Index Self-tuning with Agent-based Databases

Rogério Luis de Carvalho Costa
Departamento de Informatica
Pontificia Universidade Catdlica do Rio de Janeiro (PUC-Rio)
Rua Marqués de Sao Vicente 225
Rio de Janeiro, RJ 22453-900 - Brasil
e-mail: rogcosta@inf.puc-rio.br

and

Sérgio Lifschitz
Departamento de Informatica
Pontificia Universidade Catdlica do Rio de Janeiro (PUC-Rio)
Rua Marqués de Sao Vicente 225
Rio de Janeiro, RJ 22453-900 - Brasil
e-mail: sergio@inf.puc-rio.br

Abstract

The use of software agents as Database Management System components lead to database systems that
may be configured and extended to support new requirements. We focus here with the self-tuning feature,
which demands a somewhat intelligent behavior that agents could add to traditional DBMS modules. We
propose in this paper an agent-based database approach to deal with automatic index creation. Implemen-
tation issues are also discussed, for a built-in integration architecture.

1 Introduction

The software agents’ research area aims at building systems that deal with heterogeneous, distributed and
dynamic environments [26]. The agent technology has been used in many complex environments [3, 25].
When agents are present, systems can detect the external environment where they are inserted and react in
different ways according to the existing system configuration. Agents are used mainly in applications where
reactivity is very important [5].

For database systems, a possible approach is to make use of the agents’ technology to add a reactive
capacity to the DBMSs, that enables autonomous reconfiguration and extensibility. In general, DBMSs are
known as passive systems that become active only in response to requests from end users or application
programs. Extensions due to new systems requirements has created multiple extended DBMS classes, such
as active database systems [23]. Active databases and software agent systems are quite similar as both
are used on reactive applications [3]. Active rules are usually limited to deal with database objects and
transactions, while agents may apply to the whole system environment.

There are many application domains for which Database Management Systems (DBMS) must be extended
and configured [22]. In this paper we propose the use of software agents to deal with self-tuning and DBMSs
operational requirements. This issue is considered one of the most important current research topics in
databases [2].

The database tuning task consists of fine manipulations aiming at obtaining better performances of
applications by means of an efficient use of the available computational resources. It is one of the main
maintenance tasks of a database administrator. Commercial DBMSs offer a number of operational param-

eters that can be adjusted. Tuning can also be done in hardware configuration, physical design and query
specifications.

A good prompt for the tuning process is to ”think globally, fix locally” [21]. This means that we must
understand the functioning of the entire system, but only carry through adjusts in specific points each
time. Some factors have made the tuning process more complex, as in the case of the parallel machines and
systems. These bring new questions such as the data allocation in multiple disks. Moreover, at each new
edition of commercial DBMSs, additional operational parameters appear to be adjusted. So, tuning becomes
even more important and, at the same time, more expensive, as highly specialized professionals are needed
[2, 10].

One of the basic tuning activities is system monitoring. Statistics related to the effective use of the
processors, the number of I/O operations and the execution time of basic operations must be collected,
among others. The tuning process contemplates both the perception that a given system resource is not
efficiently used and the comprehension why this happens, what is not a trivial task.

Database systems would, ideally, be configured in such a way that no tuning activities would ever be
needed. All the resources would be placed and adjusted in the best possible way. When modifications are
imperative, the DBMS would then be able to execute them automatically. This capacity of perception and
automatic adjustment is known as self-tuning,.

We are mainly concerned here with index self-tuning for database systems. Due to the high complexity
of DBMSs’ current implementations, self-tuning solutions are still very restricted. In order to achieve an
actual self-tuning behavior, we need to rethink DBMSs’ architecture [10]. We propose here an approach that
matches agents systems and DBMSs in a feasible architecture. The agent architecture chosen is based on a
object-oriented framework for building agent systems proposed in [15].

It should be noted that some of the existing approaches for index self-tuning, mostly in commercial
DBMSs, are based only on index suggestion for specific workloads, leaving to the database administrator the
decision on choosing the right representative workload and of the index creating. In our work we propose an
index self-tuning complete process with automatic creation of indexes in a agent-based database architecture.

In the next Section we give more details on software agent systems and the way they may interact with
database systems. We discuss some existing works related with semi-automatic index tuning and propose
a self-tuning engine on an agent-based database architecture. An application focused on automatic index
self-tuning is presented in Section 3. Then, in Section 4, we discuss implementation and architectural issues.
Finally, we conclude in Section 5 listing our contributions and comment on future and ongoing work.

2 Agent-based Databases and Self-tuning

There exist multiple definitions for the agent term [5, 14, 18, 26] and only the autonomous characteristics
have come to a consensus. Indeed, this is a central point related to the agency concept. We consider
here basically the definition given in [26]: an agent system is a computational system that lives in a given
environment, being able to execute autonomous actions over this environment in order to achieve its goals.

The agent architecture that will be implemented here is based on a object-oriented framework for building
agent systems proposed in [15]. This framework defines a layered architecture (Figurel) which identifies each
agent function and can be used for both simple and complex agents.

Each layer communicates only with the layers that are located above and below it, with exception of the
Mobility and Sensory layers, that communicate with others agents/environment’s regions to execute their
functions. This is the main reason why this layered architecture was chosen: each layer (except the extreme
ones) depends only on its neighbors, making easier the implementation of new functionalities.

There exists, in Figure 1, two basic streams of information: one from the Mobility layer to the Sensory
layer, and the other bottom-up in the opposite direction. The first one can occur when a message is received
from another agent while the latter can occur when the agent uses the information captured by the Sensory
layer to bring up to date its Believes, which are used to make decisions and execute some actions.

Agents and Database Systems

In [3] active databases are compared with agent systems. That work states that the integration of both
technologies would even increase the complexity of the systems. It would be imperative to develop debugging

Layered Agent Layer’s functionalities

| Mobility I Layer for communication between agents
it 4L
| Translation I Messages are formulated and translated for others
languages or semantics
Collaboration I This layer determines how the agent should collaborate with
¥ T others agents, including accept or reject incoming requests
| Action I The Reasoning layer intentions are carried out

Reasoning I The next action is chosen. This can mean request for

services or answers for requests

| : Believes 2 The models/information that the agent has about its actions
. and the environment
it J1
| Sensory I Gets information about the environment

Figure 1: Layered Architecture for Software Agents

Layered Architecture Integrated Architecture Built-in Architecture
Agents Systems DBMS DBMS
] [DBMS
Agents Systems Components Agents
DBMS Systems

Figure 2: Architectures for the integration of Agent Systems and DBMS

tools as the control becomes more difficult. The focus was in a high level abstract comparison of both
paradigms, with no direct consequences. However, a relevant point mentioned is that an important barrier
to the integration of both technologies is the lack of methodologies for building plans and rules.

In [17] three integration architectures between agents and DBMSs are proposed: Layered, Integrated and
Built-in (Figure 2). Each one of the three integration architectures has advantages and disadvantages (we
omit here a detailed discussion due to space limitations). The Layered architecture is the one implemented
in most existing approaches but is also the one where less functionalities are supported. In the Integrated
architecture the maximum agency level is obtained, as agents systems replace all (or almost all) of the DBMSs’
components. However, building such an integrated system is extremely complex. The Built-in architecture
enables the reuse of DBMSs’ existing components. The degree of extension of DBMSs’ functionalities depends
on the coupling level between agents and components.

We will consider in this paper the built-in architecture to implement the self-tuning feature in an agent-
based database architecture. This was also the case for a previous work [17] in which an agent-based
database was built to further tailor the workload balancing process during parallel joins. We will discuss
implementation aspects of this previous work and the one proposed here later in Section 4.

In this section, we describe some self-tuning previous studies related to the our work here. We present
an architecture where most DBMSs self-tuning approaches fit and show how it can be implemented by the
use of software agents. We enhance, still, the importance of the communication between diverse self-tuning
agents for the establishment of a true integrated system that makes possible a full and effective DBMSs
self-tuning process.

2.1 Self-Tuning in Databases

The self-tuning feature have been studied in many different areas. Transactions tuning and memory man-
agement are studied in [24]. In [16] a self-tuning engine is presented for the data allocation problem in
parallel systems. In [10] the authors claim that deep architectural changes must be done in databases to

enable actual self-tuning processes. A framework for tuning a physical database design is given in [20].

The work presented in [11] generates index sets from the monitoring of DBMS activities in a determined
time interval. The indexes selection is achieved by considering indexes ”benefit graphs”. These structures
represent the indexes sets that are presented and chosen by the optimizer, together with their execution
costs. Each of the indexes sets selected by the optimizer is viewed as a graph node. The construction of a
benefit graph for all the alternatives of indexes sets possibly tested and chosen, for each query, is unfeasible.
Thus, a graph is generated only for those sets that will be chosen according to following criterion: given an
initial set P of considered indexes and a subset C, of P, containing indexes chosen by the optimizer, |C|
subgraphs are generated, starting with P — C;, where 1 < ¢ < |C|. Two heuristics are also considered: (a) if
a set of n indexes induces a benefit S, each index will generate a benefit of S/n; and (b) the maximum value
of a index benefit in a benefits graph is considered the index benefit for the query. The query optimizer must,
then, be capable to generate an execution plan taking into account indexes that are not actually present in
the database catalog?.

In [1, 7, 8, 9] tools for indexes suggestion implemented in Microsoft’s SQL Server are discussed, as part
of the AutoAdmin project. Particularly, in [1], the indexes suggestion tool is presented with a materialized
views suggestion tool. The objective of the index suggestion tools is to generate an index set considered
for one determined input workload. A workload is supplied as input. This workload could be build from a
log archive. Given a workload W with n operations, the tool generates n workloads, each one with a single
operation, partitioning the initially submitted load. Then, it chooses the best configuration for each one of
these loads, independently. Finally, it considers all the indexes belonging to one of the configurations chosen
for the diverse workloads as candidates for W as a whole. From a workload with only one operation we
have the selection of candidate indexes - in this stage only simple indexes are considered. Then, a greedy
algorithm considers diverse configurations for each query. These configurations are submitted to the query
optimizer (the existence of an index only worth if it is effectively used in a query plan execution). However,
not all the possible indexes exist in the DBMS catalogue. Therefore, another module exists that makes it
possible to the query optimizer to choose hypothetical indexes during elaboration of a query execution plan.

The selection of the input workload (or system time period observation) is the main difficulty for tools
as the ones discussed. This happens because the database administrator does not always have all the
information on what will actually be affected by specific operations when defining a workload [6]. Index
suggestion engines do not take care of automatic adjustment of the DBMS, being highly dependent on
decisions and actions made by the system or database administrator. They do not represent, then, a real
self-tuning engine.

2.2 Self-tuning stages

In [24] are identified three main stages in the self-tuning process. Here we define four stages that are part of
a generic self-tuning process:

¢ Information Retrieval (IR) - when system observation occurs or, specifically, the observation of the
system’s region where self-tuning is active;

¢ Situation Evaluation (SE) - according to measures obtained in IR stage and with metrics related to
the level of system’s performance, the performance is evaluated and the need of adaptations is defined;

e Possible Alterations Enumeration (PAE) - when it is detected that a determined component is not
answering adequately, the possible alterations to be done are enumerated;

¢ Alterations Accomplishment (AA) - from the enumerated alternatives, the self-tuning engine can make
alterations in multiple DBMS’s components;

It is important to stand out that the choice of the evaluation metric, in the SE stage, is difficult step in
the self-tuning process, as performance evaluation criteria is very dependent on the particular situation . The
domain of possible alternatives is, generally, numerous and very complex. However, it is in PAE stage that
the bigger overhead to the system is generated. Some alternatives are elaborated and their benefits/costs are

1We will call Hypothetical Indexes to indexes that do exist in database catalog but are treated by the query optimizer as if
they exist. The ones that belong to the database catalog will be called Real Indexes.

A

Final execution information
retrieval (IR) |

: |
' Self-Tuning | Component N E
H component L. . . '
I Preliminary information Area being '
1 retrieval (RI) : 1
' < adjusted I
: > :
. . . '
H Metrics Alterations on jobs A\ 4 !
: evaluation execution settings (AA) | Component N + | ;
i and H
' execution [> i
1 - al
i alterations Alterations results E
i (SE and information retrieval (/R) | Component M | ;
| PAE) |
H H
| |
’ :
| H
1 H
: 1

Component M + 1 |

Figure 3: Component’s Local Self-Tuning Architecture

calculated. This process is similar to and as costly as the process of plan generation done by conventional
query optimizers. Not always the best alternative will be among the feasible ones.

It is important to note that, in some cases, this PAE stage is not considered in a self-tuning engine. This
happens because in the IR stage it can be decided that it is not necessary to modify the system or that
it will not be possible to reach better solutions. Then, PAE and AA will not be executed. On the other
hand, some engines need to enumerate the alternatives before deciding whether or not to modify the system.
Therefore, the PAE stage as well as IR and SE stages will always occur in these cases, while the last stage
may not occur.

2.3 Local self-tuning model

In Figure 3, we propose an architecture to accomplish the self-tuning tasks discussed previously. The
architecture’s goal is to improve component’s operations performance. This is made by a local component
which is specialized in capture a determined task.

This structure observes a set of DBMS’s components with intention to capture a low performance. Then,
information is sent to diverse components listing alterations in determined task’s execution and collects
information of the results obtained. The self-tuning component can, also, use other DBMS’s components to
simulate the intended modifications. In this case, it collects results in an intermediate stage, before all the
involved components in the operation have concluded its execution. This enables it to restart the process
with new parameters. When the intermediate results fetched are the expected ones, it allows the complete
execution of all the operations.

It can be noted that the IR stage can occur more than once in the self-tuning process. Therefore this is
the predominant self-tuning stage. For the extreme case where no tuning activity is needed only IR and SE
stages (or, still, PAE, as argued Section 2.2) would occur.

2.4 Self-Tuning Global Model and Persistence

It is generally worthy, however difficult, to make self-tuning component learn with decisions previously made.
This is important because what seems good for a DBMS’s component can harm others and, consequently,
harm the whole system performance. Moreover, as self-tuning is an automatization process, it is important
to gain experience. Some self-tuning engines need to store, in a consistent way, data and statistics about
decisions taken, as represented in Figure 4. In this figure the possibility of communication between self-
tuning components is also represented. This communication can be very useful, even if the system becomes
more complex.

For example, consider two self-tuning components, one taking care of the indexes existence and another
that takes care of memory’s allocation and page’s substitution policy. The creation or exclusion of an index
can intervene, for example, in the choice of a join operation execution method. This could modify, for
example, the memory area for sort operations. If the index self-tuning component informs the memory’s

DBMS Information being sent

(persistent data) | Component M +1 |

1 :
| i
i to others self-tuning | Component N | E
1 1
' < components Area bein !
i g adjusted !
! Information coming from Local A !
E other self-tuning Self-Tuning | | Component N + 1 | !
i components Component ‘Informatioz E
! Data Wri x E
! ta tes 1
H @ riies | Component M | !
| i
1 1
S —
! , — : v :
| “Previous Decision Base’ !
! Data Reads '

Figure 4: Self-Tuning global model

component on decisions taken, alterations could be made preventively, before a problem occurred.

2.5 Self-Tuning Agent

The self-tuning component must possess:

e Autonomy: capacity of act/react to reach an objective without any intervention;

e Reactivity: by capturing what occurs in the environment, it is the capacity of responding to changes
so that its objectives are reached;

e Pro-activity: to act in order to reach its objectives, anticipating changes in the environment;

¢ Sociability: capacity to interact with other participants of the environment;

Beyond these, the possibility of learning also exists: a decision in a given moment can be different from a
decision made previously, according with the consequences measured in the first decision. These are exactly
the features of intelligent software agents [25, 26].

Therefore we claim that an agent could act as a self-tuning component. We will give in Section 4 an
agent architecture that will satisfies these features of a DBMS’s self-tuning component.

2.6 Self-Tuning with Multiple Agents

A DBMS is a very complex system for a stand-alone agent to take care of all system’s self-tuning tasks. In
practice, we need a multiple agents system, which cooperate to achieve their particular goals.

In a agent-based database system, we could create different self-tuning agents specialized on different
DBMS’s tasks. Interaction techniques enable jobs exchanges between tuning agents of different DBMS’s
areas.

The interaction could be only for information flow on observed situations. Let us consider that an agent
perceive that the response time for a join operation is very high. This agent sends then a message to the
index and memory agents and to another one responsible for join operations. The index agent tests indexes
creation. The memory agent can modify the memory size or modify the buffer page’s substitution policy.
The last one can qualify the hash join method and a new execution plan for the join operation can be
generated.

This type of action is exclusively reactive and it does not make use of the agent’s pro-active capacity.
In this situation, the ideal would be that the index had been created during the elaboration of the query
execution plan. It would have to take into account the hash join technique and possible substitutions in
the buffer’s page replacement policy. A self-tuning agent with total autonomy and pro-activity for the
creation/destruction of indexes will be presented in the next Section.

C=Cr—Cy;
If C > CC, then IfCp+ C> CC, then
Create index Create index
Execute the query Delete Cp
Else Else,
Execute the query Cp=Cp+C
Previous operations evaluation End-if;
End-if;
a- Algorithm for queries evaluation b- Previous operations evaluation

Figure 5: Queries and previous operations evaluation

3 Indexes Self-Tuning Based on Differences

In this section we describe a method that allows the total automatization of the choice, creation and exclusion
of indexes. Process is done during DBMS’s normal operation, without the intervention of the administrator,
through the use of a self-tuning agent.

The Self-Tuning Agent Based on Differences will use hypothetical indexes. We will not detail the indexes
choice engine, as this problem is already sufficiently known. We focus our attention will be given to the
process that controls the creation and the exclusion of the indexes, exactly the most critical point of the
problem. The whole process will be done through a agents based architecture.

3.1 General model

The main difficulty in the implementation of an automatic project of indexes creation and exclusion refers
to the choice of the moment where indexes must be created/destroyed, since such operations imply in costs
that cannot be forgotten. For one given operation submitted to the DBMS, the query optimizer generates
the best plan with the best real configuration (it only uses objects materialized in the database) and its
execution cost. Then, the self-tuning component will decide if hypothetical indexes may participate in an
execution plan whose execution cost is lower than those of the real configurations. When such indexes do
not exist, the execution of the operation continues normally. When good hypothetical indexes exist, these
are submitted to the optimizer and a plan is generated according to a hypothetical configuration.

The costs of the best plan according to real configuration (Cg) and of the best plan according to hy-
pothetical configuration (C'y) are compared and a decision on creation/destruction of an index is taken. A
factor C' is defined as the difference between the cost of the best plan according to real configuration and
the cost of the best-established plan according to hypothetical configuration.

3.2 Queries costs evaluation strategy

For a query operation, when C'g is bigger than Cg, the query is executed according to real configuration.
On the other hand, in case that C factor is positive, we compare it with the cost of creation of the necessary
indexes used in hypothetical configuration, called C'C' (creation cost). If C is lower than C'C, then it will be
advantageous to create the indexes before the query execution. These will be created and the query executed.
On the other hand, if C is higher than C'C' the query will be executed without the index creation and, then,
an evaluation of previous operations will be carried through, in accordance with the stored statistics. This
procedure is represented in Figure 5a.

The evaluation of the previous operations is extremely simple. It consists on deciding if an index should
be created or not by analyzing the time that could have been saved in the last queries in consequence of the
existence of such index. The creation decision is taken when the total costs that could have been already
saved, in case that index existed, reaches the forecasted index creation cost. This is represented in Figure 5b,
where Cp is the stored value representing the total cost’s reduction if the related index had already been
created.

C=Cr—Cy;
IfC>0
If C > CC, then
Create index
Execute the operation
Else,
Execute the operation
Previous operations evaluation
End-if
Else,
Cr=Cp-C;
If1ICpl = CC, then,
If index exists, destroy index
Execute the operation
Delete Cp
End-if
End-if

Figure 6: Engine of costs evaluation for updates/exclusions

3.3 Updates/exclusions costs evaluation strategy

The case of updates and exclusions is a little more complex than the one of queries: actions should be taken
no matter C is positive or negative. When C is positive, the actions to be taken are similar to those taken
in the query operations evaluation. It means we must evaluate if C' will be greater that the indexes creation
cost, when we create them and later we carry through the query. The other way around, we only make an
evaluation of previous operations, similar to the one proposed in Section 3.2.

When the existence of the index is not beneficial, if C' is negative, we must also evaluate the information
stored about the indexes in the hypothetical configuration? . Then, we update the value of Cp deducting
|C|. Thus, we made the indexes creation more difficult, since they cause performance degradation.

However, it is still possible the index exists and is harming the update performance. In this situation, we
reduce from Cp the value of |C|. When |C'P| reaches the cost of indexes creation, these are destroyed. The
procedure is represented in Figure 6. Previous operations evaluation will be the one depicted at Figure 5b.

4 Implementation Issues

In this section we will present some issues related to the implementation of a self-tuning agent. We will
show an agent architecture that makes possible to implement all the self-tuning characteristics presented in
previous sections.

To implement the self-tuning agent we have chosen a built-in agent-based database architecture. It
is the one that better fits in our approaches as we do not intend to direct change DBMSs components
functionalities, only extend them.

The layered agent presented in Section 2 can be used as we can attribute all the self-tuning process stages
described in Section 2.2 to agent’s layers, as shown in Figure 7.

The Sensory layer will be responsible for Information Retrieval. The Reasoning layer does the Situation
Evaluation and Possible Alterations Enumeration. This layer will be the one where the greater processing
activities will take place. The Action layer will receive an intentions plan from the Reasoning layer, and will
transform it into attitudes to be carried through and will also pass these to the Translation layer, which will
transform the attitudes into commands that the DBMS’s components can understand. These are passed to
the layer Mobility that executes them, finishing with the Alterations Accomplishment phase. The Believe
and Collaboration, Translation and Mobility layers provide the functionalities of learning and communication
between components, respectively.

The global self-tuning system can be implemented by the use of Collaboration, Translation and Mobility
layers, what allows better tuning results. The architecture presented in Figure 8 presents this cooperation.

2Until this point all the hypothetical configurations had more indexes than the real ones.

Functionalities Agent Self-tuning
stages
Decisions concerning Mobility I
to collaboration with Ar J L
others agents are made. Translation I
lnclu@es messages It TL Alterafions
preparation, sending and | - I Accomplishment
receiving Collaboration
1r JL
| Action I
| Ar JL I Situation Evaluation
Reasoning } and
. . G JT Possible Alterations
Dec1510n.s, })ellefs - Enumeration
and statistics are Believes
storaged 1T J 1
| Sensory I } Information Retrieval

Figure 7: The self-tuning agent layer’s functionalities

DBMS
Exchange information Alterations on DBMS’s
- ¢ whith other self-tuning components settings Component N
agents
Area being

adjusted

it

Collaboration

I 1l

Self-Tuning Component N + 1

Agent

Component M

T T

Reasoning

1

it 1

Sensory

Storage and retrieval of
knowledge

L L
KJlE

Component M + 1

!

Statistics Decisions
Models

' Information retrieval about
| operations / performance

Figure 8: DBMS’s Self-Tuning Architecture with cooperation between agents

Although systems with some agents cooperating between themselves bring a series of advantages, they also
bring some implementation challenges.

A self-adjust multiple-agents systems allows that the existing studies on self-tuning are implemented
separately; each developed engine is transformed into an agent. Thus, the existing studies would have part
of the four inferior layers ready, as well as the stream of data that has broken of Sensory in route to Mobility,
until the Action layer. It would be enough that, for the integration of the components, the interaction policy
between the agents were defined. These would be implemented in the three upper layers and the stream of
information would be from the upper layer to the bottom one.

These definitions are not trivial. First, interfaces for the communication between agents must be defined.
Then, each agent will have to know which agent must be notified on its actions, intentions or observations
("think globally, fix locally”). Moreover, in a system with some agents, each can need to keep Believes on
itself, but, also, on the states and actions of the other agents [3].

In [17] an implementation of an agent-based database is briefly described. The agents were placed in
Minibase [19], a public domain database management system, in a built-in architecture. They were used to
act in parallel join load balancing in a ARCOJP Architecture [12] implementation.

The Self-Tuning Agent Based on Differences that implements the engine described in the Section 3 fits
very well in the layered agent architecture. The main functions of each layer are listed below:

e Sensory: Measures carried through in the DBMS, such as, assembled queries submitted and execution
plans, with its costs and used indexes;

e Believe: It controls the storage and backup of Cp;

e Reasoning: It verifies the necessity of index creation (it verifies existing indexes). Generation of
possible alterations based on indexes suggestion. Plan of action: immediate/posterior indexes cre-
ation/destruction with statistics update, or continuation of the DBMS operations without any inter-
ference;

e Action: It transforms the decisions taken from Reasoning into a series of logical commands. For
example: for a request of costs for one given hypothetical configuration, it detects the need of activation
of the hypothetical index and submission of the query to the optimizer with the new active hypothetical
configuration;

e Collaboration: Possibilities of collaboration with other agents are analyzed. Responses to other agents
requests are evaluated;

e Translation: It translates commands for other agents languages and for DBMS’s calls for components
procedures;

¢ Mobility: Communication by sending messages between agents in different places and calls for DBMS’s
components procedures;

We can state that the information used in the evaluation processes of the previous operations, nominated
values of Cp, are stored as acquired knowledge. The Believes layer will do its manipulation.

A possible objection here would be the eventual need of extra storage space to contain information of all
the indexes tested for the system. Some statistics will remain much time without being brought up to date.
In case there is a physical limitation for the storage space, the information that is least recently used could
be being extinguished without causing great losses.

The Self-Tuning Agent Based on Differences will be available to cooperate with others agents receiving
and analyzing two types of requests: one for storage space organization and another for index creation.

As long as this agent is pro-active for indexes creation (whenever the agent believes that the existence
of determined index is good/harmful for the system’s performance, it creates/destroys the index at the
right moment), when a request of indexes creation/destruction is received, the agent already evaluated the
possibility of indexes creation/destruction indexes for the attributes in question. There are three possible
responses:

e No index is beneficial for the query in question and either no index will be created for a creation
request, or no index will be destroyed, for a destruction request;

e The indexes creation or destruction is already determined and will happen at an adequate moment -
for creation or destruction requests, respectively;

¢ Indexes already had been created/destructed, taking care of the request before it was done;

As a complement, aiming at a better understanding of the query or update operation cycle in a DBMS in
the presence of the self-tuning agent, the life cycle is illustrated in Figure 9. There are some blocks separated
and identified by the most important layers in each block. When an operation is submitted to the DBMS and
its execution plan is generated (according to real configuration), the agent acts with the DBMS’s operations
before code generation. Statistics are accessed by Believes. Reasoning can decide that the real plan is
the best one to be executed and, then, makes with that Mobility initiates the code generation operation
(breaking the cycle). In case that Reasoning needs more information on execution plans of a hypothetical
configuration, Mobility will request that such plan is assembled. In this case, Sensory will get information
on the generated plan, closing the cycle. Believes will access statistics on this hypothetical configuration.
Reasoning will have, now, new information to use in its decision-making. This cycle will happen again until
Reasoning decides what to do, which will be passed to the upper layers until Mobility. This will interact
with the DBMS’s components, executing the definitive actions and going off the code generation.

10

Query

Query Rewrite
Access plan generation

DBMS

Sensory

DBMS

Self-Tuning
Agent

v
1f-Tuni f

Agent

DBM S
S i Request for an access plan DBMS i The necessity of a
Self-Tuning generation according to a Self-Tuning index enumeration and
Agent specific configuration Agent costs information is

T detected or a decision
Mobility ‘ is reached about the
o index creation or
Access plan Reasoning } destruction

generation

DBMS
Self-Tuning Access plan
Agent generation

Mobility »
Code generation

Figure 9: The cycle of a query/update operation

5 Conclusions

In this work we have defined the stages of a self-tuning process and we have showed how to use an intelligent
software agent to accomplish it. We apply this agent in the DBMS’s context and show the need of some
cooperative agents. We also define precisely a DBMS’s self-tuning architecture. The works described in
Section 2 represent a small part of the operations to be carried through for each indexes self-tuning agent
defined in Section 4. It can be observed, therefore, that they are not properly self-tuning engines, but, tools
that help the database administrator to decide upon tuning the system.

We define the structure of an indexes self-tuning agent in accordance to the architecture proposed.
An engine that enable the automatic indexes creation/destruction, from the evaluation of the indexes cre-
ation/destruction costs and the benefits (or not) of the indexes presence is presented. In this process the
indexes creation (destruction) costs that do not exist (and also for the existing ones) in the DBMS are
considered.

As main contributions we can mention the idea to use an agent-based database architecture implement
the self-tuning process and the proposal of a generic architecture, validated by a detailed case study. As
future works there are some possibilities already being investigated. It is interesting to study communication
interface between self-tuning agents their cooperation policy. Also we intend to implement this architecture
as it was done in [17] and be able to make a detailed performance study, comparing them with the possibilities
offered by the commercial DBMSs.

References

[1] Agrawal, S.; Chaudhuri, S. and Narasayya, V., Automated Selection of Materialized Views and Indexes
for SQL Databases, Procs 26rd VLDB Intl Conference, 2000, pp 496-505.

[2] Bernstein, P.; Brodie, M.; Ceri, S.; Dewitt, D.; Franklin, M.; Garcia-Molina, H.; Gray, J.; Held, J.;
Hellerstein, J.; Jagadish, H.; Lesk, M.; Maier, D.; Naughton, J.; Pirahesh, H.; Stonebraker, M. and
Ullman, J., The Asilomar Report on Database Research, ACM SIGMOD Record 27(4), 1998, pp 74-80.

[3] Bailey, J. A.; Georgeff, M.; Kemp, D. B.; Kinny, D. and Ramamohanarao, K., Active databases and
agent systems - a comparison, Procs 2nd Intl Workshop on Rules in Database Systems, LNCS 985, 1995,
pp 342-356.

11

[4] Bigus, J. P.; Hellerstein, J. L. and Squillante M. S., Auto Tune: A generic Agent for Automated Perfor-
mance Tuning, Procs 5th Intl Conference on the Practical Application of Intelligent Agents and Multi-
Agent Technology, 2000, pp 33 52.

[6] Bradshaw, J.: Software Agents, MIT Press, 1997.

[6] Costa, R.L.C. and Lifschitz, S., An Agent-Based DBMS Architecture for Index Self-Tuning, Monografia
da Ciéncia da Computacdo 28/01, Departamento de Informética - PUC-Rio, 2001 (in portuguese).

[7] Chaudhuri, S. and Narasayya, V., An Efficient, Cost-Driven Index Selection Tool for Microsoft SQL
Server, Procs 23rd VLDB Conference, 1997, pp 146-155.

[8] Chaudhuri, S. and Narasayya, V., AutoAdmin ”"What-if” Index Analysis Utility, Procs ACM SIGMOD
Intl Conference on Management of Data, 1998, pp 367-377.

[9] Chaudhuri, S. and Narasayya, V., Microsoft Index Tuning Wizard for SQL Server 7.0, Procs ACM
SIGMOD Intl Conference on Management of Data, 1998, pp 553 554.

[10] Chaudhuri, S. and Weikum, G., Rethinking Database System Architecture: Towards a Self-tuning
RISC-style Database System, Procs 26rd VLDB Intl Conference, 2000, pp 1-10.

[11] Frank, M.; Omiecinski, E. and Navathe, S., Adaptive and Automated Index Selection in RDBMS, Procs
Intl Conference on Extending Data Base Technology, 1992, pp 277-292.

[12] Freitas, F., Lifschitz, S. and Macédo, J.A.F.: ARCOJP: An Architecture for Comparing Joins in Parallel,
Procs XVI Brazilian Symposium of Databases (SBBD), 2001, pp 286-300.

[13] Fayad, M., Schmidt, D.C. and Johnson, R.: Implementing Applications Frameworks: Object Oriented
Frameworks, Wiley & Sons, 1999.

[14] Gilbert, D.: IBM Intelligent Agent Strategy, IBM Corporation. 1995.

[15] Kendall, E. Krishna, P. Murali, P. Chirag and Suresh, C.B. Implementing Application Frameworks.
Wiley. 1999.

[16] Lee, M.L.; Kitsuregawa, M.; Ooi, B.C.; Tan, K. and Mondal, A., Towards Self-Tuning Data Placement
in Parallel Database Systems, Procs ACM SIGMOD Intl Conference on Management of Data, 2000, pp
225-236.

[17] Lifschitz, S. and Macédo, J.A.F., Agent-based Databases and Parallel Join Load Balancing, XXVII
Latin Conference on Informatics (CLEI), 2001, 15pp CD-ROM Procs, pp 47 Abstracts Procs.

[18] Nwana, Hyacinth; Software Agents: An Overview, Cambrige University Press; 1996.

[19] Ramakrishnan, R.; The Minibase Software, em Database Management Systems; apndice A, McGraw-
Hill, 1998, pp 692-695.

[20] Rozen, S. and Shasha, D.; A Framework for automating Physical Database Design, Procs 17th VLDB
Conference, 1991, pp 401 411.

[21] Shasha, D., Tuning Databases - A Principled Approach, Prentice Hall, 1992.
[22] Stonebraker, M. Object-Relational DBMSs The Next Great Wave; Morgan Kaufmann; 1996.
[23] Widom, J. and Ceri, S. Active Database Systems. Morgan Kaufman Publishers. 1996.

[24] Weikum, G.; Hasse, C.; Mnkeberg, A. and Zabback, P., The Confort Automatic Tuning Project, Infor-
mation Systems 19(5), 1994, pp 381-423.

[25] Wooldridge, M. and Jennings, N. R., Intelligent Agents: Theory and Practice, Knowledge Engineering
Review 10, 1995, pp 115-152.

[26] Wooldridge, M., Intelligent Agents, chapter in Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence, ed. Gerhard Weiss, The MIT Press, 1999.

12

