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Abstract 
Imagistic domains require from the problem-solver the ability of applying primarily visual recognition of objects, 
and only secondarily search and analytical methods in order to interpret these objects. Most of the time, the visual 
recognition process is developed at the sensorial level and has no related conceptualisations. This work explores the 
use of ontologies and introduces the concept of visual chunk, as a modelling primitive applied to elicit and represent 
visual objects in complex domains. A problem-solving method is defined to describe the reasoning process of object 
recognition and interpretation. Based on this method, a full knowledge system application was developed and is 
being used to support the interpretation of sedimentary rocks through petrographic analysis.  
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1 Introduction 
Imagistic domains [1] can be described as a set of activities in which the solution of some task depends on the 
recognition of visual stimuli through the environment, which is then applied to support the problem-solving method 
in some abstract cognitive level.  Traditional examples of this kind of domain include satellite image interpretation, 
X-ray and other medical image interpretation, fault detection in industrial products and most of the tasks related with 
Geology. 

Solving problem in such domains is a two-stage process. The first stage refers to the collection of relevant evidence 
through the domain. Although this process can be related to the sensorial level, the recognition and selection of 
relevant evidence are not only a pattern recognition operation. As first demonstrated by De Groot [2] with chess 
experiments, and later on confirmed by many other investigators, [3-5] the collection of visual evidences is a 
symbolic process supported by knowledge about the domain. Indeed, a person cannot see what he/she does not 
know. 

The collection of evidence starts with the recognition of geometric patterns in the domain at the low level visual 
system. These patterns are decomposed and combined in many different forms (applying the aptitude that was called 
by Sternberg [6] creative ability) in order to match with some previously known object stored in the memory. This 
matching is not a pattern matching (in the sense that is not a geometric correlation of features) but a sort of 
conceptual matching. 

During the problem examination, an abstract representation of objects in the domain is extracted from the image and 
compared with the internal representation of the same kind of objects. These cognitive structures have no conceptual 
translation (i.e. they have no name) and are part of the expert tacit knowledge, which are hardly extracted using 
traditional knowledge acquisition techniques [7]. The low level abstraction of geometric stimuli combinations, 
which we call here visual chunk, is a fundamental support of the inference process in imagistic domains.  The 
importance of visual chunks in the image interpretation was recognized through a study carried out with 19 
geologists in three different phases, described in [8]. Consistently, the novices applied the names and proportion of 
simplified domain concepts, while the experts described the image using interpreted features. The experiment was 
reproduced with the diagnosis of plant diseases in agriculture, with similar results. The experts clearly recognised 
more complex features in the problem than the ones the novices reported. These features only could be seen if a 
short inference process would be developed in order to extract such meanings.  

The collection and application of visual chunks are an essential characteristic of expertise in imagistic domains, but 
the elicitation and representation of these objects are not a trivial task. The knowledge acquisition techniques are 
intended to collect and organize conceptualisations, and not tacit knowledge. Therefore, in many knowledge 
acquisition experiments, the importance and the use of sensorial chunks to support inference during the problem-
solving process are not even made evident, and the domain knowledge model results incomplete and inefficient.  

This paper describes an approach to externalise (with the meaning of transforming tacit knowledge in explicit 
knowledge) [9] and represent visual chunks using cases and the ontology of the domain, to fill the gap between the 
tacit and explicit knowledge. It also formalizes the problem-solving method, which describes the interpretation 
process supported by visual chunks and domain knowledge.  Finally, it describes a symbolic algorithm to support 
interpretation of sedimentary rocks in the domain of Petrography, which demonstrates the viability of the proposal. 

2 Visual Knowledge Modelling 
A combination of case analysis and ontologies has shown to be a powerful knowledge acquisition approach to 
externalise the tacit knowledge, represented by visual chunks and their relation with the desired interpretations in 
image-based reasoning applications. Cases are representative of the kind of problems that are needed to be solved in 
the domain and, also, allow a fast comprehension about the types of information used to support the problem-
solving methods. This information is structured through an ontology, that is, a formal and explicit specification of a 
shared conceptualisation [10], applied to formally describe the concepts and relationships that can exist in the 
domain.  

The knowledge modelling approach for image-based reasoning applications proposed in this work starts with a case-
based analysis. A set of case descriptions (for example, some medical report or rock description) is analysed to 
identify which domain concepts are used by experts in describing images. These symbolic concepts can be 
confronted with the vocabulary extracted from the experts through knowledge acquisition techniques, and a final set 
of selected concepts is defined, which are revised by the expert. Therefore, this knowledge modelling view makes 
use of a symbolic approach of image description and interpretation, as opposed to the numeric approaches oriented 
by geometric feature-based image representations. The ontology of the image-based domain can be firstly proposed 
from this set of concepts.   
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The approach suggests that the cases shall be used to guide the interviews with the expert in order to identify the 
reasoning process developed in the image-based interpretation tasks. The expert is requested to indicate, in the 
image descriptions, which concepts identify the domain features that support the interpretation described in the 
solution part of the case. This procedure makes evident when the ontology does not include the description of the 
relevant features, and allows the expert to define and include the concepts that describe the visual chunks that he 
could ascribe to the image. In our work, we concluded that there is a relevant gap that must be treated between the 
information that is described and the one that really supports inference (Figure 1). 

Sandstones are the most important sedimentary rocks as petroleum reservoirs and water aquifers, and therefore their 
petrographic description and interpretation can be considered as a mature domain, such as clinical analysis or 
Medicine. This maturity was achieved through the formalisation of an extensive technical vocabulary and a 
methodology to develop descriptions of the problems in the domain. The technical vocabulary is intended to allow 
the communication within the domain, independently of the level of expertise of the agents involved in problem 
solving, and moreover describes the domain in terms of geometric objects, or explicitly known features. These 
objects comprise partially or totally the sensorial chunks applied for inference. For these domains, it is possible to 
elicit the relationship between the concepts in the ontology and the cognitive objects applied for inference. We 
propose that the explicit establishment of this problem-solving assumption can enable the development of reasoning 
mechanisms in real cases of image-based interpretations. 

In this project, in order to adapt the relationship between the domain ontology and visual chunks employed in the 
effective reasoning process, we propose the use of a formalism of knowledge acquisition and graphic representation, 
called knowledge graphs (or K-graphs) [11]. A K-graph is a AND/OR tree in which: 

•  the root node represents the interpretation hypothesis; 

•  the leaf nodes represent the visual chunks pointed by the experts in the image, as the evidence to support the 
conclusion. These nodes are ordered by their influence in defining inference and can be combined (i.e., 
considered together) to increase these influences and the certainty of the interpretation achieved.  

This resource is used to identify any eventual gap between the leaves of the K-graphs and the previous defined 
ontology (Figure 1a): 

In a further stage, the expert can be invited to fill the gap, defining the relationship between each of the evidences 
described in the K-graphs and the concepts of the ontology, creating a third level of nodes formed also by AND/OR 
trees. This third level describes how the concepts of ontology are combined to compose the evidence (Figure 1b), 
representing an explicit adaptation process required to the modelling process. When necessary, new concepts can be 
included and the evidence can also be nominated. This approach allows us to introduce the visual chunks as a new 
abstract concept type, defined as an aggregation of geometric features described into the domain ontology. 

Figure 1. Filling the gap between the information that is described and the one that really supports inference  

This approach was validated in the domain of Petrography, where we carried on a set of experiments to acquire 
cases, as well as the ontology and visual chunks applied for image-based rock interpretation. 25 full rock 
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descriptions (which qualified around 130 attributes of the rock samples) were analysed to identify the domain 
concepts employed by geologists in petrographic descriptions. These domain concepts were confronted with the 
vocabulary extracted through interviews, protocol analysis and classification techniques with the experts. A final 
step of reviewing the selected rock concepts was developed with the petrology expert. According to the oil reservoir 
interpretation task, the domain ontology was organised in a part-of hierarchy with the structure recognised in the 
studied cases.  

The rock description cases available are used to guide the interviews with the petrology expert in order to summarise 
the reasoning process developed in the rock interpretation of sandstones and to fill the gap between the concepts 
described into the ontology and the geological features related with each interpretation.  

The recognition of visual chunk as a cognitive resource to support inference strongly influences the way in which 
imagistic domains should be analysed during the knowledge engineering process. We proposed here a formal tool to 
identify and externalise these objects, in order to make their role in the inference process clear. The next section 
describes how these concepts are formalised in the knowledge models [12]. 

3 The Knowledge Specification 
This project was developed with special attention to a structure-preserving design issue, following the guidelines of 
CommonKADS methodology, [12], which means that information content and structure present in the knowledge 
model are preserved in the final architecture of knowledge system (KS). The visual knowledge was acquired and 
represented in the knowledge level, [13] which specifies in detail the domain concepts applied to support 
interpretation. The implementation level allows describing how this concepts and interpretation are related to 
software components. 

3.1 The Domain Knowledge 

The domain schema is a description of the abstract concepts and relationships in a domain.  The instances, by their 
side, can be expressed as tuples of concept-attribute-values or any logical combination of concept-attribute-values 
(CAV), which are, in this work, called terms of the domain (or domain expressions). 

We propose that a domain schema to represent visual knowledge can be organized through three conceptual types: 

•  Concept: describes the objects that occur in the application domain. The characteristics of one concept are 
defined through a set of attributes and restrictions imposed to the values of the attributes.   

•  Relation: defines how concepts are organized to form the domain hierarchy and some special defined relations 
among concepts that support inference.   

•  K-graph: expresses the relation between instances of visual knowledge concepts and the possible image 
interpretations modelled [13].  

K-graphs applied to visual knowledge modelling can play the role of the rule-type in defining the inference paths of 
the problem-solving process.  They can be built as an AND/OR tree, where the root represents the interpretation and 
the leaves are instances of visual chunks. A set of weights also must be assigned to each chunk using some numeric 
scale according to inference requirements. A weight means the relevance of the chunk to the interpretation in some 
image-based reasoning domain, but other type of relevance criteria also can be employed to represent knowledge 
about uncertainty.  

The way that K-graphs are applied is not implicit in the knowledge representation. K-graphs just represent how 
much each feature influences the choice of that interpretation as a solution for the reasoning problem. These K-
graphs indeed define all the possible routes of the inference in the KS. 

Visual chunks are visual knowledge concepts described in the model as a logical combination of domain instances 
indicated by the expert, and each instance representing a term of domain. This concept has the fundamental role in 
this image-based reasoning model, of mapping (or adapting) the expert level knowledge (the tacit knowledge 
expressed as visual chunk) to a novice level of knowledge, represented by the simplified (or geometric) domain 
concepts.  Chunks also allow applying the expert level inference over a problem described in novice or intermediate 
level of expertise by users.  

The logical combination of simplified domain concepts which builds a visual chunk can be described as an 
AND/OR tree. According with this AND/OR tree approach of knowledge modelling, a set of visual features that 
must be found in the image is grouped together with an AND operator, forming an AND domain expression. In 
contrast, an expression grouped by an OR operator means that at least one visual knowledge concept of the group 
needs to be found in the image.  
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In the petrographic domain, the K-graphs that describe rock interpretation represent the relation between instances 
of geological features and possible rock interpretations. The visual chunks were modelled with terms of the domain 
described as a logical combination of instances of geological features, easily recognised by an intermediate level 
petrographer and described through geometric aspects (color, size, texture). These features are modelled as domain 
concepts. The Figure 2 shows an example of a visual chunk in the petrographic application called Dissolution. This 
chunk is composed by domain concepts such as  

Macroporosity with Location = Intersticial AND Macroporosity with (Paragenetic 
Relation = Dissolution of Fe-Calcite) OR (Paragenetic Relation = Dissolution of 
Fe-Dolomote/Ankerite) OR (Paragenetic Relation = Dissolution of Siderite). 

The rock interpretation K-graphs make explicit the inference paths of the rock interpretation process, where the root 
represents the rock interpretation and the leaves are AND/OR trees of visual chunk instances of rock sample images. 
Weights were assigned to each rock chunk using a scale of 1 to 6, meaning the relevance of the chunk to the rock 
interpretation. Figure 2 depicts the representation of a chunk nominated by the expert as Dissolution, which is part 
of the K-graph called Telodiagenesis Under Meteoric Conditions, and influences this conclusion with weight 3, 
along with four other chunks, with, respectively, weights 5, 5, 5 and 3.   

 

 

 

Figure 2. A simplified visual chunk built as a logical combination of geological domain concepts  

Each rock interpretation represented by a K-graph is associated with a threshold value, which indicates the 
minimum amount of evidences that someone needs to find out in the problem, in order to suggest with some 
confidence that a suggested interpretation is correct. The threshold and values for chunks was extracted in two 
phases of knowledge acquisition: the first phase was necessary to define some “scale” where the expert could 
express his feelings about confidence and influence, and a second phase where the scale was filled with thresholds 
and weights. A diagenetic environment imprints their characteristics on the rock in more than one aspect, and so the 
more aspects are found in the rock sample image, the most probably the interpretation is correct. That assumption 
can be assumed for many visual knowledge domains. Although there were some initial differences among the 
thresholds defined for each interpretation, the expert considered acceptable to this domain to define a standard value 
of 6 for all K-graphs in that scale of chunks, which leads to find at least two chunks or more to indicate a single 
interpretation. 

K-graphs associated with ontologies, extracted from cases, are efficient and potentially reusable tools to acquire and 
model visual knowledge in complex domains. The more mature the domain is in developing a shared description 
vocabulary, the more useful will be a tool like this in extracting tacit knowledge.  Our model is built with 26 abstract 
concepts, 6 distinct relation (where part-of is the structural relationship) and 6 K-graphs, which refer 33 chunks. 113 
different attributes with respective domains are defined to characterize the full set of concepts.   

3.2 The Problem-Solving Method 

The identification of human reasoning strategies applied in the image-based interpretation is not a trivial task, even 
after identifying which relation (such as those represented in K-graphs) defines the paths of inference. In tasks that 
apply visual knowledge, some cognitive skills that support the reasoning simply cannot be reproduced and still 
remain not understood [14]. However, a rationalization of the tacit visual knowledge used by the expert can be 
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proposed as a model, in the knowledge level [15], structuring the main concepts of the usable and effective inference 
methods required to KS development. 

According to [8], the skill involved in the image-based reasoning development of interpretation tasks can be 
understood as the matching of visual chunks, which allows the selection of special regions of the mental schema that 
will be examined by analytical methods. The initial chunk matching is fundamental to select a possible 
interpretation by the expert. 

According to this rational analysis of the interpretation process, the expert conducts a visual analysis of the image, 
picking up a set of sensorial stimuli from a part of the image. At the same time, he/she identifies from the set of 
known visual chunks those that can be associated with the particular kind of analyzed image. The image is 
successively compared to each of the visual chunks, until the whole image was examined and the interpretations 
indexed by chunks were selected. Further process of validation chooses one as the most probably correct 
interpretation to the image. This human reasoning rationalization can be modelled as a problem-solving method 
(PSM). 

A PSM describes the use of knowledge and data required for an inference process in a more abstract and structured 
way [16]. These methods are abstract models of inference processes applied in solving a particular class of problem, 
[17] such as diagnosis, classification or configuration. In our work, we propose the visual interpretation PSM which 
models the sequence of inference steps and the knowledge roles and data required during the reasoning process in a 
KS. Figure 3 presents the inference structure of the visual interpretation PSM, represented in CommonKADS 
formalism [12]. 

A possible sequence of the reasoning shown in the Figure 3 starts with a case description, provided by the user and 
further decomposed in the related concept-attribute-value (CAV). A set of CAV is selected from the visual chunks, 
according to the K-graph which is being analyzed first. The similarity between both patterns is evaluated. The value 
is compared to the threshold associated with the K-graph that is being analysed. If the value is above the threshold, 
the present K-graph will be validated and it will specify the interpretation. The inference is repeated while there are 
chunks and K-graphs to be analysed.  

In the petrographic domain, the visual interpretation PSM is applied to suggest a diagenetic interpretation (i.e., 
explain the process of post-depositional evolution and consolidation) of sandstones from the visual geologic features 
described by an intermediate level petrographer. In [18] it has been shown the competence, operational description 
and requirements/assumptions that define a visual interpretation PSM usable in the petrographic domain, but also 
reusable in other application domains. 

Figure 3. The visual interpretation PSM 

4 A Knowledge and Data Inference Algorithm for Rock Interpretation 
In order to present a practical validation of the visual interpretation PSM, an inference component for rock 
interpretation task was developed and integrated to an intelligent database application called PetroGrapher. The 
system was developed to manage knowledge and data resulting of petrographic descriptions of oil reservoir rocks. 
The interpretation mechanism consists of a symbolic inference algorithm that reproduces the reasoning of the expert, 
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keeping the structural correspondence with the knowledge level rationalization of this image-based reasoning 
process.  

The task is fully supported by the petrographic ontology, which is dynamically managed by an application-oriented 
interface. This interface provides the user with the technical vocabulary (in the intermediate level) of visual rock 
features, thus supporting the correct and complete description of a rock sample. When the rock sample description is 
accomplished, the data about the rock sample is stored in the application database, and the user can initiate the 
inference process. The application database keeps the user instances of ontological concepts, while knowledge 
database stores the knowledge instances and their association with solutions, that is, the K-graphs. The interpretation 
algorithm collates the K-graphs on the stored rock sample data in the database, trying to validate one of the 
modelled interpretations. 

The inference algorithm retrieves the K-graphs about rock interpretation from the knowledge database1 to a working 
memory. Once in the working memory, each K-graph is selected and decomposed in rock chunks. Then, one chunk 
is selected for matching. This selected chunk is decomposed in its geological features, adjusting the information 
granularity to the data described in the rock sample. The rock features are searched as required in the modelled 
domain expressions: if the algorithm fetches a set of evidences grouped by an AND operator, it must find all the 
features in the application database, in contrast of fetching a set grouped by an OR. 

A chunk is validated (or activated) when all its domain expressions are found in the description. If the sum of 
weights of the whole set of activated chunks is greater than the K-graph threshold, the rock interpretation associated 
with the K-graph is confirmed. The algorithm will try for alternative interpretations until there were no more 
description data to be compared. Since that a rock can be subjected to more than one diagenetic environment during 
its formation, the inference process can find more than one interpretation. In order to justify the conclusion reached 
for the user, the algorithm stores the knowledge and data paths examined to achieve the interpretation.  

The algorithm was validated using a set of cases described by an expert petrologist. Besides, the expert had analysed 
the inference path to adjust the weights and thresholds of the chunks and K-graphs. The efficiency of the inference 
mechanism is limited by the user capacity to recognise and describe the diagnostic features in the sample under 
analysis. Non-expert geologists may not be able to recognise specific diagnostic rock features, therefore limiting the 
applicability of this inference algorithm. The system is now being submitted to this test, so it is not clear how the 
degree of expertise can influence in the capacity of getting interpretation. Even so, according to the expert, any 
suggestion of correctly derived interpretation is a useful insight for such a complex task as the interpretation of oil 
reservoir rocks. 

5 Conclusions 
The study of expert skills in an imagistic domain has demonstrated that experts develop a variety of representations 
for the visual objects in the domain. One of these representations has shown to be directly related to the high level of 
expertise: the visual chunk. A visual chunk is an abstraction of a set of sensorial stimuli, which are seeing repeatedly 
in the domain, associated with some special solution or interpretation, and represented in the mental schema of the 
expert. Since their first definition in chess representations [2], visual chunks have been recognised in many different 
image-based reasoning domains [7]. Visual chunks play an important role in guiding the inference process, by 
holding links with the internal mental schema of knowledge. 

The visual chunk was proposed in this project as the primitive for representing the tacit knowledge effectively 
applied in the image-based interpretation.  The domain ontology extracted from the case analysis does not contain 
these concepts, since they are not used in the normal transference of explicit knowledge. The representation of 
visual chunks has the important role of filling the gap between the intermediate knowledge level described into the 
ontology and the expert knowledge applied in the inference.   

The chunks are modelled as an aggregation of concepts previously described in the ontology. In the other hand, they 
are associated to the solution through knowledge graphs, which allow considering the individual influence of 
specific chunks in suggesting the interpretation. 

The combination of ontology, chunks and K-graphs is explored by a PSM, which models the successive attempts 
over the declarative knowledge to search for a reasonable interpretation for the user case.  

The association of K-graphs and case analysis has shown to be a practical and effective tool to externalise and 
acquire the declarative knowledge represented as concepts of ontology and causal relations of the domain. These 
concepts and relations were not evident in elicitation sessions conducted on a traditional knowledge-acquisition 
basis.  The approach is reusable in any well-structured domain which demands image-based interpretation. 

The domain model, in this work, expresses the knowledge over two levels: the externalisation level, which describes 
the concepts at an intermediate (between novice and expert) stage of expertise; and the expertise level, which 
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models the tacit knowledge of the expert. A set of formal modelling tools was proposed to support the knowledge 
acquisition and the inference in some image-based domain. Finally, to demonstrate a practical application of this 
work, an application called PetroGrapher was implemented, and is being used to operationally support petrographic 
analysis. 
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