Partially Ordered Sets and Logical Clocks for Distributed Systems

Francisco J. Torres-Rojas and José Castro-Mora
{ftorres, jcastro}@itcr.ac.cr
Departamento de Computacion, Instituto Tecnoldgico de Costa Rica
Costa Rica

Abstract. In order to characterize and capture the causal relationships between events in a distributed history, log-
ical clocks have been used in distributed systems with diverse degrees of precision and efficiency (e.g., from effi-
cient but inaccurate Lamport clocks to precise but expensive vector clocks). In this paper, we analyze the
representation of logical clocks as mappings between partially ordered sets and relate the accuracy of such clocks
with the number of spurious connections manifested in the correspondent Hasse diagrams.

Keywords: Distributed Systems, logical clocks, causality, partially ordered sets.

1 Introduction

In his seminal paper of 1978, Lamport observed that causal relationships among events in a distributed
history induce a partial order on them, and proposed the use of logical clocks for ordering these events
according to their causality [9]. The implementation of these clocks do not require synchronized physical

clocks since they can be accomplished by including additional information with messages exchanged in
the system. These logical clocks strive to capture the causality relation, i.e., given the logical timestamps of
two events, the clock decides whether they are concurrent or causally related.

Scalar logical clocks can be implemented efficiently [9], but when events are timestamped with these
clocks, two events may appear to be ordered even when they are concurrent. On the other hand, vector
clocks can precisely order events of a distributed system and detect concurrent events [4, 5, 6, 10], but they
require as many entries as sites in the system. Charron-Bost’s results [1] discourage any attempt to define a
“constant size” clock that completely captures the causality relation. When the number of sites is large,
problems of scalability and efficiency arise [13]. Plausible clocks have been proposed as an alternative to
vector clocks that, under appropriate circumstances, keep most of the accuracy of vector clocks while
allowing efficient implementations [13, 14].

In this paper, we analyze the representation of logical clocks as mappings between partially ordered sets.
The accuracy of such clocks is related with the number of “spurious” connections manifested in the corre-
spondent Hasse diagrams. We consider a system where a set of processes communicate exclusively by
exchanging messages, all communication is asynchronous and point-to-point, and all messages are deliv-
ered correctly. There is neither common memory nor a common physical clock, and the relative speed of
the processes is unknown. We briefly present some key background material on partially ordered sets in
Section2. A general model for logical clocks is explained in SecBo8ectiord applies this model to the

case of Lamport clocks, and Sectlloes the same for vector clocks. Severalgitae clocks (namely,

REV KLA andCOMB) are explored in Sectigh Finally, Sectiorv offers the conaisions of this paper.

2 Partially Ordered Sets

In this section, we present some standard definitions from ordered sets theory [2, 3, S]bd.ein
arbitrary set. Abinaryrelation ~ overSis a setD0 Sx S. If (a, b) Ll D, we denote this a&~ b.

Definition 1. A relation ~ overS is:
Reflexivedf Jab 0 S a~b0O b ~a

Irreflexiveif Dab 0 S a~b 0O —(b ~a)
Transitiveif Oa,b,c 0 S (a~b) O((~c)d (a~c) O

Definition 2. The pair <S, ~> is apartially ordered sefor posetfor short) if ~ is a binary relation ov&
that is irreflexive and transitive. We also say that ~pauwial order relation over S. If a, b O Sare such
that @# b) O-(a ~b) O-(b ~a), thenaandb arenon-comparableThis situation is denoted a§{b. O

Posets are usually represented witHassediagram where directly comparable elements are connected
with lines (transitive connections are not represented). Besides hifthen elementb is drawn at a higher
position than elemerd; notice, however, that the contrary is not always true, i.e., the fact that element
drawn at a higher position than elemartoes not necessarily imply that- b. For instance, le§ be the

set {a, b, ¢, d, e, f} and let ~ be the binary relation given by the set), (a, ¢), (a, d), (a, e), (&, f), (b,),

(b, d), (b, €, (b, 1), (c, e, (c, 1), d,e), d,T), (e)} Figure 1 presents the corresponding Hasse diagram.

f

a

Figure 1. Hasse diagram

Definition 3. Given two posets §, ~> and <, <>, we can map the elements®fo the elements of. As
defined in [3], we say that mapis:

Order-preservingf Ja,b 0 S a~b O ¢(@) < ¢d(b)

Order-embeddingf Ja, b0 S:a~b = ¢(a) < ¢(b)

Order-isomorphisnif it is an order-embedding that maponto T. O

The difference between an order-preserving map and an order-embedding map resides in the double impli-
cation of the definition, i.e., ip is an order-embedding map, th&(@) < ¢(b) implies thata~b, Oa, b O

S, which is not always the case for an@rgresering map. A mag is an order-isomorphism if, besides

of being an order-emhding map, it also happens that every elerbeifl is ¢(a) for somea O S.

Definition 4. Given two partial orders 8§ ~> and <, <>, we say that a majp from the elements af to
the elements of is plausibleif Oa, b O S:

a=b - ¢(a)=0d(b)
a~b O ¢@)=< d(b) O

In other words, a map of ordered sets is plausible if it is order-preserving and no two different elements of
setSare mapped to the same elemeni @ind vice versa.

Definition 5. Let <Q,,04;>, ..., <Q,,[J,> be n posets. Theroductof these n posets [3] is the poséf« ...
x @, O.>, wherell is the coordinatewise order:

(Xgy - Xp) G Yo 0¥ = Oiix O O

3 Posets, Causality and Logical Clocks

The local history of sité is a sequence of evernts = g,g,... that are executed at siteThe global or
distributed historyH of a distributed system is the set of all the events occurring at all sites of the system.

Definition 6. Lamport [9] defines theausalityrelation “— " over events as the smallest relation such that:

 If gjande U H and j <k, therg; - e

* If &y is sendM), g, is its correspondingeceive(M), i.e., M is the same message in both cases, with
arbitraryi, j, m and n, theg,, - g,

e Hab,cOHifa - bandb - cthena - c.

If neithera - b andb - aholds between two fferent eventsa andb, thena andb areconcurrent This
situation is denoted ag|| b. O

Since the causality relation is irreflexive and transitive, it defines a posét <. > over the events of the

system (a pair of concurrent events are non-comparable). We say-thbt= b - a. Figure 2 shows an

execution of a distributed system with 4 sites. &lvews indicate the sending areteining of messages.
Since <+, - > is a poset, Figure 3 presents the Hasse diagram corresponding to the same execution.

. . m
Site O: S .L /
Site 1: era ? ,\L

: L
Site 2: &1 &,
Site 31 e €32 €3 €4 €5 €6

Figure 2. Distributed History.

Lamport proposed the use lofgical clocksfor ordering events in a distributed system according to their
causal relationships [9]. These clocks do not need synchronized physical clocks since they can be imple-
mented by including additional information with messages exchanged in the system. These clocks strive to
capture the causal relationships between events in a distributed history.

€5
€0,5 es6
€35

€ 4
€0,4 €34
€0,3 €3 €33
€0,2 €12 €2 €32
€0,1 €11 €1 €31

Figure 3. Hasse diagrantorresponding to the execution of Figure 2.

Definition 7. Let atimestambe a structure that represents an instant in time as observed by some site. The
particular details of this structure are left open. For a distributed system with global thiselygical

clockX (also called &ime Stamping Systexiin [14]) is a pair (S, % >, X.stamp), where:
« S is a set of timestamps.

« % is anirreflexive and transitive relation defined on the elemeng.of

¢ <5y % >isaposet.

« X.stampis thetimestamping functiomappingHto Sy.

For all timestamps, w 0 Sy, we define the additional relations:

vEiw = v=w

VvEw owXyv

VIw e a(vEwO-(v % wO-@ & w O

X.stamp assigns timestamps to each eventbft can be expressed as a series of rules for updating the
logical clock of a site before assigning a timestamp to an eveht bfore interestingly, it can also be

understood as a mapping between posets: the pébet x is mapped to the posetg, % >. When it is
clear from the context, we just u¥) instead ofX.stamp(a), Ja O H.

Since %, is irreflgive, the relationst, X 2 ani:l are mutually disjoint. Their purpose is to reflect cau-
sality, equality and concurrency from the point of viewkofThese relations are defined over timestamps,
but we allow them to directly compare eventsHnConsidera,b 0 H with timestampsX(a) and X(b),
respectivelyX reports the causal relationship (not necessarily correct) beaab, in this way:

a b~ X@ % Xb) - X“believes” thata andb are the same event.
b = X(a % X(b) = X"“believes” thata causally precedds
X
X

b = X(a) X(b) = X “believes” thath causally precedes
b= X@ | X(b) = X“believes” thata andb are concurrent.

> Tx]I

a
a
a

Definition 8. A logical clockX = (<S5, % >, X.stamp) is consistent with causalifyt1] if Da,b O H

a-bOdaxhb O

The previous definition is also known as theakclock condition[9]. It is easy to notice the similarity of
this definition with the first clause of Definition 3. Thus, we say that a logical cloek (<Sy,* >,
X.stamp) is consistent with causality if the mXpstampis an order-preserving map.

Definition 9. A logical clockX = (<5, % >, X.stamp) characterizes causalii1] if Ja,b O H

a=b <a2b
a-b esaXhb

allb -aib O

This is also called thstrongclock condition[11]. Once again, Definition 3 can be used and, thus, a logical
clock X = (<S¢, % >, X.stamp) characterizes causality if the map between the pddet.< and the poset

<5, % > is an order-isomorphism.

4 Lamport Clocks

Lamport Clocks are efficient scalingical clocks that are consistent with causality [9]. These clocks map
the set of events to a set of integers, in such a way that if @i®otausally before evebt thena receives
a lower timestamp tha. We define the logical clockamportas the pait=(<S,% >, L.stamp), where

S is a set of positive integers greater than zero and the order rélatiotrivially defined as:
XbHyex<y,Ox,yd§

In order to implement the mapstamp, each siteé maintains an integer counteey that initially has a value
of zero, and every message sent byisiteludes a timestamp which is the valud_pivhen the message
was sent. Before an event (other thaeaeive) is executed at sitel ; is increased by 1, when a message
with timestamD is received by site thenL; becomes max, D) + 1. Ifais an event o, thenL(a) is

the value oL; whena is executed. Lamport clocks exhibit the weak clock condition, thisaig 00 H

a-b OL@"Y Lb) - L@ < L(b)

Lamport clocks capture the order between causally related events but they do not detect concurrency
between events and just by inspecting two timestamps, it cannot be decided if the associated events are
causally related or concurrent. Figure 4 shows the same distributed execution of Figure 2, but now each
event has been timestamped with its corresponding Lamport clock. Figure 5 shows the Hasse diagram
induced by the ordering of these logical clocks. By comparing Figures 3 and 5, we notice that these clocks
are not an order-embedding map, but just an order-preserving map. A number of inexistent causal connec-
tions are reported (in fact, every pair of concurrent events is falsely ordered). For instance, it is reported
thatey , is causally before thaay 5 which is false.

<1> <2> <3> <4> <5>
Site 0: i i
€0,1 €0,2 €0,3 €0,4 €,5
<1> <2> <4> <5>
Site 1:
e €15 €13 €14
<1> <2> <3> 4> <6>
Site 2: B] o
€1 € €3 €4 €5
<1> <2> <3> <4> <5> <6>
Site 3: o o o)))
€3, €3, €33 €34 €35 €6

Figure 4. Execution timestamped with Lamport Clocks.

L(ez5) = L(egp)

L(egs) =L(e1,4) =L(e35)

L(€p,4) =L(e1,9 = L(&2,4) = L(E34)
L(eg3) = L(ez39) = L(e33)

L(epo) = L(ey o) =L(ey) = L(es>)

L(eg,1) =L(e,1) =L(e21) = L(e31)

Figure 5. Hasse diagram corresponding to Lamport Clocks

5 Vector Clocks

Fidge [4, 5, 6] and Mattern [10] independently proposed the technique of wémtks that permits a
complete characterization of causality. It consists of a mapping from events in the distributed history to

integer vectors. We defineectorclocksas the logical clock = (<Sy ¥ >, Vistamp), whereS, is a set of

N-dimensional vectors of integers (N is the number of sites in the distributed system). Eakbegtean
integer vectoW; of N entries, where N is the number of sites in theibisted system. Initially, this vector

is filled up with zeroes. Site keeps its own logical clock iWj[i], i.e., before any event (other than a
receive is executed at siteg Vi[i] becomesVi[i] + 1. On the other handj[j] represents the knowledge

that sitei has of the activity at sitp All messages include the timestamp of their corresponsimgl
event. Thus, when a message with timests¥nip received by site the local clock is updated in this way:

0< j < N-1: V;[j] = max(V;[j], W)
Vili] = Vili]+ 1

If a O H;, thenV(a) is the value oV; whena is executed. Le¥ andW O S, the partial order%. and its

companion relationg .Y arll can be defined like:

=

= 0<j<N-1: V[]= W]
= 0<j<N-1: V][] £W]J[j] and [k such thaV [K] < W[kK]
=W Y%V

= [k such thaw[K] < W[k] and [J such thatV[j] > WI]]].

< < <L
5T<l<ll<
2 ==

Mattern [10] and Fidge [6] proved that the magtamp between the poset — > and the poset8; ¥ >

is an order-isomorphishVector clocks satisfy the strong clock condition and, therefore, they characterize
causality (see Definition 9). Figure 6 shows the same execution previously presented in Figure 2. Each
event has been timestamped with its respective vector clock. The causal relations between any pair of
events are correctly established with the tests presented in this section The Hasse diagram corresponding to
the ordering of these vector clocks would be identical to the Hasse diagram presented in Figure 3.

<1,0,0,0> <2000> <3,0,0,0> <4000> <5,1,3,0>
Site 0; — &
€0,1 €0,3 eo 4
. <0,1,0,0> <0,2,0,0> <3,3,0,0> <3,4,0,0>
Site 1: o
1,1
. <0,0,.1,0> <0,1,2,0> <0,1,3,0> ,1,4.,0> é5,0>
Site 2:
€1 € €3 €4 €5
. <0,0,0,1> <0,0,0,2> <0,0,0,3> <0,0,0,4> <0,0,0,5> <0,0,0,6>
Site 3: O o o 0 o [l
€31 €32 €33 €34 €35 €36

Figure 6. Vector Clock timestamps of events in a distributed execution.

6 Plausible Clocks

The vector clocks technique provides a logical clock that captures completely the causality relation
between events if. However, vector clocks require one entry for each one of the N sites of the system. If

N is large, several scalability arafficiency poblems arise [11, 13]. There are growing storage costs
because each site must reserve space to keep its local version of the vector clock and, depending on the
particular system, vector times associated with certain events and data structures must be stored as well.
Every message must be tagged with theenu vector clock of the sender site. Since it can be expected that

the total number of messages exchanged increases when the number of sites in the system gets larger, there
is a considerable added overhead to the communications of such systems. Charron-Bost proved in [1] that
given a distributed system with N sites, it is always possible to find a distributed history whose causality
can only be captured by vector clocks with at least N entPilesisible clockd14] do not characterize
causality completely, but they can be constructed with a small and constant number of elements and yet
they can decide the causal relationship between arbitrary pairs of events with an accuracy close to vector
clocks, in particular when the computation follows a Client/Server communication pattern.

1. Actually, the order-isomorphism is between vector clocks assigned to events and the causality relation among theseiestamse Rihe “concurrency bubble”
concept presented in [12] describes the existence of vector timestamps for which there cannot be a corresponding endlisintnedd histories.

Definition 10. A logical clockP = (<S5 &>, Pstamp) is plausibleif it is a plausible map from the poset
<H ->tothe poset &, 2> (see Definition 4). This if? is plausible ifCa, b O H

a=b o

a-b [O

A plausible clockP assigns unigue timestamps to each event. Bedidesyer confuses the direction of
causality between any two ordered events (i.e., it is an order-preserving map). Thus, ihindasally

preceded, P will always reporta & b, or if b causally precedes, P will always reporta £ b. If P states

thata ﬁ b, this necessarily is cect, because if the actual causaltietawerea=b,a - b ora « b, it
would have been reported @a8b, a > b ora £ b, respectively [14]. Vector clocks are plausible clocks, but
not every plausible clocR characterizes causality since it is possible &b, but insteadP reportsa & b

ora & b. Several examples of plausible clocks are presented in [13, 14]. In this paper, we consider the plau-
sible clocksR-Entries VectofREV), K-Lamport(KLA) andCombined(COMB).

6.1 R-Entries Vector REV)

The plausible logical clocREV = (<S>, REVstamp) uses vectors of a fixed sizesRN, which is
independent of the number of sites in the distributed systemi. itkates entry modulo R, since R may

be less than N then multiple sites share the same entry in the vector (other mappings between sites and
entries of the vector are possible). A similar technique is proposed by Haban and Weigel [8], where
processes that are executed at the same site share an entry in the vect®tENod@es not have this
restriction and allows processes running dfedént sites to share an entry in the vector. The mechanisms

for timestamp comparison and assignment of timestamps to even®REistamp) are similar to the ones

defined for vector clocks (see Sectibn The elements o8, are of the form s, V> wheres uniquely

identifies each site, and is a R-dimensional vector of integers.

Definition 11. Letv = <s,, V> andw = <s,, W> [0 Sggy, then:

e VE w = (s,=5,dV[s, modulo R] =W[s, modulo R])

s VR w = (s,=5, 0V[s, modulo R] <W[s, modulo R])O
(€ =sy OV <W OV[s, modulo R] <W[s, modulo R])

e viTw = (s, =5,) O-(vrey w) O 2= w)

VectorsV andW are compared using the tests previously presented in Séctidth the only difference
that they have R entries instead of N. O

Figure 7 shows the same execution presented in Figure 2, but using timestamREY{Rn= 2). In order

to simplify, the part of the timestamp corresponding to the site identification has been omitted. This clock
establishes correctly the causal relationship between 320 out of the 400 possible pairs of events. For
instanceREVrecognizes tha; 4 ||€g o, but mistakenly repore 1 % e ,, when the true is thag 4 ||e; ».

Figure 8 presents the Hasse diagram corresponding to the timestamiREWgenerates for this execu-

tion. Notice that, albeit there are extra connections in Figure 8, the general structure of this diagram is sim-
ilar to the one in Figure 3 (this is a consequence of the requirements of plausible clocks). The bold lines
represent the actual causal relationships between events, while the thin lines are spurious connections that
are artifacts of the imperfection &EV Notice that the direct connection betwen ande, 5 has been

omitted because it can be obtained by transitivity thraygh

<1,0> <2,0> <3,0> <4,0> <5,1>

Site 0;: — & i B B
€0,1 €0,2 €0,3 €,4 €,5
<0,1> <0,2> <3,3> <3,4>

Site 1:

€2

<0.1> <0,2> <0,3> <0,4> <0,5>
Pl L [l [l

€11 €1,2 €13 €14
<1ﬁ> <2,1> <3,1> < ,1>. <ﬁ4>
Site 2:
€21 €2,3 €24

&1 &2 &3 € &5

Figure 7. Execution timestamped withREV(R=2)

REVe3,6)
REVes 5)
REMeg,q) REMe;,4)
REMep3)

REVe;,5)

REMep 2

REMep) REVey1) REVez1) REV(e;,1)

Figure 8. Hasse diagram for execution timestamped witiREV(R=2).

6.2 K-Lamport (KLA)

Timestamps in the logical clogkLA = (<S5 ,,*4 >, KLA.stamp) are of the form s, V> wheres uniquely
identifies each site, and is a K-dimensional vector of integers. Each site keeps a Lamport clock together
with the maximum timestamp of any message received by itself and by the K-2 previous sitesdtiat di

or indirectly have had communications with this site. When a message with timesjawipr s received

at a site whose current clock is;,&/>, V[0] becomeganax'VV[0], W[0]) + 1. EntriesV[1] to V[K-1] are

maxed with entriedV[0] to W[K-2], respectively.

Definition 12. Letv = <s,, V> andw = <s,, W> [0 S/ 4, then:

V= we (s,= s, 0V[0]=WI[0])

« v w e (5= s, OV[0] < WIO]) O
(€ = s,) OV[0] < W[1] OV[1] £ W[2] O...0V[K-2] £ W[K-1])

e Vv K”*W@ ﬂ(sv: %)Dﬂ(vKLA’ W)D"(V <5LAW)

O

Every case whera || b that is recognized byKf1)LA, is also recognized LA, but the converse is not
always true. ThuLA can provide higher ordering accuracy thErAlfLA. Figure 9 shows the same exe-
cution presented in Figure 2, but using timestamps kA (K = 3). This clock fails to establish the
causal relationship between 46 out of 400 possible pairs of events. For instance, it detects corrgtly that

|| €1 2, but fails when it reports; 3« €3 3, since actuallye; 5 || es 5.

<1,0,0> <2,0,0> <3,0,0> <4,0, 0> <5,3,1>

Site 0;: — & -
€0,1 €0,2 €0,3 e04
. <1,0,0> <2,0,0> <4.3,0> <$,3,0>
Site 1: e e
. ,> <2,1,0> <3,1,0> <4 0>
Site 2:

. <1,0,0> <2,0,0> <3,0,0> <4,0,0> <5,0,0> <6,0,0>
Site 3: B o 0 | | |
€31 €32 €33 €34 €35 €36

Figure 9. Execution timestamped withKLA (K = 3).

Figure 10 presents the Hasse diagram corresponding to the timestamps genekataddrythis execu-
tion. Notice that the number of false connections is less than the ones prodiREY (sge Figure 8).

KLA(ep o) KLA(es 9

KLA(e; 0)
KLA(eg) KLA(e3.4)
KLA(eg 9 KLA(e33)
KLA(ey2) KLA(&; 2)
KLA(eo) KLA(e, 1) KLA(e, 1) KLA(&3 1)

Figure 10. Hasse diagram forKLA (K = 3)

6.3 Combined Clock ComB

A combinationof plausible clocks allows that each event has several timestamps coming from different
plausible clocks. These clocks are used to @ammfheir respective timestamps, and a causal resdtip is

reported only if all the clocks agree on the same result. Whenever that at least one clock disagrees on the
possible causal relationship between everasdb, this means thad || b. This “rule of contradiction of

10

plausible clocks” is proved in [14]. Besides, it is established that a combination will always be at least as
accurate as any of its components and it is very likely that it will be better. The product of ordered sets, as
presented in Definition 5, is equivalent to the combination of plausible clocks:

Definition 13. Let P;=(<S;, & >, P;.stamp), ... ,P=(<S,, &>, P.stamp) be plausible clocks. The plausi-
ble clockP,=(<S; x ... x §,, % >, P,.stamp) is acombinationof P, ... ,P,, iff:
OaOH : Py.stamp(a)= (P;.stamp(a), ... ,P,.stamp(a))
(Vi sV 5 Wy, oy wy) = Oty Low, O
The logical clockComh as defined in [14], is a combination of the clo&&V andKLA. As an illustra-
tion, if the clocksREV andKLA used to timestamp the execution presented in Figures 7 and 9 were com-

bined to timestamp the same execution history, the number of errors is reduced to 38 out of 400 pairs of
events. Figure 11 presents the Hasse diagram for the timestanepatgdmyComhb

C
omi{ey) Comites)

Comi(es 5)
Comb(ey,4) Comb(es 4)
Comi(ey,3) Comi(ez 3)

Comlqey,») Comiq(ez »)

Comiqey, 1) Comlge ;) Comlife;, 1) Comi(ez)

Figure 11. Hasse diagram forComb

7 Conclusions

In order to analyze and understand the behavior of a distributed system, the causality among events in the
corresponding distributed history must be captured. This relationship, which defines a partially ordered set
over these events [9], can be represented by using logical clocks. These clocks establish a particular format
of logical timestamp, assign these timestamps to events, and, finally, define rules to compare these logical
timestamps. Since a logical clock induces a partially ordered set on its corresponding timestamps, its use
can be understood as a mapping between the poset induced by the causality relationship and the poset
induced by the rules of the specific logical clock.

Lamport clocks can be implemented effidig [9], but they induce a total order of the events and, as the
Hasse diagram in Figure 5 shows, every single pair of concurrent events is wrongly ordered. This comes
from the fact that the mapping between events in the distributed history and Lamport clocks is just an
order-preserving map.

The mapping with vector clocks is an order-isomorphism [4, 5, 6, 10], amdfdhe these clocks can pre-
cisely order events of a distributed system and detect concurrent events (see Figure 6). However, as it is

11

proved in [1], they require as many entries as sites in the system. When the number of sites is large, serious
problems of scalability and efficiency arise [13].

Plausible clocks have been proposed as an alternative to vector clocks that, under appropriate circum-
stances, keep most of the accuracy of vector clocks while allowing efficient implementations [13, 14]. A
mapping of posets is said to be plausible if it is an order-preserving that assigns unique images to each ele-
ment of the original set and vice versa. Thus, a plausible clock satisfies the weak clock condition and
assigns unique timestamps to each event. There are many possible implementations of plausible clocks.
For the purposes of this paper, we preseREY (variant of vector clocks where R-entries vectors are

used; since R is less than the number of sites, several entries are shared by more than one site of the system
and therefore a mapping between sites and entries in the vector must be d€fiAddxtension of Lam-

port clocks where each site keeps a standard Lamport clock together with a collection of the maximum
timestamp of any message received by itself and by the K - 2 previous sites that directlsectiyrithve

had communications with this site), aBdmb(combination or product of the posets [3] inducedRiEV

andKLA, which can be proved to be at least as good, and possibly better than, as any of its components).
The Hasse diagrams corresponding to each one of these clocks (see Figures 8, 10 and 11) exhibit a number
of false or spurious connections that explain the imperfection of these clocks.

References

1 B. Charron-Bost, “Concerning the size of logical clocks in Distributed Systems”, Information Processing Letters 39, pp. 11-16.
1991.

2 P. Crawley and R. P. Dilworth, “Algebraic Theory of Lattices”, Prentice-Hall Inc., 1973.
B.A. Davey and H.A. Priestley, “Introduction to Lattices and Order”, Cambridge University Press, 1990.

C.J. Fidge, “Timestamps in message-passing systems that preserve the partial ordering”, Proc. 11th Australian Comp.Science
Conference, Univ. of Queensland, pp. 55-66, 1988.

C.J. Fidge, “Logical Time in Distributed Computing Systems”, Computer, vol 24, No. 8, pages 28-33, August 1991.
C.J. Fidge, “Fundamentals of Distributed Systems Observation”, IEEE Software, vol 13, No. 6, November 1996.

I

P. C. Fishburn, “Interval Orders and Interval Graphs”, John Wiley and Sons, New York, 1985.

0 N o O

D. Haban and W. Weigel, “Global Events and Global Breakpoints in Distributed Systems”, Proceedings of the 21st Hawalii
International Conference on Systems Sciences, January 1988.

9 L. Lamport, “Time, clocks and the ordering of events in a Distributed System”, Communications of the ACM, vol 21, pp. 558-
564, July 1978.

10 F. Mattern, “Virtual Time and Global States in Distributed Systems”, Conf. (Cosnard et al (eds)) Proc. Workshop on Parallel
and Distributed Algorithms, Chateau de Bonas, Elsevier, North Holland, pp. 215-226. October 1988.

11 R. Schwarz and F. Mattern, “Detecting causal relationships in distributed computations: in search of the holy grail”, Distrib-
uted Computing, Vol. 7, 1994.

12 F. Torres-Rojas, “Efficient Time Representation in Distributed Systems”, MSc. Thesis, College of Computing, Georgia Insti-
tute of Technology, 1995.

13 F. Torres-Rojas, “Scalable Approximations to Causality and Consistency of Distributed Objects”, Ph.D. dissertation, College
of Computing, Georgia Institute of Technology. July 1999.

14 F. Torres-Rojas and Mustaque Ahamad,“Plausible Clocks: Constant Size Logical Clocks for Distributed Systems”, Distributed
Computing, pp. 179-195, December 1999.

12

