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Abstract

Network design is, in general, a combinatorial optimization problem. The minimum spanning tree (MST)

is possibly one of the simplest problems in network design. Polynomial-time algorithms have been proposed

for solving MST problem. However, other similar problems are generally NP-hard. Due to their complexity,

recent researches have proposed the use of evolutionary algorithms (EAs) to solve them. Very encouraging

results have been achieved when compared with conventional algorithms.

Nevertheless, EAs approaches still require enormous computational time when considering large-scale

network problems. The tree encoding (the data structure) for EAs is a critical factor in large systems.

In order to overcome this drawback, the authors propose a new tree representation and its related genetic

operations. The authors apply the proposed EA approach using the new encoding to solve the electrical

distribution restoration problem. The algorithm performance suggests that the contribution of the approach

is relevant.

Keywords: Main Chain Representation, Evolutionary Algorithms, Minimum Spanning Tree, Dynamic

Graphs, Distribution Systems Restoration.

1 Introduction

Many network design problems are combinatorial. The transportation problem, the telecommunication

network design, the distribution system recon�guration, the computer network restoration are some examples

[15, 11, 5, 3]. Relevant advances in the solution of network design occured after the �rst formulation of the

minimum spanning tree problem by Boruvka in 1926 [8]. At this time, he was working in the solution of

the most economical layout of a power-line network [10]. Since then, some polynomial-time algorithms for

solving MST problem were developed by Kruskal, Prim and Dijkstra [9].

However, several network design problems in the real world have some di�erences from the MST problem.

Since this problems are related to the MST, they are also called extensions of the MST. In general, the

extensions are NP-hard [8]. The degree-constrained MST, the quadratic MST, the multicriteria MST and

their correspondents for spanning forest are some examples. Due to their complexity, some researches have

recently proposed evolutionary algorithms (EAs) to solve them. Some relevant results have been achieved

compared with conventional algorithms.

Nevertheless, the EAs approaches still require enormous computational time when considering large-scale

network problems. The tree encoding (the data structure) for EAs is a critical factor in large systems. This

fact is easy to see. Consider an array of m bits where each index corresponds to an edge of a graph G

with n nodes (this representation is called edge encoding). In this encoding, a bit value indicates presence

(1) or absence (0) of an edge in a subgraph of G. Then, select randomly n + 1 edges of G (i.e., n + 1 bits

receive the value one and the remaining ones receive zero) producing the subgraph S of G. It is quite likely

that S would be not a tree, since S may not be connected or may have loops. Moreover, the probability of

producing a tree is drastically reduced as n increases. Thus, edge encoding is not an eÆcient data structure

to represent trees in EAs approaches for large-scale network design.

Other tree representations are available in the literature [8]. They can be classi�ed in three categories:

edge encoding, node encoding and edge-node encoding. Node encoding is clearly the most suitable one.

However, it has some drawbacks. The main disadvantage is that it does not possess locality, since small

changes in a representation of a tree make drastic changes in the tree.

In order to improve the EAs performance, we propose a new data structure for tree encoding. This

representation is based on graph chains. We also present the genetic operations using the new encoding to



generate new individuals (solutions).

We apply the proposed EA approach using the new tree encoding to solve the electrical distribution res-

toration. In fact, the proposed encoding also allows the representation of forests. The algorithm performance

solving the restoration problem suggests the contribution of the approach is relevant.

The next Section brie
y review some basic EAs concepts. Section 3 presents the main tree encodings

available. In Section 4, we show the proposed data structure for forest representation. Section 5 explains the

proposed genetic operations using the new encoding. In the Section 5, we present the resultant EA approach.

Section 7 considers tests with this methodology in the restoration of electrical distribution systems. Finally,

we sum up the main characteristics of the proposed approach in Section 8.

2 Evolutionary Algorithms

This Section presents an overview of EAs. These algorithms are procedures based on the theory of species

evolution [6]. The most famous EA may be the Genetic Algorithm (GA) based on the genetic principles

of crossover and mutation. The EA should have basically the following characteristics: each solution of

a problem is treated as an individual of a population (set of possible solutions). Based on criteria, some

individuals of the population are selected. From these individuals, new ones with some changes are created.

Each new individual is evaluated according to a chosen criterion. These individuals may be included in

the population depending on the results of the evaluation analysis. The old individuals may be extracted

from the population. These changes in the population produce a new population. This process of creating

individual and changing the population is repeated an arbitrary number of times. The last population is

supposed to have improved individuals (better solutions for the problem).

Each individual is computationally represented in a data structure called chromossome. The most com-

mon chromossome structure is a string of characters (for example, a string of bits). In general, an encoding

algorithm translates a solution to its chromossome form. A decoding algorithm may also be used for inter-

pretation of the chromossome meaning.

Although the optimality of the �nal solutions can not be guaranteed, this kind of methodology has shown

relevant results for optimization problems with non-linear (even discontinuous) objective functions as well

as for combinatorial problems.

The EAs can be separated in three basic categories: Evolutionary Programming (EP), Genetic Algo-

rithms (GA) and Evolutionary Strategies (ES). They are basically distinguished by the combination of some

algorithm strategies: types of population selection, genetic operators used, selection process of survivors,

and so on [6, 14, 12].

3 Tree Encoding Approaches

The tree encoding in EAs is critical for network design problems since any new generated chromossome

should correspond to a tree (Appendix A presents an overview of the main graph concepts used in this

paper). The encodings developed for representing trees can follow three di�erent approaches:

1. Edge encoding;

2. Node encoding;

3. Edge-node encoding.

An e�ective representation for a tree should possess the following encoding features [16]:

1. It should be capable of representing all possible trees and only trees;

2. It should be easy to encoding and to decoding for the �tness function evaluation;

3. It should possess locality in the sense that small changes in the representation make small changes in

the tree;

4. It should be capable of encouraging short schemata so that the population can evolve toward more �t

chromossomes;

5. It should be unbiased in the sense that all trees are equally represented, i.e. all trees should be

represented by the same number of encodings.

The next Subsections present the main characteristics of each approach for of tree representation.
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Figura 1: Examples of the tree encodings: (a) edge encoding; (b) node encoding.

3.1 Edge Encoding

Consider an array e of m bits where each index corresponds to an edge of a graph G with m edges and n

nodes. Each bit value indicates presence (1) or absence (0) of an edge in a subgraph of G. See the example

shown in Figure 1(a).

As we argued in Section 1, this encoding has low probability to obtaining a tree. Thus, the encoding

feature (1) (required for an e�ective representation, see the introduction of Section 3) is not preserved by

the edge encoding.

3.2 Node Encoding

It is possible to obtain a node encoding for trees using the Pr�ufer number [8]. Pr�ufer established an one-to-

one correspondence between each possible spanning tree of a complete graph with n nodes and each string

that can be produced with n � 2 digits. That is, we can use only n � 2 digits permutation to uniquely

represent a tree where each digit is an integer between 1 and n inclusive. Each permutation produces a

string, which is also called Pr�ufer number.

This paper will use an example (extracted from [8]) to explain how to obtain a Pr�ufer number for a

tree. Using the same example, we also show the reverse operation, i.e. how a tree can be generated from a

Pr�ufer number. The Pr�ufer number (3 3 1 1) corresponds to a spanning tree on a six-node complete graph

represented in Figure 1(b). The encoding procedure begins locating the leaf node with the smallest label. In

this case, it is node 2 (see Figure 1(b)). Since node 2 1 is adjacent to node 3 in the tree, assign 3 to the �rst

digit in the Pr�ufer number, and then remove node 2 and edge (2; 3) producing a subtree. Now, node 4 is the

leaf with the smallest label. Since node 4 is also adjacent to node 3 in the subtree, assign 3 to the second

digit in the Pr�ufer number, and then remove node 4 and edge (4; 3). Repeat the process on the resultant

subtree until the subtree has only one edge (in this case, (1; 6)) and the Pr�ufer number of this tree with four

digits is �nally produced.

Conversely, it is possible to generate the tree of Figure 1(b) from the Pr�ufer number P = (3 3 1 1). Let

P be the set of all nodes not included in P , which designates the eligible nodes for the construction of a

tree. For P = (3 3 1 1), the eligible nodes are 2, 4, 5 and 6, then P = f2; 4; 5; 6g. Node 2 is the eligible node

with the smallest label. Node 3 is the leftmost digit in P . Add edge (2; 3) to the tree, remove node 2 from

P for further consideration, and remove the leftmost digit 3 of P leaving P = (3 1 1). Node 4 is now the

eligible node with the smallest label and node 3 is now the leftmost digit in remaining P . Then add edge

(4; 3) to the tree, remove node 4 from P for further consideration, and remove digit 3 from P leaving P = (1

1). Since node 3 is now no longer in the remaining P , it become eligible and is put in P = f3; 5; 6g. Repeat

this process until P is empty and all edges have been added to the tree.

It is easy to see that one of the main drawbacks of the Pr�ufer number is its relatively little locality,

since changing even one digit of a Pr�ufer number can change the resultant tree dramatically [16]2. Another

disadvantage of the Pr�ufer number is that it may generate trees that are not spanned from a graph G if G

is not complete. The worst case occurs if G is sparse, the generation of valid trees using the Pr�ufer number

becomes unlikely. It is also important to note several network design problems do not correspond to complete

graphs.

Examples of other node encodings can be seen in [16, 1].

1Node 2 has only one node adjacent to it since node 2 is a leaf.
2In order to verify the little locality of the Pr�ufer number encoding, just increment by one the last digit of Pr�ufer number

of our example P = (3 3 1 1) producing P = (3 3 1 2). Then, generate the corresponding tree using the procedure illustrated
above.
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3.3 Edge-node Encoding

The edge-node representation requires that the chromossome hold values for each node and each edge. These

values are in the range from 0 to 255. The spanning tree corresponding to the encoding is found by running

the Prim's minimum spanning tree algorithm on a modi�ed cost matrix [16, 1]. This encoding has three

main disadvantages:

1. It requires a very long encoding (memory cost);

2. It needs a conventional minimum spanning tree algorithm to generate a tree from an encoding (com-

putational cost);

3. It contains no useful information about a tree, such as degree, connections, and so on.

4 Representing Forests by Graph Chains

Graph chains (see Appendix A) can be used to represent a forest. In Section 4.1, we introduce a representation

for trees, and then we show that a forest encoding (Section 4.2) can be obtained by the union of separated

encodings of the trees of a forest.

In order to represent a tree, we use only the chains that connect a leaf with a root. This chains were

called main chains (see Appendix A).

4.1 Tree Encoding by Main Chains

A tree has a number of main chains equal to its number of leaves l. The tree representation is composed by

the set of all l main chains. For example, the representation of the tree from Figure 2(a) is in Figure 2(b).

Figure 2(c) shows the same set of chains disposed in a di�erent order. In this arrangement, the same node in

di�erent chains are side by side. This property is important and it is highlighted in the following de�nition.

Property 1: Let S be the set of main chains representing a tree T . If all the equal nodes in di�erent

chains are side by side, the chains are said to be properly grouped.

8 10 12 13

92 11 14

1 3 4 5 6 7

15

(a) A graph G with a spanning
tree T . T is indicated by the
thick edges.

1 3 4 11 12 13

1 3 4  5  15
1 3 9 10
1 3 4  5   6  7

1 3 4  5  14
1 2 8 

(b) The main chains of the
spanning tree.

1 3 4 11 12 13

1 2 8 
1 3 9 10

1 3 4  5  14
1 3 4  5   6  7
1 3 4  5  15

(c) The main chains properly
grouped.

Figura 2: A graph with a spanning tree and its main chains.

In order to encoding a tree adequately, it is important that the tree have a representation by main chains

with the chains properly grouped. In this way, the following proposition must be true.

Proposition 1: Any tree can be uniquely represented by main chains with the chains properly grouped.

The justi�cation for the Proposition 1 is presented in Appendix B.

We can implement the proposed tree representation using l vectors to store the l main chains and an

array of pointers addressing each one of the vectors. In this way, the array of pointers determine the order

that the main chains are disposed.
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4.2 Forest Encoding by Main Chains

The forest encoding is composed by the union of the separated encodings of the trees of a forest. In this way,

the forest data structure can be easily implemented using an array of pointers where each pointer indicates

a tree represented by main chains.

We presented in Section 3 �ve encoding main features that a tree representation should possess. It is

easy to see that the proposed representation using main chains hold such encoding characteristics.

5 Operations on Forests Encoded by Main Chains

The proposed operators will be described using a didactical example and several illustrations. The references

[4, 5] provide some additional explanation about the operators.

This Section presents two operators to generate a new forest using the forest encoding based on main

chains. They will be called operator 1 and operator 2. Both operators generate a spanning forest F 0 of

a graph G when they are applied to a other spanning forest F of G.

The result produced by the application of both operations are similar. That is, one application of the

operator 1 (or 2) to a forest is equivalent to transfer a subtree from an tree Tfrom to another tree Tto of the

forest. The di�erence between them is that, applying operator 1, the root of the pruned subtree will be also

the root of this subtree in its new tree (Tto). Nevertheless, the transfered subtree will have a new root (any

node of the subtree di�erent from the original root) when applying operator 2.

In this way, we provided two operators: one capable to produce simple and small changes in the forest

(operator 1); and a second one that can generate larger and more complex changes (operator 2).

The operation 1 requires a set of two nodes: the prune node (np), which indicates the root of the subtree

to be transfered; and the adjacent node (na), which is a node of a tree di�erent from Tfrom and that is also

adjacent to np in G.

The operation 2 requires a set of three nodes: the prune node (np), which indicates the root of the subtree

to be transfered; the new root node (nr) of the subtree; and the adjacent node (na), which is a node of a

tree di�erent from Tfrom and that is also adjacent to the new root nr in G.

In the following, we explain both operations considering that the required set of nodes are previously

determined. We show how to eÆciently obtain these sets of nodes in Appendix D.

5.1 Operator 1

The operator 1 generates a spanning forest F 0 of a graph G when it is applied to another spanning forest F

of G. The result of the application of the operator 1 is equivalent to transfer a subtree from an tree Tfrom
to another tree Tto of the forest. The root of the pruned subtree will be also the the root of this subtree in

its new tree Tto.

We assume that two nodes are previously known: the prune node np and the adjacent node na. Since

we know the nodes np and na, we also know their respective trees Tfrom and Tto. Besides we know the �rst

chain of np in Tfrom and its position in this chain. Analogously, we also know the �rst chain of na in Tto
and its position in this chain (see Appendix C).

The operator steps will be illustrated using the graph of Figure 3(a). We will consider np = 4 (in Tfrom)

and na = 20 (in Tto) in the examples for operator 1.

The operator 1 can be described by the following steps:

1. Identify the chains of Tfrom with np. Since we know the position of np in the �rst chain (cf ) of Tfrom,

we just have to go down through the chains below np looking for other node(s) equal to np. Figure

3(c) illustrates this step;

2. Concatenate the chain segment on the left of nb (Tto) inclusive with the chain segments on the right of

na in the chains identi�ed in the step (1), generating the list Ttmp with the concatenated chains. The

chains should be concatenated following the order they appear in Tfrom to preserve the Property 1.

The concatenation is exempli�ed in Figure 4(a);

3. Create an array of pointers called T 0

to. Create a pointer in this array to each main chain in Tto. Create

also a pointer to each main chain in Ttmp;

4. Create an array of pointers called T 0

from. Create a pointer in this array to each main chain in Tfrom
that does not have np;

5. Create an array of pointers called F
0. Create a pointer to each tree data structure of F except to

Tfrom and Tto. Create pointers to T
0

from and T 0

to;
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(c) Determination of the
chains with np = 4 in Tfrom.

Figura 3: An spanning forest and the determination of the chains with np.
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segment on the left of n  = 20a

segments on the right of n  = 4p

Ttmp
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1 2 8 
1 3 9 10
1 3 
1 3 
1 3 
1 3 

nation

concate−

(a) Concatenation carried out by the operator 1.
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T t́o
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(b) Representation of the spanning forest F 0 and its
graph.

Figura 4: Example of operator-1 concatenation and the representation of the new forest F 0.

5.2 Operator 2

The operator 2 also generates a spanning forest F 0 of a graph G when the operator is applied to another

spanning forest F of G. Similarly with operator 1, the result of the application of the operator 2 is equivalent

to transfer a subtree from an tree Tfrom to another tree Tto of the forest. However, the transfered subtree

will have a new root (any node of the subtree di�erent from the original root).

The authors assumed that a set of three nodes are previously known: the prune node np, the new root

node nr and the adjacent node na. The nodes np, nr are in the tree Tfrom and na is in Tto. Besides we also

know the �rst chain of np and nr in Tfrom and their positions in these chains. Analogously, we also know

the �rst chain of na in Tto and its position in this chain (see Appendix C).

The operator 2 is similar to the operator 1. The main di�erence is that the pruned subtree will have a

new root after its transference to another tree. The di�erences between operator 1 to operator 2 occur just

in the steps 1 and 2 (see the operator 1 procedure), i.e. only the process to obtain the concatenated chain

list Ttmp is di�erent.

The operator steps will be also illustrated using the graph of Figure 3(a). The experiments in this paper

considered np = 3 (Tfrom), nr = 5 (Tfrom) and na = 20 (Tto) in the examples for operator 2.

It is possible to obtain the list Ttmp reformulating the steps 1 and 2 of the operator 1 as follows:

1. Identify the segments of chains on the right of np (inclusive) in Tfrom. Since we know the position of

np in the �rst chain (cf ) of Tfrom, we just have to go down through the chains below cf looking for

other node(s) equal to np as it was described for the operator 1. These identi�ed segments of chains

should be separated in three lists:

(a) The list L1 of segments of chains without nr;

(b) The list L2 with the chain segment on the left of nr;
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(c) The list L3 of the segments of chains on the right of nr.

Figure 5 illustrates these lists for our example;

3 9 10
3 4 11 12 13
3 4  5  14
3 4  5   6  7
3 4  5  15

3 9 10
3 4 11 12 13

L1

3 4  5

L2

5  14
5   6  7
5  15

L3segments with n  =3p

Figura 5: Identi�cation of the Lists L1, L2 and L3.

2. Concatenate properly the chain segment on the left of na inclusive (in Tto) with the chain segments of

L1, L2 and L3, generating the list Ttmp. The concatenation is executed in three parts:

(a) Concatenate the segment of chains on the left of na in Tto (denoted by sl) with the segments in

L3, generating the list Ttmp3 of concatenated chains;

(b) Reverse the segment in L2 and concatenate sl with the segment inverted, generating the list Ttmp2.

The concatenation of steps 2.(a) and 2.(b) are illustrated in Figure 6;

L2

Ttmp2

s l

L3

5  14
5   6  7
5  15

Ttmp3

21 20 5 14
21 20 5  6  7
21 20 5 15

on the left at n  =20a on the left at n  =20a

  3  4  5

5  4  3

21  20  5  4  3

21 20 21 20

Figura 6: Concatenations for L2 and L3.

(c) Concatenate the segment sl with the segments in L1, generating the list Ttmp1. In this step, we

need to determine the adequate parts of each chain segment that will concatenate and also the

order (to preserve the Property 1) which the concatenated segments will be stored in the list

Ttmp1.

Figures 7(a) and 7(b) illustrates the determination of the part of each segment in L1 for the

concatenation. The procedure corresponding to Figure 7(a) tries to �nd nodes equal to the nodes

of L2 (which contains the nodes from np to nr) in the chains above the �rst chain in Tfrom with

L2. We begin looking for the last element of L2 (nr). If it is not found, we try the last but one

element and so on. That is, when a trail fails (thin vertical arrows in Figure 7(a)), we try again

using the predecessor element of L2. When a trial succeeds (thick verical arrows in Figure 7(a)),

the segment of chain on the right of the match node (nm) is concatenated with the segment of sl
on the left of nm. Then, the concatenated chain is put in Ttmp1.

In fact, it is also necessary to verify for the elements of L2 in the chains below the last chain

in Tfrom with L2. In this way, for each element of L2 (from nr to np), it is required to verify �rst

the chains above and also below the chains with L2 before trying another element of L2.

(d) Create an array of pointers Ttmp (see Figure 8) with pointers to the chains in Ttmp3, Ttmp2 and

Ttmp1 following this order of lists and the order that the chains are disposed in each list. If the

last node (at position k) of the chain in Ttmp2 (i.e., sl) is equal to the node at position k of the

�rst chain in Ttmp1, then the chain sl is redundant and, thus no pointer should be addressed to

it.

6 EA Approach Using the Proposed Tree Encoding

In this Section, we discuss the main characteristics of the proposed EA and present its pseudo-code. The

approach using the new encoding has more similiarities to Evolutionary Programming than Genetic Algo-
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4 11 12 13

= 21 20 5   4   3

21 20 5  4

21 20 5 4 11 12 13

=4

3 9 10

= 21 20 5  4  3

21 20 5  4  3

21 20 5  4  3 9 10

(b) Concatenation of the proper seg-
ments with sl.

Figura 7: Determination of the part of segments to concatenate and the order of concatenation.

Ttmp3

21 20  5  4   3 (= s )l

21 20  5 14

21 20  5 15
21 20  5  6   7

Ttmp

Ttmp1 21 20  5  4   3   9  10
21 20  5  4 11 12  13

21 20  5 14

21 20  5 15
21 20  5  6   7

21 20  5  4 11 12  13
21 20  5  4   3   9  10

Ttmp2

sl is redundant

Figura 8: Attainment of Ttmp from Ttmp1, Ttmp2 and Ttmp3.

rithms (GA) or Evolutionary Strategies (ES) [14]. However, we can not classify this evolutionary approach

as a typical Evolutionary Programming (EP).

A typical EP operator does not try to emulate the genetic operators as observed in nature. The proposed

operators 1 and 2 also do not intend to imitate the genetic operators of the nature. Moreover, since the

EP is an abstraction of evolution at the level of reproductive populations (i.e., species), no recombination

mechanisms are typically used because recombination does not occur between species [12]. It must be

remembered that the operators 1 and 2 (see Section 5) do not carry out recombination. Nevertheless, an

EP commonly uses stochastic tournament to choose the survivors, while this process is deterministic in the

proposed EA.

The Algorithm 6.1 presents the pseudo-code of the EA using the encoding based on main chains.

7 Application to Restoration of Electrical Distribution Systems

The proposed EA approach using forest encoding based on main chains is applied to automatic elaborate

plans for service restoration in electrical distribution systems. This problem considers situations that leave

network regions out-of-service. The service interruption may be caused by faults in the distribution circuit

or by isolation of circuit zones for maintenance task.

The restoration of the energy supply to the consumers is a multiobjective problem, with a certain degree

of con
ict. The restoration problem considers functions whose characteristics, in general, make diÆcult the

use of mathematical programming techniques to obtain restoration plans. Moreover, the approaches using

such functions are intensively a�ected by the combinatorial explosion problem.

Moreover, a proper restoration plan must be obtained rapidly since the restoration is an on-line problem.

The Evolutionary Algorithms have shown relevant results for this problem [7, 2, 13]. Nevertheless, these

techniques still have diÆculties to fast obtain restoration plans for real size (large-scale) networks.

Severals tests were executed, using networks with di�erent sizes, to evaluate the potential of the proposed

technique. In the following, we present the general problem formulation and then we sum up in a comparative

table the main results.
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Algorithm 6.1 Pseudo-code for the proposed EA.
ALGORITHM proposedEA(F0)
// start with an initial time
t := 0;

// generate an initial population P (t0) based on the original spanning tree F0
P (t) := INITIAL POP(P (t0; F0));

// evaluate the individuals of the initial population
EVALUATE(P (t));

// test for termination criterion (a time tmax)
WHILE not done DO

// stochastically select an individual (Fs) in the population

Fs := STOCHASTICALLY SELECT(P (t));
// stochastically select an operator 1 or 2

OP := SELECT OPERATOR(op1,op2);
// apply OP to produce a new individual Ft from Fs
Ft := OP(Fs);

// evaluate the new individual Ft
EVALUATE(Ft);

// deterministically select the survivors among P (t) and Ft
P (t+ 1) := ALTER POP(P (t),Ft);

// increase the time counter
t := t+ 1;

END

The objective function considered for the restoration problem is expressed in the next equation:

f =  (F; F 0) + !sjjsjj+ !vjj�vjj+ !xjjxjj; (1)

where  (F; F 0) is the number of di�erent edges (switch operations) between the forest F 0 (the forest cor-

responding to the original con�guration of the system) and the forest F being evaluated; s is a vector with

the substations loads; v is a vector of the voltages of the substation buses; x is a vector with the current


ow in the distribution lines; !s is the weight for the constraining violation of the maximal load of the

substations; !v is the weight for constraining violation of the maximal voltage drop; and !x is the weight

for the constraining violation of the maximal current 
ow. The weights are obviously positive values and

jj � jj is the usual in�nite norm. If a constraint is not violated, the corresponding penalty is not applied, i.e.

jj � jj = 0.

The tests were carried out in a Pentium III 450Mhz with 512MRAM using the Operational System

Debian GNU/Linux 2.2 and the C compiler gcc. For the tests, we use !s = 2, !v = 10 and !x = 1. We set

as 1=4 the probability of the SELECT OPERATOR(op1,op2) (see Algorithm 6.1) to choose the operator 1,

i.e. the use of operator 2 is 4 times more frequent than operator 1.

The authors applied the proposed approach to produce restoration plans for all possible situations of

service interruption on each test system.

Table 1 shows the test results together with the computational performance of other approaches available

in the literature. In order to construct this Table, we consider that all the algorithms achieve satisfactory

restoration plans if all solutions found by them restore entirely the out-of-service regions and do not have

violation of the constraints. Note that, in the comparison of these algorithms, we did not take account the

perfomance of minimizing the number of switch operations. The solutions used to construct Table 1 are all

satisfactory ones. Each computation time presented in this Table is the largest one found for each system

tested.

Approach Processor Network Scale Maximal Running

(number of nodes) Time (s)

Proposed EA Pentium III 450Mhz 204 10

GA-Fuzzy [13] Pentium-CELERON 300 102 150

EA with fuzzy sets [2] Pentium 133 32 21

Parallel GA [7] Transputer with 16 processors MIMD 30 33

Tabela 1: The computational performance of the proposed approach and other algorithms with running time

available.

The results suggest a reduction of the running time for the energy restoration problem when we apply

the EA approach using the proposed forest encoding based on main chains. It is important to note that few

papers about energy restoration provide the running time required by their approaches. Besides, due to the

larger amount of data involved in a distribution system, the test networks are in general not available in the

papers. These drawbacks complicate a more precise performance comparison of di�erent approaches.
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Fortunately, the approaches proposed in [7] provides some information about the approach performance

as network size increases. Figure 9 shows graphs based on the running time required by proposed EA and the

approaches presented in [7]. These graphs suggests that the proposed EA requires relatively small running

time when the network size increases.
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Figura 9: Relationship between the number of network nodes and the running time for three approaches:

the Proposed EA, a GA and a Parallel GA (the last two are presented in [7]).

8 Conclusion

EAs for network layout problems requires special chromossome encoding. The authors propose a new forest

encoding aiming to overcome some drawbacks of the available representations. The proposed encoding uses

main chains to represent a forest. Based on this representation, we developed two new operators capable

to manipulate a forest generating a new one. Besides, the proposed encoding possesses the main encoding

features required for a e�ective tree representation (see Section 3) according to Palmer & Kershenbaum [16].

Moreover, the proposed operator do not require that G is complete (as required by the Pr�ufer number

encoding) to produce only feasible spanning trees of G. Since many practical problems do not involve com-

plete graphs (in fact, several networks correspond to sparse graphs), the proposed encoding might improve

the performance of EA approaches for a variety of problems.

The authors also elaborated an EA approach using the new forest representation. This approach was

applied to solve the restoration of electrical distribution system. The computational performance of the

proposed EA suggests that it is able to produce satisfactory solutions with relatively small running time. It

is important to note that the restoration in an on-line problem.

At this moment, the authors are working with the development of a new operator, which is also based

on main chains. Such operator intend to recombine two spanning forests of a graph G generating a new

spanning forest of G. The new operator might improve even more the performance of the EAs for some

extensions of the MST problem.
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A The Graph Nomenclature Used

This section de�nes some graph concepts [9]. This may prevent from misunderstandings since the de�nitions

of graph concepts are not completely standardized in the literature. It also introduces the de�nition of main

chains, which is used in the data structure proposed for forest encoding, see Section 4.

A graph G consists of a pair (N(G),E(G)), where N(G) is a non-empty �nite set of elements, called

nodes and E(G) is a �nite set of unordered pairs of distinct elements from N(G), called edges. N(G) is

sometimes called the node-set of G. A pair fx, yg is said to join nodes x and y. For illustration purpose,

Figure 10 represents a simple graph G whose node-set N(G) is represented by the set fu, v, w, zg, and whose

edge-set E(G) consists of the pairs fu, vg, fv, wg, fu, wg and fw, zg. The degree of a node is the number

of edges incident with it.

w

u

v

z

e

Figura 10: Example of a Graph.

Given any graph G, an edge-sequence in G is a �nite sequence of edges in the form fv0, v1g, fv1, v2g,...,

fvm�1, vmg (also denoted by v0 ! v1 ! v2 ! ... ! vm). An edge-sequence in which all the edges are

distinct is called a path. If, in addition, the nodes v0, v1,...,vm are distinct (except, possibly, v0 = vm ),

then the path is called a chain.

A path or chain is closed if v0 = vm. A graph is said to be connected if, given any pair of nodes x, y

of G, there is a chain from x to y. An arbitrary graph can be split up into disjoint connected subgraphs

called connected components. A connected graph has only one component; a graph with more than one

component is called a disconnected graph.

A component without closed chains is called a tree. A graph with one or more trees is called a forest.

One of the tree nodes is usually called root. Such node is in general a reference where the tree initiates

from. The degree of the root can be one or greater than one. We call the nodes with degree one as leaves,

except if this node is the root.

Given a root r of a tree T and a leaf t of T , there is only one chain connecting nodes r and t. Each chain

with such characteristic will be called main chain. Given a tree T , the set of all main chains is an way to

represent T , as shown in Section 4.
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A graph where for every pair of nodes v and w (v; w) 2 E(G) is called complete. When the number of

edges of graph is much larger than the number of nodes, it is called dense. Conversely, when the number

of edges is relatively small, the graph is called sparse.

B Justi�cation of Proposition 1

Proposition 1: Any tree can be represented by main chains with the chains properly grouped.

Justi�cation 1: It is easy to see that the order in which the chains from root to the leaves are dispo-

sed in a graphic representation of a tree corresponds to the chains properly grouped. In this way, in order to

obtain a tree representation with the chains properly grouped, we can proceed as follows: take the chain of

the leftmost (rightmost) leaf in the graphic representation of the tree and put it in a stack. Then, take the

second leftmost (rightmost) leaf in the graphic representation of the tree and put it in the stack. Repeat

this procedure until all leaves have been visited. We can execute the previous procedure for any tree, thus

any tree has a representation by main chains with the chains properly grouped.

C Node Position in F

The determination of the position of a node in F can be eÆciently achieved using the matrices �x and a

vector �. Each node nx of G possesses its corresponding matrix �x. For the original spanning forest F0 of

G, �x is a column matrix: �x =

"
0

i0
j0
k0

#
, where i0 is the tree of nx (Ti0), j0 is the �rst chain of nx in Ti0 and

k is the position of nx in this chain.

Suppose a forest Fh is been generated from the Fg (g < h) and nx is in the subtree that will be transfered

for a new tree generating Fh. Then, nx will have a new position in Fh di�erent from its position in Fg .

So, we insert a new column in �x with the indices of this new position. The altered matrix results in

�x =

"
0 h

i0 ih
j0 jh
k0 kh

#
. The position update is carried out for all nodes of the transfered subtree in the operations

1 and 2.

The vector � stores the parent g of the forest Fh in the rank h of �, i.e. �(h) = g. The parent of g

is �(g), the parent of �(g) is �(�(g)), and so on. This constitutes a linked list with all precedessors of Fh.

Obviously, the last position change of nx occured in one of predecessors of h. In this way, we can look for

the predecessors of h in the columns of �x. We start searching for �(h). If this column is not found, we try

the column �(�(h)), and so on. The process of looking for such columns in �x can be achieved eÆciently

by running a binary search [9] on the list given by �x(0; �) (the �rst row of �x).

Once identi�ed a column with a predecessor of h, we only need to read the position indices of nx stored

in the same column.

D Determination of the nodes np, nr and na

The proposed operators require a special set of nodes in order to generate a spanning forest F 0 of G based

on another spanning forest F of G.

For the operator 1, this set can be eÆciently obtained by the following strategy:

1. Pick up randomly a node of a forst F that is not a root. Call this node np and determine its �rst

position in F using the matrix �np ;

2. Pick up randomly a node adjacent to np (using the node adjacent list of G). Call this node na. If

na =2 T
3, determine its position in F using the matrix �na ; else pick up randomly another na or return

to step 1.

The strategy for the determination of np and na for the operator 2 is:

1. Pick up randomly a node of G that is not a root. Call this node np and determine its �rst position in

F using the matrix �np ;

2. Pick up randomly one of the chains with np
4. Choose randomly a node of the selected chain on the

right of np. Call this node nr;

3To know whether na =2 T , we verify whether na 2 T . This veri�cation can be easily accomplished by moving through the
adjacent nodes of na in the main chain representation of T .

4An eÆcient procedure for the determination of the chains with np can be seen the description of the operator 1 in Section 5.
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3. Pick up randomly a node adjacent to nr (using the node adjacent list of G). Call this node na. If

na =2 T , determine its position in F using the matrix �na ; else pick up randomly another na or return

to step 1.
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