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Abstract:

In this paper we study the reliabili ty of a network with two terminal nodes s and t, where its links are subject to
random, independent failures (nodes are always operational), and the network is operating if the surviving edges
allow the terminal nodes to be connected by a path of length bounded by a giving parameter D (corresponding to a
constraint on communication time between those two nodes).

In particular, we express the reliabili ty of complete graph topologies (i.e. every pair of nodes of the network
are adjacent), whose links belong to four different reliabili ty classes, as a recursive formula of smaller networks and
parameter D. The computational complexity of a direct implementation of a network with n nodes, is of order nD,
which give us polynomial complexity for calculating the reliabili ty for fixed values of D. This is an improvement
over previous results since in general determining the reliabilit y for the networks with two terminal nodes and fixed
parameter D, was shown to be a NP-Hard problem [2].

In addition, this recursive formula can be applied for computing the reliabil ity polynomial (i.e. the reliabili ty
expressed as a polynomial function of a unique link reliabilit y) of complete networks.

Key words: network reliabilit y, reliabili ty polynomial, diameter, path length, delay constraints, graph
theory.

Resumen:

En este trabajo se estudia la confiabilidad de una red con dos nodos terminales s y t, tal que sus líneas están sujetas a
fallas aleatorias e independientes, y la red funciona si las líneas en funcionamiento permiten la conexión de los
nodos terminales a través de un camino de largo acotado por un parámetro D (que permite modelar por ejemplo una
restricción en el tiempo de comunicación entre estos nodos).

En particular, se da la confiabili dad de redes de topología completa (es decir, donde todo par de nodos es
adyacente) y cuyas líneas pertenecen a cuatro clases de confiabili dad diferente, como una fórmula recursiva en
términos de un número de nodos más pequeños y parámetro D menor. La complejidad computacional de una
implementación directa de la fórmula en una red con n nodos, es de orden nD, resultando en complejidad polinómica
para valores fijos de x Esto es una mejora sobre los resultados pre-existentes, dado que en general determinar la
confiabili dad de redes con dos nodos terminales y parámetro D fijo, es un problema NP-difícil [2].

Además, esta fórmula recursiva puede ser utili zada para calcular el polinomio de confiabili dad (es decir, la
confiabili dad como función de una única confiabili dad de líneas) de grafos completos.

Key words: confiabili dad de redes, polinomio de confiabili dad, diámetro, largo de caminos, restricciones
de demora, teoría de grafos.
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1. Introduction

Consider an undirected graph G = (V, E) consisting of a set of nodes V and a set of connecting
edges E, with distinguished set of terminal nodes K. If we suppose that nodes do not fail, and that
each edge e is assigned an independent probability of operation re (called edge reliability), this
graph can model a communication network where the operational states are those where any pair
of terminal nodes are connected by a path composed of operational links. This is a random event,
which has probability RK(G). The problem of numerically evaluating RK(G), or its complement,
QK(G) = 1-RK(G), is usually called the K-terminal reliability problem, and the exact evaluation of
the reliability is an NP-hard problem [6]. When all the edges have the same reliability r,
evaluating RK(G) as a polynomial on r, usually called the reliability polynomial problem, also
belong to the  NP-hard computational class. For further reading about this classical model see
[3,7].

There are many situations where it is not enough to know that the terminal nodes K can be
connected, but is also required that the length of the connecting paths (measured by the number
of edges) between terminal nodes, is smaller or equal to a given upper bound D.  This is the case
for example when at each node (or at each edge) there is a transmission delay T, and the total
communication time between two terminals must be less than D times this delay. If the
operational paths which connect the terminals nodes have at most length D, we can guarantee a
small delay, one of the most important QoS parameters relevant for many real-time network
services such as voice over IP, videoconference, and multicast applications. This new reliability
measure of a network G with terminal set K and parameter D, RK(G,D), is called diameter-
constrained K-terminal reliability [1,5]. If the edges of the graph have the same reliability r, we
use the alternative notation RK(G,r,D) for its reliability. The specific cases where K=V and
K={s,t} are called the diameter-constrained all-terminal and the diameter-constrained 2-terminal
reliability, respectively.

  As in general computing the diameter-constrained reliability for networks with two
terminal nodes s and t, even when a fixed parameter D is under consideration, was shown to be
NP-Hard [2], an interesting problem is find classes of graphs for which polynomial time
algorithms exist. In this paper, we study the diameter-constrained 2-terminal reliability for
complete networks.

In the next section, we determine the diameter-constrained 2-terminal reliability
polynomial (i.e. a polynomial as a function a unique edge reliability r) of complete networks, for
specific values of the parameter D. Section 3 introduces a more general class of probabilistic
graphs, having also a complete topology but whose edge reliabilities can be partitioned into four
possible values. For these graphs, we can define a reliability multinomial in terms of the
reliabilities of the different classes of edges, and a recursive formula for this reliability is then
obtained. Finally, in Section 4, we present conclusions and directions for future work.

2. Source-terminal networks with complete graph topology and identical edge reliabilities

An undirected graph is usually denoted by G=(V,E), where V={1,...,n}is the node-set and
E={e1,...,em} is  the edge-set. We also use the notation euv to denote an edge with end-points u
and v.

A graph on n nodes, is a complete graph (denoted by Kn [4]), if each pair of nodes are
adjacent. We will study complete graphs with n+2 nodes, whose edges have identical reliabilities
r, and two distinguished nodes, called source and terminal, which must be connected by a path of
length at most D (see Figure 1).
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Figure 1: network with Kn+2 topology, equireliable links, and arbitrary source and
terminal nodes.

We are interested in computing the network reliability polynomial Rst(Kn+2,r,D), for a given
value of D.  If we define Pst(D) as the set of paths between s and t, of length at most D (with
length measured as the number of edges of the path), and we denote by OP(p) the event in which
all the edges in a single path p are operational, the network reliability polynomial can be
expressed in function of these events (parametric on r):
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In order to illustrate this formula, we will take the K4 network shown in Figure 2; we will
suppose that we want to establish a connection of maximum path length 2 between s and T (i.e,
D=2).
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Figure 2: K4 network

In this example, there are only three paths of length at most 2 between s and t, which will
be included in the set Pst(2) ={(e6), (e1,e2) , (e4,e5)}.  The paths (e1,e3,e5) and (e4,e3,e2), which
connect s and t, are not considered, because they exceed the length bound. For this network, as
the paths are disjoints and the events independent, we can easily compute the reliability
polynomial:
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We will try to extend this procedure for networks Kn+2 for arbitrary n.
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First, we will look at the case where D=1. In this case, there is only one path of length 1

between s and t, namely the path including only  link est. Then ( )( )( ) reOPrK stnst ==+ Pr)1,,(R 2 .

When D=2, the set of paths of interest is ( ){ } ( ) { }{ }� tsVveeeP vtsvstst ,,,)2( −∈= . Like in

the previous example, the paths are disjoint, and the events are independent, leading to the
following expression for the reliability polynomial [1]:
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Unfortunately, when we consider D>2, the events corresponding to the paths are neither
independent from each other, nor disjoint, so that it is not possible to directly apply a similar
formula for direct computation of the reliability polynomial. In the next section, we also study
the diameter-constrained reliability for the class of complete networks, but here allowing up to
four different edges reliability values, and, as a result, we obtain a formulation for the reliability
in terms of these values, which can also be applied to compute the reliability polynomial when
all links are equireliable.

3. Source-terminal networks with different classes of edge reliabilities

In this section we define an auxiliary class of complete graphs, whose edges can be partitioned
into four elementary reliabilities values. We will denote these graphs by GA(n, rst, rs, rt, r), where
n is the number of  intermediate nodes between the terminals s and t, rst is the reliability of the
edge connecting s and t, rs is the reliability of the edges connecting s to the other n intermediate
nodes, rt is the reliability of the edges connecting T to the n intermediate nodes, and r is the
reliability of the  edges whose end-points are intermediate nodes. Figure 3 shows graphically a
GA(n, rst, rs, rt, r) network.
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Figure 3: GA(n, rst, rs, rt, r) network

The reliability for this network, ( )( )DrrrrnG tsstAst ,,,,,R , is a multinomial in rst, rs, rt, r. We

have that the reliability for the network with identical links reliabilities is a particular case of this

class of networks, i.e, that ( ) ).,,,,,(R),,(R 2 DrrrrnGDrK Astnst =+

We will express the reliability of network GA by taking into account the independence
between the edge (s,t) and the other paths, and by conditioning on the number of operational
edges between s and the intermediate nodes (exploiting the symmetry between those nodes).
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If D=1, the only feasible path is (est); then trivially ( )( ) sttsstAst rrrrrnG =1,,,,,R . We can

now look at the case where D>1. As a first step, we use the fact that (est) is a feasible path; and
that it is independent from all other paths from s to t. Then we can write

( )( ) ( ) ( )( )DrrrnGrrDrrrrnG tsAstststtsstAst ,,,,'R1,,,,,R −+=

where G'A(n, rs, r t, r) is the probabili stic network ( )rrrrnG tsstA ,,,, minus the edge est (see

Figure 4).
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Figure 4: G'A(n, rs, r t, r) network

As this network is completely symmetric with respect to the edges between s and the
intermediate nodes (all nodes, except s and t), we will define a partition of the probabili ty state
space for the network based on the number of those edges that fail or are operational. We define
Ak to be the event where K edges from s to intermediate nodes fail , and the remaining n-k are
operating; its probabili ty is
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The set { }nkAk ≤≤0:  is a partition of the probabili ty space, as the events are pairwise disjoint,

and their union has probabili ty one.  Applying the total probabili ty theorem, we then have:
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In this last sum, the term where k=n is null , because if all li nks between s and the intermediate
nodes fail , there is not any operational path between s and t.

We must now find and expression for the general term with K <n. The leftmost network
shown in Figure 5 corresponds to this event, where we have K edges between s and intermediate
nodes fail (which can be removed from the network), and n-k operational ones, which are
presented with a bolder trace. Finding an operational path of length ≤ D in this network
corresponds to a path of length ≤ D-1 in the network shown at the center of Figure 5, which is
obtained by identifying s and the intermediate nodes to which it is unconditionally connected,
into one node. In addition, as edges fail i ndependently, the operational probabili ty of a bank of
parallel edges is the complement (to one) of the product of their failure probabiliti es. Thus the set
of parallel edges between s and T shown at the center of Figure 5, can be replaced by a single
edge with reliabili ty 1-(1-r t)

n-k.

Similarly, the set of parallel edges between s and an intermediate node of Kk, can be replaced by
a single edge with reliabili ty 1-(1-r)n-k .
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Figure 5: G'A(n, rs, rt, r) when K edges between s and  intermediate nodes work and the rest fail.

The network resulting from this last operation is shown at the right of Figure 5, and corresponds

to a ( ) ( )( )rrrrkG t
knkn

tA ,,11,11, −− −−−−  topology, where the operational paths must have length

at most D-1.

From (1), (2) and the latest fact, we can express the reliability of the original network GA by the
following formula:
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The recursive application of this formula gives a multinomial on rst, rs, rt, r; in particular, if we
take all these values equal to r, we have the reliability polynomial of the complete graph with
n+2 nodes. A direct application of the formula has total computational complexity of order nD, so
that if D is fixed, the method will have polynomial complexity. In this sense, this is an important
result since in [2] it was shown that evaluating Rst(G,D) for any arbitrary probabilistic graph G
and for fixed parameter D > 2, is NP-Hard.

Also, it can be observed that the direct application of the recursive formula leads to
evaluating many times the multinomial ( )( )drrrrkG tsstAst ,,,,,R  for values of k<n and d<D, but

with different values to be substituted for the parameters rst, rs, rt, and r. An alternative
implementation would compute the generic multinomial for d=2 and all values of k<n (using the
results of Section 2). These results would then be employed for computing the case where d=3
for all values of k<n, substituting generic parameters for the recursive call ones; this would be
repeated for d=4, etc. This way, only nD (at most, n2) different generic multinomials would be
generated. Nevertheless, the parameter substitution in itself is a costly task, and it seems that the
total number of terms for the last multinomial would be again of order nD .Thus more research is
needed to simplify the multinomial generated at the intermediate steps of the recursion, and in
this way reducing the total computational complexity.

4. Conclusions

We have presented a recursive formula for determining the diameter-constrained 2-terminal
reliability for complete probabilistic graphs whose edge reliabilities can be partitioned into four
possible values, depending if they are incident at the terminal nodes s or t. Evaluation of the
reliability using this formula yields a polynomial computational complexity when fixed values of
the parameter D are under consideration, and thus representing a computational improvement
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since it was shown that in general computing the reliability when  |K|=2 and  fixed D > 2 is an
NP-Hard problem.

   In addition, as a specific case, this recursive formula can then be applied for computing
the reliability polynomial of complete networks with n nodes, and, in this way, obtaining an
efficient upper bound of the reliability for an arbitrary topology on the same number of nodes,
and when all its links are equally reliable (or even when we have different reliabilities for each of
the four classes mentioned). This can be also used to assess the precision of approximate
reliability computation (for example, by Monte Carlo methods), as well as assess the quality of
heuristic optimization procedures for finding highly reliable topologies with other constraints.

One open problem is to find, if possible, a closed form analytical formula for the
reliability of these complete topologies. If the latest task cannot be accomplished, it is important
to develop a more efficient implementation than direct application of the recursive formula,
especially for high values of D.
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