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Abstract:

In this paper we study the reliability of a network with two terminal nodes s and t, where its links are subjed to
random, independent failures (nodes are dways operational), and the network is operating if the surviving edges
allow the terminal nodes to be mwnneded by a path of length bounded by a giving parameter D (corresponding to a
constraint on communication time between those two nodes).

In particular, we expressthe reliability of complete graph topdogies (i.e. every pair of nodes of the network
are ajaceat), whose links belong to four different reliabili ty classes, as areaursive formula of smaller networks and
parameter D. The mmputational complexity of a dired implementation of a network with n nodes, is of order n°,
which dve us polynomial complexity for cdculating the reliabili ty for fixed values of D. This is an improvement
over previous results sncein genera determining the reliability for the networks with two terminal nodes and fixed
parameter D, was $own to be aNP-Hard problem [2].

In addition, this recursive formula can be gplied for computing the reliability polynomial (i.e. the reliability
expressd as a polynomial function of a unique link reliability) of complete networks.

Key words: network reliability, reliability poynomial, diameter, path length, delay constraints, graph
theory.

Resumen:

En este trabgjo se estudiala onfiabilidad de unared con dos nodcs terminales sy t, tal que sus lineas estan sujetas a
fallas aeatorias e independientes, y la red funciona si las lineas en funcionamiento permiten la wnexion de los
nodos terminales a través de un camino de largo acotado por un parametro D (que permite modelar por g emplo una
restriccdn en el tiempo de mwmunicadon entre estos nodas).

En particular, se da la confiabilidad de redes de topologia cmpleta (es dedr, donde todo @r de nodos es
adyaaente) y cuyas lineas pertenecen a auatro clases de @nfiabilidad diferente, como una formula reaursiva en
términos de un nimero de nodos més pequefios y parametro D menor. La complejidad computadonal de una
implementacion diredta de la férmula en urared con nnodos, es de orden n®, resultando en complejidad pdinémica
para valores fijos de x Esto es una mejora sobre los resultados pre-existentes, dado que en general determinar la
confiabili dad de redes con dos nodas terminales y pardmetro D fijo, es un problema NP-dificil [2].

Ademas, esta formula reaursiva puede ser utili zada para cdcular €l poinomio de @nfiabilidad (es dedr, la
confiabili dad como funcién de una Unica @nfiabili dad de lineas) de grafos completos.

Key words: confiabilidad de redes, polinomio de confiabili dad, didmetro, largo de caminos, restricciones
de demora, teoria de grafos.



1. Introduction

Consider an undirected graph G = (V, E) consisting of a set of nodes V and a set of connecting
edges E, with distinguished set of terminal nodes K. If we suppose that nodes do not fail, and that
each edge e is assigned an independent probability of operation re (called edge reliability), this
graph can model a communication network where the operationa states are those where any pair
of terminal nodes are connected by a path composed of operational links. Thisis arandom event,
which has probability R«(G). The problem of numerically evaluating R«(G), or its complement,
Qk(G) = 1-R«(G), isusually called the K-terminal reliability problem, and the exact evaluation of
the reliability is an NP-hard problem [6]. When all the edges have the same rdliability r,
evauating R«(G) as a polynomia on r, usually called the reliability polynomia problem, also
belong to the NP-hard computational class. For further reading about this classical model see

[3.7].

There are many situations where it is not enough to know that the terminal nodes K can be
connected, but is also required that the length of the connecting paths (measured by the number
of edges) between terminal nodes, is smaller or equal to a given upper bound D. Thisisthe case
for example when at each node (or at each edge) there is a transmission delay T, and the total
communication time between two terminals must be less than D times this delay. If the
operational paths which connect the terminals nodes have at most length D, we can guarantee a
small delay, one of the most important QoS parameters relevant for many real-time network
services such as voice over IP, videoconference, and multicast applications. This new reliability
measure of a network G with terminal set K and parameter D, R«(G,D), is caled diameter-
constrained K-terminal reliability [1,5]. If the edges of the graph have the same reliability r, we
use the aternative notation Rg(G,r,D) for its reliability. The specific cases where K=V and
K={st} are caled the diameter-constrained all-terminal and the diameter-constrained 2-terminal
reliability, respectively.

As in general computing the diameter-constrained reliability for networks with two
terminal nodes s and t, even when a fixed parameter D is under consideration, was shown to be
NP-Hard [2], an interesting problem is find classes of graphs for which polynomia time
algorithms exist. In this paper, we study the diameter-constrained 2-terminal reliability for
complete networks.

In the next section, we determine the diameter-constrained 2-terminal reliability
polynomial (i.e. apolynomial as afunction a unique edge reliability r) of complete networks, for
specific values of the parameter D. Section 3 introduces a more genera class of probabilistic
graphs, having aso a complete topology but whose edge reliabilities can be partitioned into four
possible values. For these graphs, we can define a reliability multinomia in terms of the
reliabilities of the different classes of edges, and a recursive formula for this reliability is then
obtained. Finaly, in Section 4, we present conclusions and directions for future work.

2. Sour ce-terminal networkswith complete graph topology and identical edge reliabilities

An undirected graph is usualy denoted by G=(V,E), where V={1,...,n}is the node-set and
E={ey,....en} IS the edge-set. We aso use the notation e, to denote an edge with end-points u
andv.

A graph on n nodes, is a complete graph (denoted by K, [4]), if each pair of nodes are
adjacent. We will study complete graphs with n+2 nodes, whose edges have identical reliabilities
r, and two distinguished nodes, called source and terminal, which must be connected by a path of
length at most D (see Figure 1).



Figure 1. network with K., topology, equireliable links, and arbitrary source and
terminal nodes.

We are interested in computing the network reliability polynomial Rg(Kn«2,r,D), for a given
value of D. If we define Pg(D) as the set of paths between s and t, of length a most D (with
length measured as the number of edges of the path), and we denote by OP(p) the event in which

al the edges in a single path p are operational, the network reliability polynomia can be
expressed in function of these events (parametric onr):

R, (K,.,.r,D) = Pr(Coperationa path of lenght < D fromstot)= Pr UOP(p)E

OPst(D)

In order to illustrate this formula, we will take the K4 network shown in Figure 2; we will

suppose that we want to establish a connection of maximum path length 2 between sand T (i.e,
D=2).

Figure 2: K4 network

In this example, there are only three paths of length at most 2 between s and t, which will

be included in the set P«(2) ={(€6), (ew.€) , (€4,65)}. The paths (ey,63,65) and (&s,63,€2), Which
connect s and t, are not considered, because they exceed the length bound. For this network, as

the paths are digoints and the events independent, we can easily compute the reliability
polynomial:

Rel (K,,r,2) = Pr(OP((el,ez))LJOP((e4,e5)UOP((e6))): r +(1—r)[r2 +(1—r2)r2]:
=r+r?+r? =t =ttt =+ 202 =20 =t 410,

We will try to extend this procedure for networks K., for arbitrary n.



First, we will look at the case where D=1. In this case, there is only one path of length 1
between s and t, namely the path including only link ey. Then R, (K,,,,r.1) = Pr(OP((eSt ))) =r.

When D=2, the set of paths of interest is P, (2) ={(e, 1 J{(e...&, ) vOV ~{s.t}}. Likein

the previous example, the paths are digoint, and the events are independent, leading to the
following expression for the reliability polynomial [1]:

n-1

Ry (K,.,,12) =r +(1—r);’(1—r2)kr2 =1-(1-r)i-r2).

Unfortunately, when we consider D>2, the events corresponding to the paths are neither
independent from each other, nor digjoint, so that it is not possible to directly apply a similar
formula for direct computation of the reliability polynomial. In the next section, we also study
the diameter-constrained reliability for the class of complete networks, but here allowing up to
four different edges reliability values, and, as a result, we obtain a formulation for the reliability
in terms of these values, which can also be applied to compute the reliability polynomia when
al links are equireliable.

3. Sour ce-terminal networ ks with different classes of edge rédliabilities

In this section we define an auxiliary class of complete graphs, whose edges can be partitioned
into four elementary reliabilities values. We will denote these graphs by Ga(n, r«, s, I't, I), where
n is the number of intermediate nodes between the terminals s and t, ry is the reliability of the
edge connecting s and t, rs is the reliability of the edges connecting s to the other n intermediate
nodes, r; is the reliability of the edges connecting T to the n intermediate nodes, and r is the
reliability of the edges whose end-points are intermediate nodes. Figure 3 shows graphicaly a
Ga(n, rg, I, I, 1) network.

g
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Figure 3: Ga(n, rg, s, I't, ) Nnetwork

The reliability for this network, R, (G,(n,ry,r..r,,r),D), is a multinomial in rg, rs, 1, r. We
have that the reliability for the network with identical links reliabilitiesis a particular case of this
class of networks, i.e, that R (K,.,,r,D) =R, (G,(n,r,r,r,r),D).

We will express the reliability of network Ga by taking into account the independence

between the edge (sit) and the other paths, and by conditioning on the number of operational
edges between s and the intermediate nodes (exploiting the symmetry between those nodes).



If D=1, the only feasible path is (ey); then trivially R, (G,(n,r,.r..r,,r)1)=r,. We can

st?'s?
now look at the cae where D>1. As afirst step, we use the fad that (ey) is a feasible path; and
that it isindependent from all other paths from sto t. Then we can write

RSI(GA(n’r r rt!r)'D):rst+(l_rst)Rst(G'A(n'rs!rwr)’D)

st?'s?

where G'a(n, rs, I, 1) is the probabilistic network GA(n,rSI,rS,rt,r)minus the alge ey (see
Figure 4).

Figure4: G'a(n, rg, 1y, ) network

As this network is completely symmetric with respect to the elges between s and the
intermediate nodes (all nodes, except s and t), we will define apartition d the probability state
spacefor the network based onthe number of those elges that fail or are operational. We define
A to be the event where K edges from s to intermediate nodes fail, and the remaining n-k are

operating; its probability is
P(a)= -y

The set {Ak 0<sk< n} isapartition d the probabili ty space, as the events are pairwise digoint,
andtheir union has probability one. Applying the total probabili ty theorem, we then have:

R.(G',(n.rr.r)D )P0 operationapath of lenght<D fromstotin G', )=

gty

iPr(Doperationapathof lenght<D fromsto tin G'AjA()Pr(A() 2)

In this last sum, the term where k=n is null, because if al li nks between s and the intermediate
nodesfail, thereis nat any operational path between sandt.

We must now find and expresson for the general term with K <n. The leftmost network
shown in Figure 5 corresponds to this event, where we have K edges between s and intermediate
nodes fal (which can be removed from the network), and n-k operational ones, which are
presented with a bolder trace Finding an operational path of length < D in this network
corresponds to a path of length < D-1 in the network shown at the center of Figure 5, which is
obtained by identifying s and the intermediate nodes to which it is uncondtionally conneded,
into ore noce. In addition, as edges fail i ndependently, the operational probability of a bank of
paral el edgesisthe complement (to ore) of the product of their fail ure probabiliti es. Thus the set
of paralel edges between s and T shown at the center of Figure 5, can be replaced by a single
edge with reliabili ty 1-(1-r)™ .

Similarly, the set of parallel edges between s and an intermediate node of Ky can be replaced by
asingle alge with reli abili ty 1-(1-r)™.
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Figure 5: G'a(n, rs, 1, 1) when K edges between sand intermediate nodes work and the rest fail.

The network resulting from this last operation is shown at the right of Figure 5, and corresponds
toaG A(k,l— (1— r, )”_k d- (1— r)”_k N r) topology, where the operational paths must have length
at most D-1.

From (1), (2) and the latest fact, we can express the reliability of the origina network Ga by the
following formula:

R, (G,(n.ry.1,,1,1)D)=r, +(1—rst)§§:§s”‘k (1-r.)R, (G, (k1-@-r)"* 1-@-1)"*,r, 1} D-1).

The recursive application of this formula gives a multinomial on rg, rg, Iy, I; in particular, if we
take all these values equal to r, we have the reliability polynomia of the complete graph with
n+2 nodes. A direct application of the formula has total computational complexity of order n°, so
that if D is fixed, the method will have polynomia complexity. In this sense, thisis an important
result since in [2] it was shown that evaluating R¢(G,D) for any arbitrary probabilistic graph G
and for fixed parameter D > 2, is NP-Hard.

Also, it can be observed that the direct application of the recursive formula leads to
evaluating many times the multinomial R, (G, (k,r,.r..r,,r).d) for values of k<n and d<D, but
with different values to be substituted for the parameters rg, rs, 1y, and r. An aternative
implementation would compute the generic multinomial for d=2 and all values of k<n (using the
results of Section 2). These results would then be employed for computing the case where d=3
for al values of k<n, substituting generic parameters for the recursive call ones; this would be
repeated for d=4, etc. This way, only nD (at most, n®) different generic multinomials would be
generated. Nevertheless, the parameter substitution in itself is a costly task, and it seems that the
total number of terms for the last multinomial would be again of order n° .Thus more research is
needed to simplify the multinomial generated at the intermediate steps of the recursion, and in
this way reducing the total computational complexity.

4. Conclusions

We have presented a recursive formula for determining the diameter-constrained 2-termina
reliability for complete probabilistic graphs whose edge reliabilities can be partitioned into four
possible values, depending if they are incident at the terminal nodes s or t. Evaluation of the
reliability using this formula yields a polynomia computational complexity when fixed values of
the parameter D are under consideration, and thus representing a computational improvement



since it was shown that in general computing the reliability when |K|=2 and fixed D > 2 isan
NP-Hard problem.

In addition, as a specific case, this recursive formula can then be applied for computing
the reliability polynomia of complete networks with n nodes, and, in this way, obtaining an
efficient upper bound of the reliability for an arbitrary topology on the same number of nodes,
and when all itslinks are equally reliable (or even when we have different reliabilities for each of
the four classes mentioned). This can be also used to assess the precision of approximate
reliability computation (for example, by Monte Carlo methods), as well as assess the quality of
heuristic optimization procedures for finding highly reliable topol ogies with other constraints.

One open problem is to find, if possible, a closed form anaytical formula for the
reliability of these complete topologies. If the latest task cannot be accomplished, it is important
to develop a more efficient implementation than direct application of the recursive formula,
especially for high values of D.
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