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Abstract 
 
A compiler combined with a user level runtime system can replace and outperform standard virtual 
memory management (VMM) for out-of-core problems. The execution time for single code and the 
overall impact on system resource utilization is lower for the compiler/runtime system combination 
than for VMM. Also this system does not require modification of the operating system kernel. In 
this paper we present a modified Comanche (Compiler Managed Cache) system and give new 
methodologies for providing efficient out-of–core programming without VMM for wavefront data 
access patterns. The experimental data show that Comanche performs better than VMM for the test 
case patterns under two standard operating systems, Windows and Linux, and has significantly less 
impact on system resources. 
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1   Introduction 

 

Today’s high performance computer systems provide users with immense computational power to facilitate research 

across a wide spectrum of scientific disciplines. Reducing program execution time is commonly the reason for 

purchasing new, faster processors. However, coupled with the ability to perform high-speed computation, there is the 

needs to store, organize, access, distributed and visualize these data, resulting in I/O demands on local systems and 

communication across networks [4]. 

 

When the data sets required by these applications exceed the capacity of main memory, the computation becomes an 

out-of-core computation. Processing out-of-core data requires staging data in smaller granules that fit in main memory. 

Data required for the entire computation have to be fetched from files on disk so that improving disk I/O becomes 

extremely important. The speed gap between processors and disks continues to increase as VLSI technology advances at 

a tremendous rate while disk technology lags behind. As a result, disk I/O has become a serious bottleneck for many 

high performance computer systems. Hence, it is critically important to be able to construct I/O minimal programs [11]. 

 

Much research has been done on virtual memory management (VMM) and other related operating systems (OS) 

concepts, I/O subsystem hardware, and parallel file systems. Each of those approaches contributes to some degree to I/O 

performance, but they all lack a global view of application behavior, which limits their effectiveness.  

 

Parallel I/O is a cost-effective way to address some I/O issues. The wide availability of inexpensive powerful PC 

clusters with high-speed networks makes parallel I/O a viable approach. Parallel I/O subsystems have increased the I/O 

capabilities of parallel machines significantly but much improvement is still needed to balance the CPU performance.  

The variety (private disks, shared disks or a combination of both) in the I/O architectures makes it difficult to design 

optimization techniques that reduce the I/O cost.  The problem has become more severe since the size and complexity of 

applications have increased tremendously [13]. 

 

OS designers offer the handling of I/O activity via virtual memory management (VMM). Research on this approach 

considers the use of smart virtual memory, techniques which reshape the data reference patterns to exploit the given 

hardware facilities and system software, and replacement policies. Overall these techniques assume a considerable 

amount of help from the hardware. 

 

A number of run-time libraries for out-of-core computations and a few file interfaces have been proposed, among them 

SIO [12], MPI-IO [2], and an extension of the traditional Unix file I/O interface for handling the parallel accesses to 

parallel disk subsystems [10]. The parallel file systems and run-time libraries for out-of-core computations provide 

considerable I/O performance, but they require much effort from the user; also they are not portable across a wide 

variety of parallel machines with different disk subsystems. 

 



 

  
 

The difficulty of handling out-of-core data and writing an efficient out-of-core program limits the performance of high 

performance computers. Execution of some out-of-core programs does not perform well when they rely on the virtual 

memory management (VMM) system. There is a clear need for compiler directed explicit I/O for out-of-core 

computations [1] [3] [5] [6] [7] [8] [14] [15] [16] [17] [18] [19].  

 

In this paper, we concentrate on the compiler-based approach to the I/O problem. The main rationale behind this 

approach is the fact that the compiler has unique information about the data needs of the program. The compiler can 

examine the size and shape of the data and the overall access pattern of the application. Compiler driven I/O 

management should generate code to restructure out-of-core data, computation, and the management of memory 

resources. A compiler combined with a user level runtime system can replace and outperform standard virtual memory 

management for out-of-core problems [14]. A compiler with a good combination of file layouts on disks and loop 

transformations is successful at optimizing programs, which depend on disk-resident data in distributed-memory 

machines [9].  

 

Comanche (an acronym for COmpiler MANaged caCHE) is a compiler run time I/O management system [14]. It is a 

compiler combined with a user level runtime system. More details about Comanche will be given in Section 2. 

 

It was observed during initial testing of Comanche that memory mapping a large file has a significant impact on system 

resources. We are mainly interested on how to access large data sets instead of how to manipulate these data after we 

get them.  From our experiments, a major part of the execution time is spent on I/O instead of on calculation. Once we 

get the data, relatively little time is needed for doing calculations based on the data. The out-of-core WaveFront 

problems used in this paper are used to present the benefit of our modified Comanche API which provides data access 

methods for cases more general than the original version.  In Section 3, we discuss the seeker/reaper paradigm and 

show how to apply it to minimize the amount of space required to carry out the computation.  In Section 4, we will 

show the results of our experiments on two workstations, one running Windows98 and another running Linux 5.5. In 

Section 5, we draw conclusions from the results of our study.  

 

2  Comanche 
 

Comanche (an acronym for COmpiler MANaged caCHE) is a compiler run time I/O management system [13]. It is a 

compiler combined with a user level runtime system and effectively replaces virtual memory management by allowing 

direct control over which pages are retained in the active memory set. The current Comanche system is running under 

the RedHat 5.5 Linux operating system on a PC with an Intel PentiumPro (133Mhz or faster) processor and 48MB or 

more RAM. The system is also running under Window98 with an Intel PentiumPro 500Mhz processor and a RAM of 

96MB. 

 



 

  
 

The standard entity in the Comanche runtime system is a two-dimensional array. Higher dimensions can be supported, 

or else the accesses can be translated to two-dimensional accesses. Data are assumed to be in row major layout on disk. 

The ideal array is a square matrix. 

 

There are two structures declared in the Comanche system. One (subrow_s) is a block structure used to buffer a sub-row 

of data, the other structure is a matrix structure (array_s) that holds the information of the matrix on disk and has buffers 

to hold several sub-rows in memory. 

typedef structure subrow_s  { 
 double *data;   
 int wflag;    
 int refcnt;    
 int subrowindex;    
  } Row; 
 
 
typedef struct array_s { 
 int nrows, nelems, elesize;  
 int nsubrows, nsubelems;   
 FILE *fp;    
 long offset;   
 char *name;    

int *map;    
 int nbuffs, buffsize;   
 Row **buffers;   

int victim, wflag, total_mem;  
} Matrix; 
 

Besides these structures, there are several functions in Comanche. Two major functions are comanche_attach and 

comanche_release which are used to perform the sub-row mapping.   

 

When a data set is too large to fit into memory, VMM will map the array into a one-dimensional vector and then that 

vector is cut up into sub-arrows. Comanche will take a row of an array and cut it up into sub-rows. Through the use of 

the functions provided by Comanche, the I/O behavior is under the control of the resulting out-of-core program.  

 

The comanche_attach and comanche_release functions tell the runtime system that the block is to be mapped into 

memory; then an address to the cached data is to be returned. The runtime system will not reclaim memory that has 

been attached as long as it remains attached. It does not matter how much time has passed since the buffer was last 

referenced. The out-of-core program manages the duration of mapped data and ensures that the number of attach 

operations will not over-fill the available memory before the data’s subsequent release. 

 
3   WaveFront Problems 
 
WaveFront stands for a square with tilted lines inside (as illustrated in Figure 3.1) the array A in waves W1 through W2n-

1 as follows (assuming N is 4): 

W1      A(1,1) 
W2      A(2,1), A(1,2) 
W3      A(3,1), A(2,2), A(1,3) 
W4      A(4,1), A(3,2), A(2,3), A(1,4) 



 

  
 

W5      A(4,2), A(3,3), A(2,4) 
W6      A(4,3), A(3,4) 
W7      A(4,4) 
 
In general, we have: 
Wi   A(i,1), A(i-1,2),… ,a(2,i-1),A(1,i)     for i = 1 … N 
WN+j A(N,j+1), A(N-1,j+2),… ,A(j+2,N-1),A(j+1,N)  for j =1..N-1 
 
              
            
            
            
      
    
     Figure 3.1   WaveFront Access Pattern 
 

This test traverses along each tilted line, calculates the sum of all the elements on it, and writes the total value to a 

specified file. The original code is as follows: 

void wavefront( int n, double *A, FILE *fp) 
{ 

    int sum, column, row, position, i, count; 
    double total; 
   
    count = 2 * n - 1 ; 
 
 i=0; 
 for( sum=0; sum<n; sum++ ) 
 { 
   total = 0; 
   for( column=sum; column>=0; column-- ) 
     { 
       row = sum - column; 
       position = row*n + column; 
       total += A[position]; 
     } 
   /* write result back to file */ 
   assert( fwrite(&total, sizeof(double), 1, fp) == 1 );  
   i++; 
 } 
 for( sum=n; sum<2*n-1; sum++ ) 
   { 
     total = 0; 
     for( row=sum-(n-1); row<n; row++ ) 
     { 
  column = sum - row; 
  position = row*n + column; 
  total += A[position]; 
     } 
     /* write result back to file */ 
     assert( fwrite(&total, sizeof(double), 1, fp) == 1 ); 
     i++; 
   } 
      } 

 



 

  
 

In order to calculate the sum of each tilted line, every element in it has to be accessed. The tilted line near the center of 

the square may grow beyond the size of a single page. The closer the titled line to the center, the more page fault may 

occur.  Therefore, we want to keep all the elements on the current titled line in the buffers all the time. 

 

We use a simple optimization based on a seeker/reaper paradigm. A seeker is always one step ahead of the real attach 

operation; its responsibility is to find which subrow will be referenced, and attach this subrow to the buffers. A reaper 

always follows the seeker; its responsibility is to find which subrow will not be referenced any more, and release this 

subrow before the seeker attaches other subrow. We divided the buffers into several grouped; each group may have 

many subrows among which the first subrow is the seeker, and the last subrow is the reaper. Every group has a pair 

consisting of a seeker and a reaper. All the current used data are stored in the buffers. By swapping useless data out and 

swapping useful data in, we can guarantee that all the currently used data are in their buffers and the buffers are not 

overfilled. 

 

Before the main loop is executed, the seeker must attach the initial reference subrows. After the main loop is completed, 

the reaper releases all the referenced subrows. During the execution of the main loop, the reaper also releases never-to-

be-referenced subrows and leaves enough space in the buffers for seeker to attach a new subrow. 

 

As illustrated in Figure 3.2, we initially have three groups of data attached in the buffers, buffer1, buffer2, and buffer3. 

Then we traverse each tilted line from left to right, calculate the sum of elements on each tilted line and write the result 

to a specified file. Row-faults do not occur until the tilted line is out of the range of buffer1 (line A). This scenario is 

illustrated in Figure 3.3. At this critical point, the reaper of buffer1 releases the earliest attached subrow, and its 

corresponding seeker attaches a new subrow. The buffer1 is moving one subrow forward (see Figure 3.4). Similarly, 

when the tilted line grows beyond buffer2 (line B) as illustrated in Figure 4.5, the reaper of buffer2 releases the current 

subrow, and the corresponding seeker attaches the new subrow. As long as the new subrow keeps coming up, the reaper 

of each buffer keeps releasing its earliest attached subrow and the corresponding seeker keeps attaching that new 

subrow. Therefore, the buffers are guaranteed to store the most recent data.  
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Figure 3.2  WaveFront – Step 1 Figure 3.2  WaveFront – Step 2 
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Figure 3.4 WaveFront – Step 3                                       Figure 3.5  WaveFront – Step 4 
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Figure 3.6  WaveFront – Step 5      Figure 3.7 WaceFront – Step 6 
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Figure 3.8  WaveFront – Step 7                                               Figure 3.9 WaveFront – Final state 
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4   Experiments 
 

We have implemented the algorithm suggested in Section 3 in an out-of-core program written in the C language. The C 

compiler generates working code using the Comanche runtime system. The code was run under the Window98 

operating system with an Intel PentiumPro 500 MHz processor and 96MB RAM, and under the Redhat Linux5.5 

operating system on a single processor PC with an Intel PentiumPro 133MHz microprocessor and 48MB RAM.  

 

We have run one set of experiments for a double precision matrix of size 3600 x 3600 involved in the WaveFront 

application. The total data set space is 3600 x 3600 x 8 = 103.68MB. Another set of experiment was run for the size 

4000 x 4000 with a total data set space of 4000 x 4000 x 8 = 128MB. Data files were initialized with random values in 

the in the interval (-1, +1). The code is given in Figure 4.1.  

 

void wavefront( Array * aptr, FILE * outFp ) { 
    int nrows, nelems, nsubrows, nsubelems, nbuffs; 
    int * seeker, * reaper, chkn, n, start, end; 
    int sum, column, row, position, subrow, subcolumn, i, k; 
    double total = 0; 
    double * A; 
    nrows = aptr->nrows; 
    nelems = aptr->nelems; 
    nsubrows = aptr->nsubrows; 
    nsubelems = aptr->nsubelems; 
    nbuffs = aptr->nbuffs; 
    n = nelems / nsubelems; 

   /* assumption:  
    each chunk is a square(nsubelems*nsubelems).  n = chkn */ 
    chkn = nbuffs / nsubelems; 
    seeker = (int *)malloc(sizeof(int)*chkn); 
         assert(seeker); 
    reaper = (int *)malloc(sizeof(int)*chkn); 
    assert(reaper); 
    for( i=0; i<chkn; i++ ) 
    { 
  start = i; 
  end = start + n*nsubelems; 
  reaper[i] = start; 
  for( seeker[i]=start; seeker[i]<end; seeker[i]+=n ) 
  { 
   comanche_attach(aptr, seeker[i], FALSE); 
  } 
  // seeker is always one step ahead of real comanche_attach 
    } 
    /* top-left triangle */ 
    for( sum=0 ; sum<nelems; sum++ ) 
    { 
  total =0; 
  for( column=sum; column>=0; column-- ){ 
   row = sum - column; 
   position = row * nelems + column; 
   subrow = position/nsubelems; 
   subcolumn = position%nsubelems; 
   i = subrow % n; // chunk # 



 

   
 

   assert( i < chkn ); 
   if( subrow == seeker[i] ){ 
    comanche_release(aptr, reaper[i]); 
    reaper[i] += n; 
    A = comanche_attach(aptr, seeker[i], FALSE); 
    total += A[subcolumn]; 
    seeker[i] +=n; 
   } 
   else{ 
    A= comanche_attach(aptr, subrow, FALSE); 
    total += A[subcolumn]; 
    comanche_release(aptr, subrow); 
   } 
  } 
  assert( fwrite(&total, sizeof(double), 1, outFp) == 1 ); 
    } 
    /* bottom-right triangle */ 
    for( sum=nelems; sum<2*nelems-1; sum++ ){ 
  total = 0; 
  for( row=sum-(nelems-1); row<nelems; row++ ) 
  { 
   column = sum - row; 
   position = row * nelems + column; 
   subrow = position/nsubelems; 
   subcolumn = position%nsubelems; 
   i = subrow % n; // chunk # 
   assert( i < chkn ); 
   if( subrow == seeker[i] ){ 
    comanche_release(aptr, reaper[i]); 
    reaper[i] += n; 
    A = comanche_attach(aptr, seeker[i], FALSE); 
    total += A[subcolumn]; 
    seeker[i] +=n; 
   } 
   else { 
    A = comanche_attach(aptr, subrow, FALSE); 
    total +=A[subcolumn]; 
    comanche_release(aptr, subrow); 
   } 
  } 
  assert( fwrite(&total, sizeof(double), 1, outFp) == 1 ); 
    } 
     /* release all buffers */ 
    for( i=0; i<chkn; i++ ) 
    { 
  for( k= reaper[i]; k<nsubrows; k=k+n ) 
     comanche_release(aptr, k); 
   } 
      } 

Figure 4.1   Comanche Code for WaveFront 

 

4.1 Single WaveFront application 

 

The first test was for the single out-of-core WaveFront application. For each test case, the result in Table 4.1 is the 

average of five tests. The time used for executing the whole program is measured in seconds. The ratio represents the 



 

   
 

time of the virtual memory version over the time of the Comanche version. Values greater than one favor Comanche 

while values less than one favor VMM. From Table 4.1, we can see that the WaveFront test cases run faster under 

Comanche than under VMM.  

Operating System Data Set size 

    (MB) 

Virtual Memory 

      (Second) 

Comanche 

(Second) 

Ratio 

(V/C) 

Windows98 103.68 607.6 97.2 6.25 
Window98 128 792.2 130.2 5.06 
Linux 5.5 103.68 512.2 364.8 1.40 

 

Table 4.1   WaveFront out-of-core experiments on Windows98 and Linux 5.5 

 

4.2 Multitasking 

 

Running the initial test demonstrated an important performance problem with virtual memory’s mapping of files. When 

the first out-of-core tests were run, the windows system became very sluggish and it took a long time for applications to 

respond. The longer the execution time of the memory mapped code, the worse the problem became. When the 

Comanche tests were run, this problem did not manifest itself. 

 

A test was constructed to analyze this behavior. Two applications were executed simultaneously (see Table 4.2).  The 

Ratio of the VMM to Comanche execution performance almost doubled between the single out-of-core test and the 

multitasking out-of-core test.  This means that the system performance degrades much more rapidly for VMM than 

Comanche as more out-of-core applications are executed. 

Operating System Data Set size 

    (MB) 

Virtual Memory 

      (Second) 

Comanche 

(Second) 

Ratio 

(V/C) 

Windows98 103.68 1191.3 108.2 11.7 
Window98 128 1522.9 149.9 10.16 
Linux 5.5 32 301.1 43.6 6.91 

 

Table 4.2  WaveFront multitasking on Windows98 and Linux 5.5 

 

5   Conclusion 
 

The difficulty of handling out-of-core data efficiently limits I/O system performance. Coding out-of-core versions of 

problems can be a very tedious task and virtual memory system often does not perform well in scientific problems. We 

believe that there is a need for a need for a compiler-directed explicit I/O approach for regular out-of-core problems. 

 

Our main issue with VMM is its lack of information about the application’s actual memory needs and access patterns.  

As the application continues to fault, the VMM system will start thrashing.  Comanche used the source code to 

determine the maximum number of data sets it needs at any moment n time; this becomes the working set for the 



 

   
 

application. Numerous data access patterns have been studied and solutions have been found [3] [14] [16] [17] [18] 

[19]. 

 

The Comanche prototype is sufficient as a proof of concept but it is not quite ready for commercial use. Future 

enhancements include the design of a user-friendly interface. This allows the extension of semantics of the 

programming model without the difficulty of extending the syntax of a specific programming language. It also allows 

multiple views of the same program with different features highlighted. 

 

Another enhancement would be using mathematical expressions to represent the data access patterns and assumptions of 

each access pattern. The example in this paper is a rather crude model of certain access patterns and the optimization 

method is presented only as basic ideas. The ability to determine which optimization methods can be chosen and how to 

use it based on the mathematical expression defining its access pattern is an obvious goal. 
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