As Unidades de Policiamento executam paralelamente as funções de policiamento próprias, de tal forma que é possível submeter a mesma célula a mais de um tipo de policiamento.

A memória de microinstalação permite a flexibilização do controle, aberto a modificações nos algoritmos de processamento, sem mudanças no hardware.

O elemento comutador é responsável pela transferência de blocos de informação vindos de um PMCA conectado a uma de suas entradas para a porta de saída desejada que está ligada ao seu correspondente PMCA.

A função do bloco Buffer Multiclasse é receber a célula da saída do elemento comutador e colocar na Interface de Linha Física correspondente, entretanto, caso a saída esteja ocupada, é sua função gerenciar o armazenamento das células ATM, que não puderam ser colocadas na saída, em buffers de Memória RAM. As células serão armazenadas de acordo com sua qualidade de serviço (QOS) e com a prioridade da célula (bit de CLP contido no cabeçalho da célula ATM). Portanto, de acordo com estes dois parâmetros recebidos do elemento comutador, o bloco desenvolve sua política de armazenamento de células nos buffers, bem como sua regra de substituição de células quando estes buffers se encontrarem cheios. Ao todo, estão previstos três tipos de serviços e cada serviço com dois níveis de prioridade. Os serviços podem ser classificados como de alta, média e baixa prioridade. Cada célula de cada serviço pode ser taxada de alta ou de baixa prioridade. O bloco Buffer Multiclasse foi desenvolvido no âmbito do Projeto COMATM baseado numa arquitetura proposta em Chau [14].

O bloco ICF (Interface de Camada Física) faz a comunicação entre a Interface de Linha Física e o Sistema de Comunicação ATM utilizando o padrão UTOPIA. O bloco ICF foi desenvolvido no âmbito do Projeto COMATM [15].

O funcionamento de uma rede ATM é baseado no nível estabelecimento de uma conexão entre os parceiros da comunicação. O usuário que deseja acessar a rede, envia células com padrão de cabeçalho que identificam serem células de sinalização e o corpo das células com dados do endereço de destino e tipo de serviço desejado, entre outros. A camada de controle cria a conexão, montando em uma memória no comutador (Memória de Estados das Conexões), todos os identificadores e parâmetros de tráfego necessários para que as células desta conexão possam ser rotas. Entre esses parâmetros também se encontram os dados de policiamento e gerenciamento da conexão.

No processo de comutação de uma célula, são necessárias leituras à Memória de Estados, para a obtenção dos parâmetros de tráfego, e processamento desses parâmetros antes da comutação propriamente dita. Para taxas de transmissão na ordem de 622Mbps, o tempo útil para leitura e processamento (equivalente ao intervalo entre células) é de 680ns. Uma arquitetura que se propõe a realizar essas funções, deve ser ágil o suficiente para a execução de todo o processamento antes da chegada da próxima célula, bem como ter um controle flexível, aberto a modificações nos algoritmos de processamento (devido à falta de padronização, por exemplo), sem mudanças no hardware.

A Figura 8 mostra o diagrama interno da Unidade Processadora Central que tem como função básica o processamento dos parâmetros de roteamento da célula (Novo Identificador de Canal Virtual - Novo VCI, Novo Identificador de Caminho Virtual - Novo VPI, Qualidade de Serviço - QOS, Endereço da porta de saída, etc. Ela é constituída pelos blocos:

1. Unidade de Manipulação de Campos (UMC) e seus registradores
2. Registrador de Dados da Memória (RDM)
3. Registrador de Endereço da Memória (REM)
4. Registradores de uso geral
5. ULA
6. Shift Register
7. Interface com elemento comutador

A Unidade de Manipulação de Campos (UMC) tem como função, separar os parâmetros específicos de roteamento armazenados na palavra da Memória de Estados. Durante a fase de leitura, a palavra da memória é armazenada no RDM, o bus interno F conecta o dado à UMC, que separa os parâmetros específicos de roteamento, contidos na palavra, armazenando-os nos seus registradores associados, no mesmo ciclo de leitura. Os Acessos à memória são feitos através do BUS DE DADOS e BUS DE ENDEREÇOS através dos respectivos registradores (RDM e REM).

Para agilizar os acessos à memória em posições consecutivas, o REM é dotado de operação de auto-incremento. As unidades ULA e Shift Register implementam as operações lógicas e aritméticas necessárias ao processamento. A Interface com Elemento Comutador, recebe o campo de informação da célula a ser rotada (payload), as novas informações de cabeçalho (Novo VPI, Novo VCI) e informações adicionais (QOS, Endereço da porta de saída) que serão enviadas para o Elemento Comutador.

A Figura 9 mostra o diagrama interno da Unidade Processadora de Policiamento que tem como função a execução dos algoritmos de policiamento para a célula a ser rotada e é constituída pelos blocos:
1) Unidade de Manipulação de Campos (UMC) e seus registradores
2) Registradores de uso geral
3) ULA

A Unidade de Manipulação de Campos (UMC) separa os parâmetros específicos de policiamento (limites de antecipação na chegada da célula, espaçamento ideal entre as células, tolerância máxima permitida, etc...) armazenados na palavra da memória de estados, no mesmo ciclo de leitura. A ULA implementa as operações lógicas e aritméticas necessárias ao processamento.

Três Unidades de Policimento compõem a arquitetura do PMCA. Trabalhando em paralelo, as unidades podem submeter a célula a três tipos distintos de policimento em cada ciclo de máquina, ou seja, dependendo do microprograma residente na memória de microprograma, as unidades podem executar policimentos para taxas de pico, taxas médias e taxas do agregado de células de alta/baixa prioridade. Dependendo ainda do microprograma, diversos tipos de algoritmos de policimento (Baile Furado, Baile Furado Virtual, Janelas Saltitantes, etc.) podem ser implementados.

Figura 8: Unidade Processadora Central do PMCA

Figura 9 - Unidade Processadora de Policimento do PMCA