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Abstract

We introduce Ultra X-types in Pure Type Systems generalizing earlier work on program extraction
in Type Theory. This general and comprehensive setting includes the work by Paulin based on
realizability interpretations, Burstall and McKinna’s Theory of Specifications and Deliverables,
Poll’s Programming Logic, Severi and Szasz’s Theory of Specifications. We show how to express
all these theories as particular Pure Type Systems with Ultra X-types. This general presentation
helps understanding and comparing all these different approaches to program extraction.

Keywords: Specifications, program extraction, typed lambda calculus, pure type systems, -

types.

Resumen

Se presenta una extension de los Sistemas de Tipos Puros con tipos Ultra-X, que generaliza los
trabajos previos sobre extracciéon de programas en Teoria de Tipos. Este marco general incluye
los trabajos de Paulin basados en interpretaciones de realizacién, la Teoria de Especificaciones y
Librables de Burstall y McKinna, la Légica de Programacién de Poll, y la Teoria de Especifica-
ciones de Severi y Szasz. Se muestra como expresar todas estas teorias como casos particulares
de Sistemas de Tipos Puros con tipos Ultra-¥. Esta presentacidon general permite una mejor
comprensién y comparacion de los diferentes enfoques existentes de la extraccién de programas.
Palabras claves: Especificaciones, extraccién de programas, cdlculo lambda tipado, sistemas de
tipos puros, tipos X.
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1 Introduction

A specification of a program, such as for every finite list of natural numbers there is a sorted
permutation, is in general of the form Vz.3y.P(x,y). In Type Theory, this is expressed as a type
Iz:A.Xy:B.P(z,y). The idea of program extraction is to extract from an inhabitant ¢ of such
a type a function f : A — B such that P(z, f(z)) holds for all . The problem with standard
extraction methods is that in general the extracted program contains superfluous information from
its correctness proof.

In the last two decades several approaches to program extraction in Type Theory have been
studied. In Coq [1] the extraction procedure is performed by means of an external function
based on realizability interpretations [11, 10]. Nuprl’s term extraction is also implemented by an
external function, which uses extract forms associated to proof rules to build a term (see [3]). In the
Theory of Specifications and Deliverables [2] a specification is a pair consisting of a data type and
a predicate over it. Y-types are used to put together both the components of specifications and the
functions between them. In the Programming Logic [12] E-types are not used to write specifications
instead the notion of coupled derivation rules is introduced. In the Theory of Specifications
(introduced as an extension of Martin Lof’s Type Theory in [14] and adapted to the Calculus
of Constructions in [15]) pairs are part of the syntax, and the process of extracting a program
from a proof of its specification is modelled by means of a reduction relation —, which erases all
superfluous information from the program.

In this paper we set all these theories in a common framework. Our starting point are Pure
Type Systems with ¥-types. We add a reduction relation called —, which extracts a program
from a proof of its specification and erases all superfluous information from the program. Due to
the addition of the o-reduction rules ¥-types become stronger than the strong-¥ [6], we call them
Ultra . Ultra ¥ has at least the power of strong-¥. since it is possible to code the first and second
projections (it is not necessary to add them as primitives). Moreover, Ultra ¥ has an additional
property which makes program extraction always possible. This additional property corresponds
to the internalization of the notion of realizability: any specification is computationally equal to
a basic specification Xx:A.Px and any proof of this specification is computationally equal to a
pair {(a,p) with a:A and p:Pa. Then, program extraction from an inhabitant of a specification
consists in just taking the first component of the pair. For instance, an inhabitant of a specification
Mz:A.Xy:B.(P z y) reduces to {f,q) where f: A — B is the extracted program and ¢ is the proof
of its correctness Ilz:A.(P z (f x)).

We give a second presentation of Pure Type Systems with ¥-types where we use the same no-
tation of pairs for types and objects, i.e. we write (4, \x:A.P) instead of ¥z:A.P. The advantage
of this presentation is that the o-reduction works uniformly with objects and types.

The operational description of program extraction using o-reduction is independent of the
particular Type Theory specified in the Pure Type System. We show how the existing approaches
to program extraction in Type Theory can all be modelled in our framework: the Theory of
Specifications based on Martin Lof’s Type Theory [14], the Theory of Specifications based on
the Calculus of Constructions [15, 5], the method of extracting programs based on realizability
interpretations by C. Paulin [10] and the work of Crolard [4], the Theory of Specifications and
Deliverables [2] and the method of program development by data refinement [7], Poll’s Awy, [12].
In this sense, extended Pure Type Systems with o-reduction offer a uniform approach to program
extraction in Type Theory.

We finish the paper with some examples of other applications of this formalism, such as the
derivation of logical axioms (Axiom of Choice and Independence of Premisses).

The rest of the paper is organized as follows. We define Pure Type Systems with ¥-types in
Section 2. Ultra X-types and Pairs are introduced in Section 3. Section 4 gives several examples of
systems that can be seen as particular cases of our framework, and Section 5 shows the derivation
of logical axioms.
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Figure 1: Typing rules for Pure Type Systems
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Figure 2: Typing rules for ¥-types

2 Pure Type Systems with Y-types

We assume the reader to be familiar with the notion of Pure Type Systems, and recall the typing
rules for Pure Type Systems with X-types.

Let (S, A, R) be the specification of a Pure Type System, i.e. a set S of sorts, aset ACSx S
of axioms, and a set R C S xS xS of rules. We write (ki1,k2) € R when (k1, ko, k2) € R. The set
of pseudoterms for Pure Type Systems is defined as the least set that contains a set of variables,
the set S of sorts, abstractions Az:U.u, applications (u v), product Ilz:U.V.

Definition 2.1. A Pure Type System (PTS or PTSp) is defined by the rules shown in Figure 1.

We extend Pure Type Systems to include YX-types. The set of pseudoterms is extended with
Y-expressions Yz:U.V, pairs {u,v) and constants m and my for projections. The reduction rules
for projections are defined as usual: m{a,p) =, a and m2{a,p) = p.

A specification S = (S, A4, R, R’') for a Pure Type System extended with Y-types consists of a
set S of sorts, a set A C S x S of axioms, a set R CS xS x S of rules for the II-constructor and
aset R' CS xS xS of rules for the X-constructor.

Definition 2.2. A Pure Type System with X-types (X-PTS or X—PTSp) is defined by adding
the rules in Figure 2 to the ones of Pure Type Systems.

3 Ultra X-types and Pairs

In this section we make two different extensions to Pure Type Systems. First we introduce the
notion of Ultra Y-types. Pure Type Systems with Ultra X-types are Pure Type Systems with X-
types extended with a new reduction relation —, and a conversion rule =,. The second extension
is based on Pairs.
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Figure 3: Definition of —, using X-types

We assume the set of variables is split in three pairwise disjoint sets: data-variables, prop-
variables and spec-variables. We denote data-variables by x4,yq4, prop-variables by z,,y, and
spec-variables by z4,ys. Similarly the set of sorts is split in three pairwise disjoint sets: data-
sorts, prop-sorts and spec-sorts.

The heart of a pseudoterm is defined as follows:

heart(u) = u if u is either a variable, a sort, a X-type or a pair.

heart(miu) = heart(mou) = heart(u)

heart(TIz:U.V) = heart(Az:U.V) = heart(V U) = heart(V).

Definition 3.1. A pseudoterm U is a data-pseudoterm if heart(U) is a data-variable or a data-sort.
We denote data-pseudoterms by A, B, a,b .. ..

A pseudoterm U is a prop-pseudoterm if heart(U) is a prop-variable or a prop-sort. We denote
prop-pseudoterms by P, @, p,q,....

A pseudoterm U is a spec-pseudoterm if heart(U) is a spec-variable, a spec-sort, a pair or a
Y-expression. We denote spec-pseudoterms by S, T, s,t,.. ..

We use the metavariables U, V', u, v ... for any pseudoterm.

We make the following conventions: 1

1. In Ax:U.V or Ilz:U.V we have that both z and U are data-pseudoterms, both are prop-
pseudoterms or both are spec-pseudoterms. The same restriction applies to any typing con-
text T, i.e. if :U € T then both x and U are data-pseudoterms, both are prop-pseudoterms
or both are spec-pseudoterms.

2. For all pseudoterms (u ,v), we assume that v is a data-pseudoterm and v is a prop-pseudoterm.

In Figure 3 we show the reduction rules defining —, for Ultra ¥-types and their objects. This
reduction gives an operational semantics to program extraction when we use the ¥-type to express
our specifications of programs. We assume that for each spec-variable x,; : ¥z:A.P there is an
associated pair (x4 ,xp). This is expressed by the rule Splitting (note that x5 is a variable of the
PTS, but in the rewrite system it is treated as a constant). We denote —», the reflexive, symmetric
and transitive closure of —,.

The projections 71 and 72 can be coded for each type of the form Xz4:A4.P. They are coded
as m =% \z; : (Z24:A.P).xq and my =% Az, : (Zz4:A.P).7)p.

The following notion of completeness is needed to restrict substitution of spec-variables x; :
Yx:A.P. We also need a modified definition of freshness with respect to a typing context.

1See [14, 15] where these restrictions are imposed by a grammar.
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Figure 4: Typing Ultra X-types
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Figure 5: Definition of o-reduction using only the pair constructor

e The variable z4 (resp. z,) is complete for a term w if z; ¢ FV(u). The variable z4 (resp.
xp) is fresh for a context I' (I'-fresh for short) if z; and x4 (resp. z,) do not occur in T

e The variable z, is complete for a term v if z4,2, € FV (u). It is fresh for a context I if s,
zq and z, do not occur in I'.

Whenever a substitution u[v/z] is performed we require that the variable z is complete for .
To avoid the problems shown in [13], S-reduction is restricted to o-normal forms. It is defined
as the least compatible relation on g-normal forms that contains the g-rules:

(Azq:Ab)a —p bla/z4]
(Azp:P.p)q —p  pla/zp]
(Azs:St)s  —p  t[s/xs]

Definition 3.2. A Pure Type System with Ultra X-types (PTSp, or X-PTSp,) is defined as a
Pure Type System with 3-types extended with the rules shown in Figure 4.

For our second extension of Pure Type Systems, we replace the Y-type by the same pair
constructor used at the level of objects. We use the same notation of pairs for types and objects,
i.e. we write Xz:A.P =%f (A Az:A.P). The o-reduction and the typing rules are slightly diffferent.
In Figure 5 we show the o-reduction when Pairs are used. For the second extension the property
which allows to do program extraction is stronger than for the first one: the reduction relation —,
performs the task of splitting any spec-pseudoterm into a pair. This is because the assumption
for spec-variables can be made stronger: we can associate a pair (z4,%p) to any spec-variable z.
As above, in order to avoid the problems mentioned in [13], we restrict -reduction to o-normal
forms.
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Figure 6: Typing rules using only the pair constructor

Definition 3.3. Let S = (S, 4, R, R') where S is a set of sorts, 4 C S x S is a set of axioms,
R C S xS xS is a set of rules for the product and R’ C S x S x S is a set of rules for the
pair constructor. The notion of Pure Type System extended with Pairs (PTSg, or P-PTSg,) is
inductively defined by adding the rules in Figure 6 to the rules of Pure Type Systems.

4 Systems with Ultra X-types and Pairs
In this section we present examples of Pure Type Systems with Ultra X-types and Pairs.

4.1 Ultra ¥ in Martin-L6f’s Type Theory

Martin Lof’s Type Theory can be coded in a PTSg called AP. Similarly, the Theory of Specifica-

tions of [14] — based on Martin Lof’s Type Theory — can be coded in a PTSg, whose specification
is, essentially three copies of AP:

Sorts S  ka Kxp K Og Op DOs
Axioms A *d, Od) (*p; Dp) (s, Os)
Rules for I R

*d, O )

(
(%uyky) (ky,04) for u,v € {d,p,s}
(
(*d:*pa*s)

Rules for ¥ R/

In order to obtain the full theory of [14] we also have to add several distinguished variables?
with the following type declarations to the context:

data:xq prog:data — xq
Drop : x,  proof: prop — x,
spec: xs impl: spec — %

We also have to add a o-reduction rule for spec and impl.
spec —, Xx:data.(progz) — prop
impl (a,p) — Xy:(proga).proofpy)

On the other hand, the Theory of Specifications of [14] is more restrictive than this Pure Type
System. The derivations I' - 4 : U in this Pure Type System should be restricted as follows: 2

2Note that these are constants, but in Pure Type Systems constants are treated as variables.
3These restrictions are similar to the ones that apply to the codification of Martin L&f’s Type Theory in AP.



1. The only spec-variables zs : S : Os that occur in the context T' are spec : *s and impl :
Spec — *s.

2. In the derivation of I' F u : U, there are no abstractions Az:U.v of type Ilz:U.V formed with
the rules (%q,4), (*p, Op) OF (%s,s). Hence there are no f-redexes ((Az:U.v) u) formed in
this way.

Since the Theory of Specifications of [14] uses two different constructors, one pair constructor
for types and another for objects 4, it is more appropiate to model this theory as a particular Pure
Type System with Ultra ¥-types rather than a Pure Type System with Pairs. In [14] there is a
presentation of a subset of the theory as a PTS but it lacks a notion of pairs.

The following result is the main property of the Theory of Specifications: the g-normal form is
a mapping from the Theory of Specification into a system called Verification Calculus (VC). VC
is a PTSg obtained from the specification defined above by removing the spec-sorts (xs and Os)
and the product rule (p, *q).

Theorem 4.1. (Program extraction). Assume I' F w:U satisfies the two restrictions mentioned
above.

1. If T'F w:U:ikq or I' b w:U:x, then, nf,(T) Fye nfe(uw):nf, (U).

2. If T'F u:U:xs then nf, (U)=Xxz:A.P, nf,(u)={(a,p),
nf,(T) Fve a:A and nf,(T') Fyve p:Pla/z].

This is proved by induction on the derivation.

4.2 Pairs in the Calculus of Constructions

The Theory of Specifications of [15, 5] is a PTSg, whose specification is defined as follows:

Sorts S  xd K * forieN
Axioms A (*d *d'+1) (kp s 4pt1) (s, %st1)  forie N
Rules for IT R (% v) fori<jorj=0 and u,ve {d,p,s}
Rules for Pair R’ (xd',%p,%s) forie N

In order to obtain the full Theory of Specifications [15] we also have to add o-rules for spec-
sorts: _ _ _ _
*s' =5 {*kd', ATikg'.T = *p')

The Verification Calculus (VC) is a PTSg obtained from the specification defined above by remov-
ing the spec-sorts (xs') and the product rules (,',%4’). The following theorem, which is proved
by induction on the derivation, states the main property of this system (similar to the one in the
previous section).

Theorem 4.2. (Program extraction). Let I' - u:U.
1. If u is a data or prop-pseudoterm then, nf, (T") Fy ¢ nf, (u):nf, (U).

2. If u is a spec-pseudoterm then nf,(U) = (4, P), nf,(u) = {a,p), nf,(T) Fyc a:A and
nf,(T) Fye p:Pa.

In [5] we show that the Theory of Specifications based on the Calculus of Constructions satis-
fies subject reduction and strong normalization when we restrict S-reduction to o-normal forms.
Counterexamples to subject reduction and strong normalization when f-reduction is not restricted
are shown in [13].

4Hence distributivity of the abstraction and application is defined only on objects pairs.



4.3 Realizability interpretations for program extraction

In Coq until version 6.3 [1] the extraction procedure has been performed by means of an exter-
nal function based on realizability interpretations [11, 10]. In [10] data types, propositions and
specifications are distinguished with the sorts Data, Prop and Spec. They belong to the universes
dType and Type. In the following specification we will shorten the names of the sorts. The system
in [10] can be described as a PTSga, with the following specification:

S Xk xp K Og O

A (%a,04) (5,8) (x,0)

R (k‘l,kg) for k1 € {*d; I:Id},kz S {*p,*s, l:l}
(klakQ) fOI' kl; k2 S {*p:*sa D}
(*pa*d)

R’ (*d,*p,*s)

Since the o-reduction introduces some intermediate steps that were not present in the descrip-
tion of [10], we had to include the rule (xp,*q) in the above specification which was not present
in the rules of [10]. Note that the rules for E-types are different from Coq. A ¥-type does not
belong to x4 but to *s.

The distinction between data-pseudoterms, prop-pseudoterms and spec-pseudoterms is also
made in [10]. Prop-pseudoterms are called non-informative terms and spec-pseudoterms are called
informative terms. Though in this system O, is identified with O, the distinction made at
syntactical level allows us to deduce the one at type level: if a kind is a prop-pseudoterm, then it
should have type O, and if the kind is a spec-pseudoterm, then it should have type Os. Hence, in
both approaches the distinction between data types, propositions and specifications is necessary.

The system in [10] lacks the o-conversion rule and the process of program extraction is described
by two external functions £ and R that compute the normal form of the o-reduction. The o-
reduction extends £ and R to type systems beyond Fw and CC [15]. On one hand the definition
of o-reduction is short and elegant. On the other hand it introduces new intermediate steps in the
process of program extraction. An inhabitant s of a specification needs several steps of o-reduction
to reach the normal form (£(s),R(s)).

The extraction procedure in Coq version 7 [16] is also based on a reduction relation. There is one
important difference: in all versions of Coq so far the extracted program is given in a programming
language (ML) which is not part of the system whereas a PTSg, unifies the programming language
and the logic.

In [4] realizability is expressed by means of a judgement relation. Though this judgement inter-
nalizes realizability in the system, the type of a realizer is still defined by an external function 7.
A rule called “type extraction” which states that any realizer is typable has to be added to obtain
a system where provability and Kreisel’s modified realizability coincide. This rule connects the
judgement of realizability with the external function 7. Using Ultra X-types the type extraction
rule is derivable and expressed as: if s : Xz:A.P then s—»,{a,p) and the realizer a of P has type
A (Theorem 4.1).

4.4 Specifications, Deliverables, Data Refinement

In LEGO [8, 17] a specification mechanism is implemented based on a pair of a type and a predicate
over it [2, 9, 7]. The set of all specifications is described by an existential type in ECC [6], and
a specification is a pair, but there are no objects of type pair. In this sense, this system can be
thought of as a PTS with X types.

This notion of specification is used in [7] to formalize a method of program development by
stepwise refinement in type theory, and it is used in [2, 9] to define a method of program extraction
using the notion of deliverables. In [2, 9] a category is considered whose objects are specifications
and morphisms are first order deliverables.

A subsystem of ECC is described as a PTS with ¥-types whose specification is given below:



x forie N

(+,+*t1)  forie N

(x,%,%")  with n = maz{i,j} and j # 0, or
j=0and n=0

R’ (x,#,%") for n = max{i,j}.

An O

In [6], the sort prop for propositions corresponds to «° and the sorts Type’ corresponds to x**1.
We recall the notion of specification and deliverable given in [2]:

Definition 4.3. A specification is a ‘pair’ (A, P) consisting of a type A : ¥t1 and a function
P: A0,

Hence, a specification in [2] provides information for the formation of the ¥-type. In our
approach, the notion of specification is more general, i.e. it is defined as any spec-pseudoterm
of type %s or xs. For instance Ilz:Nat.(A, P) is a specification even though it starts with a II
constructor.

Definition 4.4. Let S = (A,P), T = (B,Q) and U = (C, R) be specifications 5.

1. A first order deliverable (i.e. a morphism between the specifications S and T') is a term
typable in ECC with the type Del; S T =X f:(A — B).llz:A.(Pz) — Q (f x).

2. A second order deliverable is a term typable in ECC of type
Del, STU=%f:A— B— Cllx:A((Pz) » Iy:B.(Qy) —» R(fzy)).

Using Ultra ¥-types or Pairs, there is no need to distinguish between first and second order
deliverables. Morphisms between specifications are written using the IT and A of the inner lambda
calculus. We use the type IIx:S.T to express the function space between the specifications S and
T where T' may depend on S. First order deliverables do not allow this dependency and hence
in [2] the notion of second order deliverables has to be introduced. The types of first and second
order deliverables are g-normal forms of some particular functions between specifications:

Theorem 4.5. Let S=(A,P), T =(B,Q) and U =(C,R).
1. The o-normal form of (S — T') is Dely S T, exactly the type of first order deliverables.

2. The type Dels S T' U of second order deliverables is the g-normal form of an instance of the
higher order type IIz:S.(Ily:T.U) where S, T and U are dependent specifications.

In a system with Ultra Y-types or Pairs we use the A-abstraction to express functionality
between specifications, the identity and composition are defined by the usual A-terms whose o-
normal forms coincide with the identity and composition of first order deliverables.

Theorem 4.6.

1. The identity of first order deliverables is the o-normal form of the identity in lambda calculus,
ie. Ax:S.x.

2. The composition of first order order deliverables is the o-normal form of the composition in
lambda calculus, i.e. Af:S = T Ag:T — R.\z:S.f(gx).

The refinement maps used in [7] to implement a specification can also be given as terms in
our PTS with Ultra X or with Pairs. We can reformulate data refinement in a more uniform
way using Pairs as follows. Let S,T be specifications, S =, (A, P):(%d, AZ:%q.Z = *p)ixs, T =,
(B, Q):(*d, AT:xg.x — *p):%s. We recall that a refinement map is a function p:A — B satisfying
the condition Ilz:A.Px — Q(pz). We can write the type S — T in a PTSg, with Pairs, and

5In our notation these specifications are written as S = (A, P), T = (B,Q) and U = (C, R).




compute its o-normal form, which is a pair (4 — B, Ap:A — B.Ilz:A.Px — Q(pz)). The notion
of refinement map and implementation is therefore completely internalized in our system, and
o-reduction can be used to compute the satisfaction condition associated to a refinement map.

Here we repeat the comment on page 162 of [12]. Manipulating the Pairs inside ECC using X-
types does not impose restrictions on the shape of programs and specifications. The system ECC
does not separate the worlds of data-types, propositions and specifications. In particular programs
may contain logical parts which are not erased and specifications could be used as data-types. The
systems with Pairs have an essential property on specifications which makes program extraction
always possible: An inhabitant of a specification always reduces to a pair whose first component
does not contain logical parts in it. (See Theorem 4.1). The deliverables of [2] do not have this
property. A first order deliverable is an inhabitant in ECC of a ¥-type. Hence a deliverable may
or may not be a pair. In case it is a pair the first component may contain logical parts which the
system ECC cannot erase.

4.5 Programming logic Awr,

The programming logic Awy, of [12] (page 38) is defined as a Pure Type System with the following
specification:

*d *p Od Od

(*d;Dd) (*PJDP)

(kd,*d) (*ps*p) (%d,*p)

EDda*dg (Op, *p) (Od,*p)  (Og,04) (Op,Op) (Od, Op)
*d:

=P

In [12] the names % and Os are used instead of x4 and Og.

In A\wy, specifications are always Pairs (o-normal forms) which get manipulated at the meta-
level. The logic Awr, consists of derivation rules given in pairs — called coupled derivation rules —
in order to construct both components simultaneously. For each constructor a couple of derivation
rules is given: one for the program-part and one for the proof-part.

The notion of specification of [12] can be made explicit in the syntax using the pair constructor.
A pair of rules of Awy, is coded as only one rule between specifications in our system. The reduction
relation o captures the properties of the relation between each constructor and the pair. The o-
normal form applied to the premises and conclusions of a rule in our system gives a rule between
Pairs that codes the pair of rules (the coupled derivation rules) in Awy.

The specification of the Pure Type System with Pairs that codes the system Awp of [12] is
given below.

S xq *p *xs Og Og Os

A (xd;0d) (*p,Op) (k5 Os)

R (*u,*) foru,ve{d,p,s}
EDda*dg (Op,*p)  (Ods*p) (Odrkxs) (O, Oa)  (Op,Op)  (Od, Op)
* )

R! (*:,*p,*s)

The product, abstraction and application rules instantiated with the set of rules (xs,*s) and
(O4, *s) code the coupled derivation rules on pages 45-48 of [12]. As an example we show the
coupled derivation rules for the product formed with (xs,+s) and how to code them as only one
rule in our system. The coupled derivation rules for functions formed with (x4,*4) given on page
46 of [12] are the pair of rules:

@) LA B THP:A—+ THQA—- B
T'HA— Bikg T'FR:(A— B) — %

where R is the propositional function Af:A — B.Ilzg:A.(P z4) = Qzq (f x4).
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The conclusions of these two rules are put together into a pair of type xs:
T'F{(A— B,\A\f:A— B.(Rf))*s

This pair is the o-normal form of the product Ilz::S.T formed with the rule (%s,*s) where
S = (A,P) and T = (B, \xq:B.Qz4(f z4)). The type of that product is typable using the
product rule instantiated with (xs,%s), i.e.

) TESx T,zs:8F Tixg
T Iy :5.T %

Applying the o-normal form to each judgement of (2) we obtain a derived rule between Pairs
which codes the coupled derivation rules (1).

The o-normal forms are a mapping from the PTSg, defined above into Awr. Hence “the
Verification Calculus of Poll’s system” is exactly Awr (without coupled derivation rules). We have
to add an extra rule of o-reduction for spec-variables: z;—,{zq,zp). Moreover we add typing
rules to be able to deduce that z, : %5 if and only if z4 : x4 and zp, : T4 = *;.

Theorem 4.7. (Program extraction). Let I' - w:U.

1. If u is a data or prop-pseudoterm then, nf,(T") k., nf,(u):nf,(U).

2. If u is a spec-pseudoterm then nf, (U)=(A4, P), nf,(u)={a, p),
nf,(T) Faw, a:A and nf,(T) by, p:Pa.

This is proved by induction on the derivation.

5 Axioms of Choice and Independence of Premisses

In this section we present another application of PTSs with Pairs: the derivation of logical axioms.
Both the Axiom of Choice (AC) and Independence of Premises (IP) are derivable in this formalism.
Again we abbreviate $z:A.P =%f (4 A2:A.P) : x,. AC is trivially deduced since it is given by a
o-reduction rule:

z:A.Xz:B.P—,Yf:1lx:A.BIlx:A.P (f z)

The axiom IP [4] is expressed as S — T where S = (P - X2:4.Qz) and T = Yz:A.(P = Q ).
We show that S—»,T. Using this we can trivially deduce that S — T is inhabited.

S=(P->X:AQzx) —, Xf:(P— A).(Iz:P.Q(fx))
—», Xf:A(Oz:P.Qf)
= XBAP->Qz)=T

If S is typable then S — S is inhabited by the identity. Since S =, T, applying conversion rule,
we conclude that the identity has also type S — T'. Hence the axiom IP is derivable using Ultra
Y-types. Note that the assumption in [4] that P is Harrop (or “self-realized” or “inhabited”) is
not needed because we have the possibility of erasing P.

The axiom of IP is not derivable in Martin L6f’s Type Theory but it is (Kreisel modified)
realizable for any Harrop formula P. This shows that the Theory of Specifications of [14] is not
conservative over Martin Lof’s Type Theory. This observation is not surprising. Conservativity
holds over the Verification Calculus where data types and propositions are not identified.

As a last remark, note that (False = Xz:Empty.Q z) is not derivable in a PTSg,. ¢(From
the proposition False, we can derive any proposition but we cannot derive a specification like
Yx:Empty.@Q x. This shows that specifications do not behave like propositions.
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6

Conclusions

We have shown that o-reduction is a way of describing the process of extracting a program which
is independent of the typed lambda calculus we choose. An obvious conclusion from this paper
is that any program that can be extracted from a proof of its specification using LEGO [2] or
Coq [10] can also be extracted using o-reduction. It will be interesting to find an example of
program extraction that can be handled by o-reduction but cannot be done in LEGO or Coq.
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