
1

Partially Ordered Sets and Logical Clocks for Distributed Systems

Francisco J. Torres-Rojas and José Castro-Mora
{ftorres, jcastro}@itcr.ac.cr

Departamento de Computación, Instituto Tecnológico de Costa Rica
Costa Rica

Abstract. In order to characterize and capture the causal relationships between events in a distributed history, log-
ical clocks have been used in distributed systems with diverse degrees of precision and efficiency (e.g., from effi-
cient but inaccurate Lamport clocks to precise but expensive vector clocks). In this paper, we analyze the
representation of logical clocks as mappings between partially ordered sets and relate the accuracy of such clocks
with the number of spurious connections manifested in the correspondent Hasse diagrams.

Keywords: Distributed Systems, logical clocks, causality, partially ordered sets.

1 Introduction

In his seminal paper of 1978, Lamport observed that causal relationships among events in a distributed
history induce a partial order on them, and proposed the use of logical clocks for ordering these events
according to their causality [9]. The implementation of these clocks do not require synchronized physical
clocks since they can be accomplished by including additional information with messages exchanged in
the system. These logical clocks strive to capture the causality relation, i.e., given the logical timestamps of
two events, the clock decides whether they are concurrent or causally related.

Scalar logical clocks can be implemented efficiently [9], but when events are timestamped with these
clocks, two events may appear to be ordered even when they are concurrent. On the other hand, vector
clocks can precisely order events of a distributed system and detect concurrent events [4, 5, 6, 10], but they
require as many entries as sites in the system. Charron-Bost’s results [1] discourage any attempt to define a
“constant size” clock that completely captures the causality relation. When the number of sites is large,
problems of scalability and efficiency arise [13]. Plausible clocks have been proposed as an alternative to
vector clocks that, under appropriate circumstances, keep most of the accuracy of vector clocks while
allowing efficient implementations [13, 14].

In this paper, we analyze the representation of logical clocks as mappings between partially ordered sets.
The accuracy of such clocks is related with the number of “spurious” connections manifested in the corre-
spondent Hasse diagrams. We consider a system where a set of processes communicate exclusively by
exchanging messages, all communication is asynchronous and point-to-point, and all messages are deliv-
ered correctly. There is neither common memory nor a common physical clock, and the relative speed of
the processes is unknown. We briefly present some key background material on partially ordered sets in
Section 2. A general model for logical clocks is explained in Section 3. Section 4 applies this model to the
case of Lamport clocks, and Section 5 does the same for vector clocks. Several plausible clocks (namely,
REV, KLA and COMB) are explored in Section 6. Finally, Section 7 offers the conclusions of this paper.

2 Partially Ordered Sets

In this section, we present some standard definitions from ordered sets theory [2, 3, 7]. Let S be an
arbitrary set. A binary relation ~ over S is a set D ⊆ S × S. If (a, b) ∈ D, we denote this as a ~ b.

Definition 1. A relation ~ over S is:

Reflexive if ∀a,b ∈ S: a ~ b ⇒ b ~ a

2

Irreflexive if ∀a,b ∈ S: a ~ b ⇒ ¬(b ~ a)

Transitive if ∀a,b,c ∈ S: (a ~ b) ∧ (b ~ c)⇒ (a ~ c) �

Definition 2. The pair <S, ~> is a partially ordered set (or poset for short) if ~ is a binary relation over S
that is irreflexive and transitive. We also say that ~ is a partial order relation over S. If a, b ∈ S are such
that (a ≠ b) ∧ ¬(a ~ b) ∧ ¬(b ~ a), then a and b are non-comparable. This situation is denoted as a || b. �

Posets are usually represented with a Hasse diagram, where directly comparable elements are connected
with lines (transitive connections are not represented). Besides, if a ~ b then element b is drawn at a higher
position than element a; notice, however, that the contrary is not always true, i.e., the fact that element b is
drawn at a higher position than element a does not necessarily imply that a ~ b. For instance, let S be the
set {a, b, c, d, e, f} and let ~ be the binary relation given by the set {(a, b), (a, c), (a, d), (a, e), (a, f), (b, c),
(b, d), (b, e), (b, f), (c, e), (c, f), (d, e), (d, f), (e, f)}. Figure 1 presents the corresponding Hasse diagram.

Definition 3. Given two posets <S, ~> and <T, >, we can map the elements of S to the elements of T. As
defined in [3], we say that map ϕ is:

Order-preserving if ∀a, b ∈ S: a ~ b ⇒ ϕ(a) ϕ(b)

Order-embedding if ∀a, b ∈ S: a ~ b ⇔ ϕ(a) ϕ(b)

Order-isomorphism if it is an order-embedding that maps S onto T. �

The difference between an order-preserving map and an order-embedding map resides in the double impli-
cation of the definition, i.e., if ϕ is an order-embedding map, then ϕ(a) ϕ(b) implies that a ~ b, ∀a, b ∈
S, which is not always the case for an order-preserving map. A map ϕ is an order-isomorphism if, besides
of being an order-embedding map, it also happens that every element b ∈T is ϕ(a) for some a ∈ S.

Definition 4. Given two partial orders <S, ~> and <T, >, we say that a map ϕ from the elements of S to
the elements of T is plausible if ∀a, b ∈ S:

a = b ⇔ ϕ(a) = ϕ(b)
a ~ b ⇒ ϕ(a) ϕ(b) �

In other words, a map of ordered sets is plausible if it is order-preserving and no two different elements of
set S are mapped to the same element of T and vice versa.

Figure 1. Hasse diagram.

a

dc

b

e

f

3

Definition 5. Let <O1,∼1>, ..., <On,∼n> be n posets. The product of these n posets [3] is the poset <O1 × ...

× On, ∼×>, where ∼× is the coordinatewise order:

(x1, ..., xn) ∼× (y1, ..., yn) ⇔ ∀ i: xi ∼i yi �

3 Posets, Causality and Logical Clocks

The local history of site i is a sequence of events Hi = ei1ei2... that are executed at site i. The global or

distributed history H of a distributed system is the set of all the events occurring at all sites of the system.

Definition 6. Lamport [9] defines the causality relation “→” over events as the smallest relation such that:

• If ei j and eik ∈ Hi and j < k, then eij → eik.

• If eim is send(M), ejn is its corresponding receive(M), i.e., M is the same message in both cases, with

arbitrary i, j, m and n, then eim → ejn.

• ∀a,b,c ∈ H if a → b and b → c then a → c.

If neither a → b and b → a holds between two different events a and b, then a and b are concurrent. This
situation is denoted as a || b. �

Since the causality relation → is irreflexive and transitive, it defines a poset <H, →> over the events of the
system (a pair of concurrent events are non-comparable). We say that a ← b ⇔ b → a. Figure 2 shows an

execution of a distributed system with 4 sites. The arrows indicate the sending and receiving of messages.
Since <H, →> is a poset, Figure 3 presents the Hasse diagram corresponding to the same execution.

Lamport proposed the use of logical clocks for ordering events in a distributed system according to their
causal relationships [9]. These clocks do not need synchronized physical clocks since they can be imple-
mented by including additional information with messages exchanged in the system. These clocks strive to
capture the causal relationships between events in a distributed history.

Figure 2. Distributed History.

Site 0:

Site 1:

Site 2:

Site 3:

e0,1 e0,2 e0,3 e0,4 e0,5

e1,1 e1,2 e1,3 e1,4

e2,1 e2,2 e2,3 e2,4 e2,5

e3,1 e3,2 e3,3 e3,4 e3,5 e3,6

4

Definition 7. Let a timestamp be a structure that represents an instant in time as observed by some site. The
particular details of this structure are left open. For a distributed system with global history H, a logical

clock X (also called a Time Stamping System X in [14]) is a pair (<SX, >, X.stamp), where:

• SX is a set of timestamps.

• is an irreflexive and transitive relation defined on the elements of SX.

• <SX, > is a poset.

• X.stamp is the timestamping function mapping H to SX.

For all timestamps v, w ∈ SX, we define the additional relations:

v w ⇔ v = w

v w ⇔ w v

v w ⇔ ¬(v w) ∧ ¬(v w) ∧ ¬(v w) �

X.stamp assigns timestamps to each event of H. It can be expressed as a series of rules for updating the
logical clock of a site before assigning a timestamp to an event of H. More interestingly, it can also be

understood as a mapping between posets: the poset <H, →> is mapped to the poset <SX, >. When it is

clear from the context, we just use X(a) instead of X.stamp(a), ∀a ∈ H.

Since is irreflexive, the relations , , and are mutually disjoint. Their purpose is to reflect cau-
sality, equality and concurrency from the point of view of X. These relations are defined over timestamps,
but we allow them to directly compare events in H. Consider a,b ∈ H with timestamps X(a) and X(b),
respectively. X reports the causal relationship (not necessarily correct) between a and b, in this way:

a b ⇔ X(a) X(b) ⇔ X “believes” that a and b are the same event.
a b ⇔ X(a) X(b) ⇔ X “believes” that a causally precedes b.

a b ⇔ X(a) X(b) ⇔ X “believes” that b causally precedes a.

a b ⇔ X(a) X(b) ⇔ X “believes” that a and b are concurrent.

Figure 3. Hasse diagram corresponding to the execution of Figure 2.

e0,2

e0,4

e0,3

e0,1

e0,5 e3,6

e3,5

e3,4

e3,3

e3,2

e3,1

e2,5

e2,4

e2,3

e2,2

e2,1

e1,4

e1,3

e1,2

e1,1

→X

→X

→X

=X

←X →X

||
X

=X →X ←X

→X

→X →X ←X =X ||
X

=X =X

→X →X

←X ←X

||
X

||
X

5

Definition 8. A logical clock X = (<SX, >, X.stamp) is consistent with causality [11] if ∀a,b ∈ H:

a → b ⇒ a b �

The previous definition is also known as the weak clock condition [9]. It is easy to notice the similarity of
this definition with the first clause of Definition 3. Thus, we say that a logical clock X = (<SX, >,

X.stamp) is consistent with causality if the map X.stamp is an order-preserving map.

Definition 9. A logical clock X = (<SX, >, X.stamp) characterizes causality [11] if ∀a,b ∈ H:

a = b ⇔ a b
a → b ⇔ a b

a || b ⇔ a b �

This is also called the strong clock condition [11]. Once again, Definition 3 can be used and, thus, a logical
clock X = (<SX, >, X.stamp) characterizes causality if the map between the poset <H, →> and the poset

<SX, > is an order-isomorphism.

4 Lamport Clocks

Lamport Clocks are efficient scalar logical clocks that are consistent with causality [9]. These clocks map
the set of events to a set of integers, in such a way that if event a is causally before event b, then a receives
a lower timestamp than b. We define the logical clock Lamport as the pair L=(<SL, >, L.stamp), where

SL is a set of positive integers greater than zero and the order relation is trivially defined as:

x y ⇔ x < y , ∀x, y ∈ SL

In order to implement the map L.stamp, each site i maintains an integer counter L i that initially has a value

of zero, and every message sent by site i includes a timestamp which is the value of L i when the message
was sent. Before an event (other than a receive) is executed at site i L i is increased by 1, when a message

with timestamp D is received by site i, then L i becomes max (L i, D) + 1. If a is an event of Hi, then L(a) is

the value of L i when a is executed. Lamport clocks exhibit the weak clock condition, this is, ∀a,b ∈ H:

 a → b ⇒ L(a) L(b) ⇔ L(a) < L(b)

Lamport clocks capture the order between causally related events but they do not detect concurrency
between events and just by inspecting two timestamps, it cannot be decided if the associated events are
causally related or concurrent. Figure 4 shows the same distributed execution of Figure 2, but now each
event has been timestamped with its corresponding Lamport clock. Figure 5 shows the Hasse diagram
induced by the ordering of these logical clocks. By comparing Figures 3 and 5, we notice that these clocks
are not an order-embedding map, but just an order-preserving map. A number of inexistent causal connec-
tions are reported (in fact, every pair of concurrent events is falsely ordered). For instance, it is reported
that e0,2 is causally before than e3,5 which is false.

→X

→X

→X

→X

=X

→X

||
X

→X

→X

→L

→L

→L

→L

6

5 Vector Clocks

Fidge [4, 5, 6] and Mattern [10] independently proposed the technique of vector clocks that permits a
complete characterization of causality. It consists of a mapping from events in the distributed history to

integer vectors. We define vector clocks as the logical clock V = (<SV, >, V.stamp), where SV is a set of
N-dimensional vectors of integers (N is the number of sites in the distributed system). Each site i keeps an
integer vector Vi of N entries, where N is the number of sites in the distributed system. Initially, this vector

is filled up with zeroes. Site i keeps its own logical clock in Vi[i], i.e., before any event (other than a
receive) is executed at site i, Vi[i] becomes Vi[i] + 1. On the other hand, Vi[j] represents the knowledge

that site i has of the activity at site j. All messages include the timestamp of their corresponding send
event. Thus, when a message with timestamp W is received by site i, the local clock is updated in this way:

 0 ≤ j ≤ N-1: Vi[j] = max(Vi[j], W[j])

 Vi[i] = Vi[i] + 1

If a ∈ Hi, then V(a) is the value of Vi when a is executed. Let V and W ∈ SV, the partial order and its

companion relations , and can be defined like:

Figure 4. Execution timestamped with Lamport Clocks.

Figure 5. Hasse diagram corresponding to Lamport Clocks

Site 0:

Site 1:

Site 2:

Site 3:

e0,1 e0,2 e0,3 e0,4 e0,5

e1,1 e1,2 e1,3 e1,4

e2,1 e2,2 e2,3 e2,4 e2,5

e3,1 e3,2 e3,3 e3,4 e3,5 e3,6

<1> <2> <3> <4> <5>

<1> <2> <4> <5>

 <1> <3> <4><2> <6>

<1> <2> <3> <4> <5> <6>

L(e0,1) = L(e1,1) = L(e2,1) = L(e3,1)

L(e0,2) = L(e1,2) = L(e2,2) = L(e3,2)

L(e0,3) = L(e2,3) = L(e3,3)

L(e0,4) = L(e1,3) = L(e2,4) = L(e3,4)

L(e0,5) = L(e1,4) = L(e3,5)

L(e2,5) = L(e3,6)

→V

→V

=V ←V ||
V

7

V W ⇔ 0 ≤ j ≤ N-1 : V[j] = W[j]
V W ⇔ 0 ≤ j ≤ N-1 : V [j] ≤ W[j] and ∃k such that V[k] < W[k]
V W ⇔ W V

V | W ⇔ ∃k such that V[k] < W[k] and ∃j such that V[j] > W[j].

Mattern [10] and Fidge [6] proved that the map V.stamp between the poset <H, →> and the poset <SV, >

is an order-isomorphism1. Vector clocks satisfy the strong clock condition and, therefore, they characterize
causality (see Definition 9). Figure 6 shows the same execution previously presented in Figure 2. Each
event has been timestamped with its respective vector clock. The causal relations between any pair of
events are correctly established with the tests presented in this section The Hasse diagram corresponding to
the ordering of these vector clocks would be identical to the Hasse diagram presented in Figure 3.

6 Plausible Clocks

The vector clocks technique provides a logical clock that captures completely the causality relation
between events in H. However, vector clocks require one entry for each one of the N sites of the system. If
N is large, several scalability and efficiency problems arise [11, 13]. There are growing storage costs
because each site must reserve space to keep its local version of the vector clock and, depending on the
particular system, vector times associated with certain events and data structures must be stored as well.
Every message must be tagged with the current vector clock of the sender site. Since it can be expected that
the total number of messages exchanged increases when the number of sites in the system gets larger, there
is a considerable added overhead to the communications of such systems. Charron-Bost proved in [1] that
given a distributed system with N sites, it is always possible to find a distributed history whose causality
can only be captured by vector clocks with at least N entries. Plausible clocks [14] do not characterize
causality completely, but they can be constructed with a small and constant number of elements and yet
they can decide the causal relationship between arbitrary pairs of events with an accuracy close to vector
clocks, in particular when the computation follows a Client/Server communication pattern.

1. Actually, the order-isomorphism is between vector clocks assigned to events and the causality relation among these events. For instance, the “concurrency bubble”
concept presented in [12] describes the existence of vector timestamps for which there cannot be a corresponding event in certain distributed histories.

Figure 6. Vector Clock timestamps of events in a distributed execution.

=V

→V

←V →V

||
V

→V

Site 0:

Site 1:

Site 2:

Site 3:

e0,1 e0,2 e0,3 e0,4 e0,5

e1,1 e1,2 e1,3 e1,4

e2,1 e2,2 e2,3 e2,4 e2,5

e3,1 e3,2 e3,3 e3,4 e3,5 e3,6

<1,0,0,0> <2,0,0,0> <3,0,0,0> <4,0,0,0> <5,1,3,0>

<0,1,0,0> <0,2,0,0> <3,3,0,0> <3,4,0,0>

<0,0,1,0> <0,1,3,0> <0,1,4,0><0,1,2,0> <3,4,5,0>

<0,0,0,1> <0,0,0,2> <0,0,0,3> <0,0,0,4> <0,0,0,5> <0,0,0,6>

8

Definition 10. A logical clock P = (<SP, >, P.stamp) is plausible if it is a plausible map from the poset

<H, →> to the poset <SP, > (see Definition 4). This is, P is plausible if ∀a, b ∈ H:

a = b ⇔ a b
a → b ⇒ a b �

A plausible clock P assigns unique timestamps to each event. Besides, P never confuses the direction of
causality between any two ordered events (i.e., it is an order-preserving map). Thus, if in fact a causally
precedes b, P will always report a b, or if b causally precedes a, P will always report a b. If P states

that a b, this necessarily is correct, because if the actual causal relation were a = b, a → b or a ← b, it

would have been reported as a b, a b or a b, respectively [14]. Vector clocks are plausible clocks, but
not every plausible clock P characterizes causality since it is possible that a || b, but instead P reports a b
or a b. Several examples of plausible clocks are presented in [13, 14]. In this paper, we consider the plau-
sible clocks R-Entries Vector (REV), K-Lamport (KLA) and Combined (COMB).

6.1 R-Entries Vector (REV)
The plausible logical clock REV = (<SREV, >, REV.stamp) uses vectors of a fixed size R ≤ N, which is
independent of the number of sites in the distributed system. Site i updates entry i modulo R, since R may
be less than N then multiple sites share the same entry in the vector (other mappings between sites and
entries of the vector are possible). A similar technique is proposed by Haban and Weigel [8], where
processes that are executed at the same site share an entry in the vector clock; REV does not have this
restriction and allows processes running on different sites to share an entry in the vector. The mechanisms
for timestamp comparison and assignment of timestamps to events (i.e., REV.stamp) are similar to the ones
defined for vector clocks (see Section 5). The elements of SREV are of the form <s, V> where s uniquely
identifies each site, and V is a R-dimensional vector of integers.

Definition 11. Let v = <sv, V> and w = <sw, W> ∈ SREV, then:

• v w ⇔ (sv = sw ∧ V[sv modulo R] = W[sw modulo R])

• v w ⇔ (sv = sw ∧ V[sv modulo R] < W[sw modulo R]) ∨
 (¬(sv = sw) ∧ V < W ∧ V[sw modulo R] < W[sw modulo R])

• v w ⇔ ¬(sv = sw) ∧ ¬(v w) ∧ ¬(v w)

Vectors V and W are compared using the tests previously presented in Section 5, with the only difference
that they have R entries instead of N. �

Figure 7 shows the same execution presented in Figure 2, but using timestamps from REV (R = 2). In order
to simplify, the part of the timestamp corresponding to the site identification has been omitted. This clock
establishes correctly the causal relationship between 320 out of the 400 possible pairs of events. For
instance, REV recognizes that e3,1 || e0,2, but mistakenly reports e3,1 e1,2, when the true is that e3,1 || e1,2.
Figure 8 presents the Hasse diagram corresponding to the timestamps that REV generates for this execu-
tion. Notice that, albeit there are extra connections in Figure 8, the general structure of this diagram is sim-
ilar to the one in Figure 3 (this is a consequence of the requirements of plausible clocks). The bold lines
represent the actual causal relationships between events, while the thin lines are spurious connections that
are artifacts of the imperfection of REV. Notice that the direct connection between e2,3 and e0,5 has been

omitted because it can be obtained by transitivity through e2,4.

→P

→P

=P

→P

→P ←P

||
P

=P →P ←P

→P

←P

→REV

=REV

→REV

||
REV →REV ←REV

→REV

9

6.2 K-Lamport (KLA)
Timestamps in the logical clock KLA = (<SKLA, >, KLA.stamp) are of the form <s, V> where s uniquely
identifies each site, and V is a K-dimensional vector of integers. Each site keeps a Lamport clock together
with the maximum timestamp of any message received by itself and by the K-2 previous sites that directly
or indirectly have had communications with this site. When a message with timestamp <sj, W> is received
at a site whose current clock is <si, V>, V[0] becomes max(V[0], W[0]) + 1. Entries V[1] to V[K-1] are

max-ed with entries W[0] to W[K-2], respectively.

Definition 12. Let v = <sv, V> and w = <sw, W> ∈ SKLA, then:

• v w ⇔ (sv = sw ∧ V[0] = W[0])

• v w ⇔ (sv = sw ∧ V[0] < W[0]) ∨
 (¬(sv = sw) ∧ V[0] ≤ W[1] ∧ V[1] ≤ W[2] ∧ ... ∧ V[K-2] ≤ W[K-1])

• v w ⇔ ¬(sv = sw) ∧ ¬(v w) ∧ ¬(v w)

Figure 7. Execution timestamped with REV (R=2)

Figure 8. Hasse diagram for execution timestamped with REV (R=2).

Site 0:

Site 1:

Site 2:

Site 3:

e0,1 e0,2 e0,3 e0,4 e0,5

e1,1 e1,2 e1,3 e1,4

e2,1 e2,2 e2,3 e2,4 e2,5

e3,1 e3,2 e3,3 e3,4 e3,5 e3,6

<1,0> <2,0> <3,0> <4,0> <5,1>

<0,1> <0,2> <3,3> <3,4>

 <1,0> <3,1> <4,1><2,1> <5,4>

<0.1> <0,2> <0,3> <0,4> <0,5> <0,6>

REV(e0,2)

REV(e0,4)

REV(e0,3)

REV(e0,1)

REV(e0,5)
REV(e3,6)

REV(e3,5)

REV(e3,4)

REV(e3,3)

REV(e3,2)

REV(e3,1)

REV(e2,5)

REV(e2,4)

REV(e2,3)

REV(e2,2)

REV(e2,1)

REV(e1,4)

REV(e1,3)

REV(e1,2)

REV(e1,1)

→KLA

=KLA

→KLA

||
KLA

→KLA ←KLA

10

�

Every case where a || b that is recognized by (K-1)LA, is also recognized by KLA, but the converse is not
always true. Thus, KLA can provide higher ordering accuracy than (K-1)LA. Figure 9 shows the same exe-
cution presented in Figure 2, but using timestamps from KLA (K = 3). This clock fails to establish the
causal relationship between 46 out of 400 possible pairs of events. For instance, it detects correctly that e3,1
|| e1,2, but fails when it reports e1,3 e3,3, since actually e1,3 || e3,3.

Figure 10 presents the Hasse diagram corresponding to the timestamps generated by KLA for this execu-
tion. Notice that the number of false connections is less than the ones produced by REV (see Figure 8).

6.3 Combined Clock (Comb)
A combination of plausible clocks allows that each event has several timestamps coming from different
plausible clocks. These clocks are used to compare their respective timestamps, and a causal relationship is
reported only if all the clocks agree on the same result. Whenever that at least one clock disagrees on the
possible causal relationship between events a and b, this means that a || b. This “rule of contradiction of

Figure 9. Execution timestamped with KLA (K = 3).

Figure 10. Hasse diagram for KLA (K = 3)

KLA←

Site 0:

Site 1:

Site 2:

Site 3:

e0,1 e0,2 e0,3 e0,4 e0,5

e1,1 e1,2 e1,3 e1,4

e2,1 e2,2 e2,3 e2,4 e2,5

e3,1 e3,2 e3,3 e3,4 e3,5 e3,6

<1,0,0> <2,0,0> <3,0,0> <4,0,0> <5,3,1>

<1,0,0> <2,0,0> <4,3,0> <5,3,0>

 <1,0,0> <3,1,0> <4,1,0><2,1,0> <6,5,3>

<1,0,0> <2,0,0> <3,0,0> <4,0,0> <5,0,0> <6,0,0>

KLA(e0,2)

KLA(e0,4)

KLA(e0,3)

KLA(e0,1)

KLA(e0,5) KLA(e3,6)

KLA(e3,5)

KLA(e3,4)

KLA(e3,3)

KLA(e3,2)

KLA(e3,1)

KLA(e2,5)

KLA(e2,4)

KLA(e2,3)

KLA(e2,2)

KLA(e2,1)

KLA(e1,4)

KLA(e1,3)

KLA(e1,2)

KLA(e1,1)

11

plausible clocks” is proved in [14]. Besides, it is established that a combination will always be at least as
accurate as any of its components and it is very likely that it will be better. The product of ordered sets, as
presented in Definition 5, is equivalent to the combination of plausible clocks:

Definition 13. Let P1=(<S1, >, P1.stamp), ... , Pn=(<Sn, >, Pn.stamp) be plausible clocks. The plausi-

ble clock P×=(<S1 × ... × Sn, >, P×.stamp) is a combination of P1, ... , Pn iff:

 ∀a ∈H : P×.stamp(a)= (P1.stamp(a), ... , Pn.stamp(a))

(v1, ... , vn) (w1, ... , wn) ⇔ ∀ i: vi wi �

The logical clock Comb, as defined in [14], is a combination of the clocks REV and KLA. As an illustra-
tion, if the clocks REV and KLA used to timestamp the execution presented in Figures 7 and 9 were com-
bined to timestamp the same execution history, the number of errors is reduced to 38 out of 400 pairs of
events. Figure 11 presents the Hasse diagram for the timestamps generated by Comb.

7 Conclusions

In order to analyze and understand the behavior of a distributed system, the causality among events in the
corresponding distributed history must be captured. This relationship, which defines a partially ordered set
over these events [9], can be represented by using logical clocks. These clocks establish a particular format
of logical timestamp, assign these timestamps to events, and, finally, define rules to compare these logical
timestamps. Since a logical clock induces a partially ordered set on its corresponding timestamps, its use
can be understood as a mapping between the poset induced by the causality relationship and the poset
induced by the rules of the specific logical clock.

Lamport clocks can be implemented efficiently [9], but they induce a total order of the events and, as the
Hasse diagram in Figure 5 shows, every single pair of concurrent events is wrongly ordered. This comes
from the fact that the mapping between events in the distributed history and Lamport clocks is just an
order-preserving map.

The mapping with vector clocks is an order-isomorphism [4, 5, 6, 10], and, therefore, these clocks can pre-
cisely order events of a distributed system and detect concurrent events (see Figure 6). However, as it is

Figure 11. Hasse diagram for Comb.

→1 →n

→×

→× →i

Comb(e0,2)

Comb(e0,4)

Comb(e0,3)

Comb(e0,1)

Comb(e0,5)
Comb(e3,6)

Comb(e3,5)

Comb(e3,4)

Comb(e3,3)

Comb(e3,2)

Comb(e3,1)

Comb(e2,5)

Comb(e2,4)

Comb(e2,3)

Comb(e2,2)

Comb(e2,1)

Comb(e1,4)

Comb(e1,3)

Comb(e1,2)

Comb(e1,1)

12

proved in [1], they require as many entries as sites in the system. When the number of sites is large, serious
problems of scalability and efficiency arise [13].

Plausible clocks have been proposed as an alternative to vector clocks that, under appropriate circum-
stances, keep most of the accuracy of vector clocks while allowing efficient implementations [13, 14]. A
mapping of posets is said to be plausible if it is an order-preserving that assigns unique images to each ele-
ment of the original set and vice versa. Thus, a plausible clock satisfies the weak clock condition and
assigns unique timestamps to each event. There are many possible implementations of plausible clocks.
For the purposes of this paper, we presented REV (variant of vector clocks where R-entries vectors are
used; since R is less than the number of sites, several entries are shared by more than one site of the system
and therefore a mapping between sites and entries in the vector must be defined), KLA (extension of Lam-
port clocks where each site keeps a standard Lamport clock together with a collection of the maximum
timestamp of any message received by itself and by the K - 2 previous sites that directly or indirectly have
had communications with this site), and Comb (combination or product of the posets [3] induced by REV
and KLA, which can be proved to be at least as good, and possibly better than, as any of its components).
The Hasse diagrams corresponding to each one of these clocks (see Figures 8, 10 and 11) exhibit a number
of false or spurious connections that explain the imperfection of these clocks.

References

1 B. Charron-Bost, “Concerning the size of logical clocks in Distributed Systems”, Information Processing Letters 39, pp. 11-16.
1991.

2 P. Crawley and R. P. Dilworth, “Algebraic Theory of Lattices”, Prentice-Hall Inc., 1973.

3 B.A. Davey and H.A. Priestley, “Introduction to Lattices and Order”, Cambridge University Press, 1990.

4 C.J. Fidge, “Timestamps in message-passing systems that preserve the partial ordering”, Proc. 11th Australian Comp.Science
Conference, Univ. of Queensland, pp. 55-66, 1988.

5 C.J. Fidge, “Logical Time in Distributed Computing Systems”, Computer, vol 24, No. 8, pages 28-33, August 1991.

6 C.J. Fidge, “Fundamentals of Distributed Systems Observation”, IEEE Software, vol 13, No. 6, November 1996.

7 P. C. Fishburn, “Interval Orders and Interval Graphs”, John Wiley and Sons, New York, 1985.

8 D. Haban and W. Weigel, “Global Events and Global Breakpoints in Distributed Systems”, Proceedings of the 21st Hawaii
International Conference on Systems Sciences, January 1988.

9 L. Lamport, “Time, clocks and the ordering of events in a Distributed System”, Communications of the ACM, vol 21, pp. 558-
564, July 1978.

10 F. Mattern, “Virtual Time and Global States in Distributed Systems”, Conf. (Cosnard et al (eds)) Proc. Workshop on Parallel
and Distributed Algorithms, Chateau de Bonas, Elsevier, North Holland, pp. 215-226. October 1988.

11 R. Schwarz and F. Mattern, “Detecting causal relationships in distributed computations: in search of the holy grail”, Distrib-
uted Computing, Vol. 7, 1994.

12 F. Torres-Rojas, “Efficient Time Representation in Distributed Systems”, MSc. Thesis, College of Computing, Georgia Insti-
tute of Technology, 1995.

13 F. Torres-Rojas, “Scalable Approximations to Causality and Consistency of Distributed Objects”, Ph.D. dissertation, College
of Computing, Georgia Institute of Technology. July 1999.

14 F. Torres-Rojas and Mustaque Ahamad,“Plausible Clocks: Constant Size Logical Clocks for Distributed Systems”, Distributed
Computing, pp. 179-195, December 1999.

