5 recursively: 

   if (:old.Indexed  = 'NO') 
   then -- State DIGITAL, FORMATTED and NOT INDEXED -- 
    if (:new.Digital='YES' and :new.Formatted='YES' and :new.Indexed='INDEXING') 
    then -- Event INDEXING -- 
     dbms_output.put_line('State Transition DIGITAL,FORMATTED and INDEXING'); 
    else raise_application_error(-20506,'Invalid State Transition',true); 
    end if; 

• Check the acceptable events for a composite state digital / formatted / indexing – step 5 recursively: 

   elsif (:old.Indexed  = 'INDEXING') 
   then -- From State DIGITAL, FORMATTED and INDEXING -- 
    if (:new.Digital='YES' and :new.Formatted='YES' and :new.Indexed='YES') 
    then -- Event INDEXING COMPLETED -- 
     dbms_output.put_line('State Transition DIGITAL,FORMATTED and INDEXED'); 

• Complete properly the trigger – step 6: 

    else raise_application_error(-20507,'Invalid State Transition',true); 
    end if; 
   else dbms_output.put_line('State Transition DIGITAL,FORMATTED and NOT INDEXED'); 
   end if; 
  else raise_application_error(-20508,'Invalid State Transition',true); 
  end if; 
 else raise_application_error(-20509,'Invalid State Transition',true); 
 end if; 
end if; 
end; 

 

3.5 Experiments 

Considering the UML class Document, used as a case study, we submitted a set of modifying statements exhausting 
all combinations of values from the monitored attributes of Document and validating all valid/invalid state 
transitions. The complete set of tests is documented in [25]. Due to the lack of space, we will show some examples 
applied to the case study. According the sequence presented below, there are: (1) a creation of a document in the 
valid state UNCLASSIFIED, (2) an attempt to insert a document in an invalid state, (3) a valid state transition for a 
document, (4) an invalid state transition, and (5) an attempt to delete a document. 



 10

3.6 Properties of the triggers produced 

Considering the properties of termination, confluence and observable determinism, the triggers produced by the 
mapping process described in this paper satisfy all of them. This is true because there are produced only 3 triggers, 
one for each type of modification statement. We opted to generate only one trigger for each type of modification 
statement because it is known that commercial DBMS presents some difficulties to support efficiently a large 
number of defined triggers. In addition, the implementation logic does not use iterative, asynchronous or “go to” 
statements. Then the logic of each trigger is executed in a top-down way having only one thread of execution. 
However, if the designer implements his/her own triggers, these properties must be properly evaluated. 

The limitations of our approach are (1) the partial support of state diagram functionalities, and (2) UML classes that 
their states can be defined only by attribute values. In fact, composite states with concurrent sub-states and 
complex transitions (concurrent threads of control) require asynchronous execution into the trigger logic or parallel 
execution of triggers. And history state indicator requires the record of the past values of the attributes, or a special 
attribute to store previous states. 

4. Related Work 
Several authors have devoted their time to describe how to translate objects to the relational description model. 
Almost all approaches are centered on mapping the static properties of objects [7,8,9,10,11,12]. Basically, the 
mapping process of static properties of each class results in one or more relations with referential integrity among 
them. Typically, these static properties can be atomic, structured and multi-valued attributes (Oracle VARRAY), 
and references to other objects/classes (Oracle REF clause). Few authors address the mapping of some dynamic 
properties [13,14,15,16]. 

According [13], converting an object model to a set of declarations in a typical object-oriented language is relatively 
straightforward for most programmers. Basically, class declarations correspond directly to object models, and 

 
SQL> insert into Document(OID,author,title,insertDate,lastupdateDate,digital, 
  2  formatted,indexed) values ('00001','John Doe', 
  3  'Temporal Databases: introd.','13-NOV-2000',Null,Null,Null,Null); 
State Transition UNCLASSIFIED 
1 row created. 
 
SQL> insert into Document(OID,author,title,insertDate,lastupdateDate,digital, 
  2  formatted,indexed) values ('00002','Mary Doe', 
  3  'Mapping Objects to SQL','13-NOV-2000', Null,Null,Null,'Y'); 
insert into Document(OID,author,title,insertDate,lastupdateDate,digital, 
* 
ERROR at line 1: 
ORA-20500: Invalid State Transition 
ORA-06512: at "TEST.INSERTDOCUMENT", line 3 
ORA-04088: error during execution of trigger 'TEST.INSERTDOCUMENT' 
 
SQL> update Document set digital='N',formatted=Null,indexed=Null  
  2  where OID='00001'; 
State Transition NOT DIGITAL 
1 row updated. 
 
SQL> update Document set digital='N',formatted=Null, indexed='N'  
  2  where OID='00001'; 
update Document set digital='N',formatted=Null, indexed='N' 
* 
ERROR at line 1: 
ORA-20502: Invalid State Transition 
ORA-06512: at "TEST.UPDATEDOCUMENT", line 27 
ORA-04088: error during execution of trigger 'TEST.UPDATEDOCUMENT' 
 
SQL> delete from Document where OID='00001'; 
delete from Document where OID='00001' 
* 
ERROR at line 1: 
ORA-20500:  Invalid State Transition 
ORA-06512: at "TEST.DELETEDOCUMENT", line 2 
ORA-04088: error during execution of trigger 'TEST.DELETEDOCUMENT' 



 11

associations can be implemented as stand-alone objects or as pointers from object to object. Considering that many 
OODBMS are normally based on some object-oriented programming languages, it is possible to infer that the 
designers have the same level of difficulty to perform the mapping process from UML classes to OODBMS 
description models. 

[26] present a discussion of mapping ODL (Object Definition Language) and E/R Diagrams to Relational model. 
ODL is a proposed standard language for specifying the structure of databases in object-oriented terms. It is an 
extension of IDL, a component of CORBA. Basically, it is discussed the mapping of ODL atomic and non-atomic 
attributes, ODL type constructors (set, bag, array and list) and ODL single and multi-valued relationships. The 
mapping of E/R designs to relational model is similar to the discussion presented by [27]. Of course, both [26] and 
[27] discuss the mapping of static properties described by E/R diagrams. 

[15] briefly presents a mapping process from UML class diagrams to object-relational databases, based on 
SQL:1999 [17]. In this sense, they present some algorithms to transform UML class diagrams removing 
semantically overloaded UML elements, and to map this latter UML class diagrams to object-relational description 
model SQL:1999. According [15], a semantically overloaded element plays multiple roles rather than just one, and 
may cause undesirable data redundancy into the resulting database implementation. The implementation model 
written in SQL:1999 is normalized according to the Nested Normal Form – NNF [16]. The NNF accounts for certain 
types of redundancy in O-RDB tables. Also, [15] discusses the problems of creating an arbitrary set of triggers 
related to the resulting relations of the process of mapping each UML class. The discussion is based on termination, 
confluence and observable determinism properties from active database systems [28]. It is presented an algorithm 
to evaluate if the resulting set of triggers, created by the system designers, satisfies the three properties above. 

Specifically for mapping dynamic aspects described by state diagrams, [13] presents an implementation model for 
each class with dynamic properties, composed by a hierarchy of classes where each of them corresponds to one state 
of the class. Using this model to implement classes into relational databases imply on create a set of relations 
interrelated by foreign keys. Also, one state transition is done deleting the object from its current relation and 
recreating it into the new relation. For a real information system, where several classes have dynamic properties 
described by state diagrams, the complexity of the implementation may grow exponentially. 

5. Conclusions 
This paper presents a method for mapping dynamic properties of UML classes, described by UML state diagrams, to 
the relational database model using triggers. The mapping method presented permits the automatic building of the 
triggers for each database relation that has dynamic properties described by state diagrams. The method usefulness 
has demonstrated considering UML classes only with atomic attributes and UML state diagrams with states and 
composite states (without concurrent sub-states), events, simple transitions and transitions to and from 
composite states. But it is suitable for different class constructs as well. Our approach has been tested with a real 
case study with reasonable complexity and exhausted tests have been executed on the implementation. 

The advantages of our approach are: (1) reducing the amount of programming efforts for an information system due 
to the implementation of a larger parcel of the dynamic properties, described by state diagrams, into the DBMS 
model, and (2) improving robustness of the databases against undesirable changes. We believe this method is 
capable to improve the quality of computational solution for information systems, implemented using relational 
DBMS. In terms of limitations of our method, we are considering only the dynamic properties intra-objects. 

5.1 Future Work 

Currently, we are working to extend the method towards supporting UML classes with type constructors (record, 
list, etc.) and references to other objects, and supporting other state diagrams elements, mainly, concurrent sub-states 
and history indicators. We have developed some prototypes to support concurrent sub-states and history indicators. 
Also, we are studying different types of CASE tools to identify an adequate environment to incorporate computer-
supported functionality to automatically build the triggers. This study started by examining available UML tools, but 
we intend to analyze other environments. 
 
                                                           

References 
[1] PRESSMAN, R. Software Engineering. New York: McGraw-Hill, 1987. 

[2] DEMARCO, T. Structured Analysis and System Specification. Englewood Cliffs: Prentice Hall, 1989. 

[3] YOURDON, E; CONSTANTINE, L. Structured Design. Englewood Cliffs: Prentice Hall, 1979. 



 12

                                                                                                                                                                                           

[4] KOBRYN, C. UML 2001: A Standardization Odyssey. Communications of ACM. V. 42. Nº 10. Oct.1999. 

[5] BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. UML Users Guide. Addison-Wesley, 1999. 

[6] BRODIE, M. L. Migrating Legacy Systems: Gateways, Interfaces the Incremental Approach. San Francisco, 
CA: Morgan Kaufman, 1995. 

[7] AMBLER, S. W. Mapping Objects to Relational Databases. AmbySoft Inc. November 1998. 32p. Online. 
Available in Internet at http://www.Ambysoft.com/mappingObjects.pdf 

[8] BROWN, K. A Pattern Language for Object-RDBMS Integration. “The Static Patterns”. Knowledge Systems 
Corp. Cary-NC, USA, 1999. Online. Available in Internet at http://www.ksccary.com/Page15.htm 

[9] DORSEY, P.; et al. Oracle8 Design Using UML Object Modeling. Mcgraw-Hill, Dec. 1998. 

[10] HEUSER, C. Projeto de Banco de Dados. (Database Design) Porto Alegre: Sagra-Luzzatto, 1999. 204 p. (in 
Portuguese) 

[11] KELLER, W. Mapping Objects to Tables, a Pattern Language. Wien, Austria. Online. Available in Internet at 
http://www.sdm.de/g/arcus/ 

[12] RUMBAUGH, J. et al. Object-Oriented Modeling and Design. Englewood Cliffs, Prentice Hall, 1991. 

[13] RUMBAUGH, J. Controlling code. How to Implement Dynamic Models. Journal of Object-Oriented 
Programming, SIGS Publications, May 1993. p.25-30. 

[14] YACOUB, S. M. et al. A Pattern Language of Statecharts. West Virginia University. Computer Science and 
Electrical Engineering Department, and in Proceedings of PLOP-98 Conference. 

[15] MOK, W. Y. On Transformations from UML Models to Object-Relational Databases. In: HICSS’34- 
Hawaiian International Conference on System Sciences (Maui, Jan/2001). Los Vaqueros – CA: IEEE Press, 
2001.  

[16] MOK, W. Y; Embley, D. W. A Normal form for precisely characterizing redundancy in nested relations. ACM 
Transactions on Database systems, V. 21, N° 1 p.77-106, March 1996. 

[17] ANSI/ISO/IEC 9075 – 1999. Database Language - SQL, Part 2.  Washington – DC: ANSI, 1999. 

[18] OMG. Unified Modeling Language, V.1.4: Part 9 – Statechart Diagrams. Needham – MA, USA: OMG, 2001. 
pp. 3-136 – 3-156. 

[19]  JACOBSON, I., BOOCH, G., RUMBAUGH, J. The Unified Software Development Process. Reading – MA, 
USA: Addison-Wesley, 1999. 463 p. 

[20] HAREL, D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Programming. 
Amsterdam, p231-274, June 1987. 

[21] HAREL, D. On Visual Formalisms. Communications of the ACM, V. 31, nº 5, p. 514-530, May 1988. 

[22] COHEN, D. Introduction to Computer Theory. 2.ed. New York, NY: J. Wiley, 1997. 838p. 

[23] POHLMANN, O.; et al. Em Direção a Criação de uma Biblioteca Digital na PUCRS: Uma Experiência 
Prática. (Towards a creation of a digital library at PUCRS) II Seminário Internacional de Bibliotecas 
Associadas a UNESCO.  Cienfuegos, Cuba. 1998. (in Portuguese). 

[24] BARBIERO, E. et al. Workflow para Construção de Acervo Digital via WEB (Workflow to build a WWW 
digital library). ICECE 2000  São Paulo: SENAC, 2000.p. 125-128. (in Portuguese). 

[25] MACIEL, J. M. C. Mapeamento de Propriedades Dinâmicas de Objetos, descritas por Diagramas de Estados 
UML, em Bancos de Dados Relacionais. (Mapping Dynamic Properties of Objects, Described by UML State 
Diagrams, on Relational Databases). Porto Alegre: PPGCC-PUCRS, 2001. (MSc Dissertation, in Portuguese) 

[26] ULLMAN, J. D.; WIDOM, J. A First Course in Database Systems. New Jersey: Prentice-Hall, 1997. 

[27] BATINI, C. et al. Conceptual database design. Redwood City, CA: Benjamin/Cummings, 1992. 

[28] AIKEN, A.; HELLERSTEIN, J. M.; WIDOM, J. Static analysis techniques for predicting the behavior of 
active database rules. ACM Transactions on Database systems, V. 20, N° 1, p.3-41, March 1995. 


	Keywords: Relational databases, Active databases, SQL Triggers, UML.
	1. Introduction
	2. UML State Diagrams
	2.1 A case study: document digital publishing system

	3. The mapping process
	3.1 Mapping of the static properties
	3.2 Definition of the semantics of each object state
	3.3 Definition of the semantics of each valid transition
	3.4 Creation of database triggers
	3.4.1 General rules for triggers creation
	3.4.2 INSERT triggers
	3.4.3 DELETE triggers
	3.4.4 UPDATE triggers

	3.5 Experiments
	3.6 Properties of the triggers produced

	4. Related Work
	5. Conclusions
	5.1 Future Work


