XXIV Conferencia Latinoamericana de Informática — Quito - Ecuador

- **Identificador de nodo destino**: Nodo al que se accede una vez producida la interacción.
- **Click sobre área de pantalla**: Sector de pantalla sensible, de manera que al hacer click sobre ella, el sistema reconoce el evento y avanza hacia nodo destino.
- **Click sobre un botón**: Botón que al seleccionarlo representa un cambio de contexto.
- **Cursor en área definida**: Sector de la pantalla sensible a la presencia del cursor en ella, de manera que cuando el usuario pasa por él con el cursor, el sistema reconoce el evento.
- **Selección de Menú descendente**: Barra con opciones, que al ser seleccionadas despliegan una serie de acciones que se pueden ejecutar (común en aplicaciones no necesariamente MM).
- **Tiempo**: Descripción de lapsos de tiempo, que al completarse es reconocido como evento para avanzar al nodo destino. Utilizado para definir tiempos de espera sin interacción, en que se activa un protector de pantalla o se reinicia la aplicación nuevamente (kioscos interactivos: la aplicación normalmente no queda en punto de origen, debiéndose recomenzar).
- **Variable**: Descripción de eventos, que ocurren más a nivel de aplicación que a nivel de interacción usuario/sistema, aunque éste lo origine en forma indirecta. Basado en capacidades del lenguaje de desarrollo, en que se define variables y un conjunto de operaciones lógicas sobre ellas. La operación lógica define la condición para producir un cambio de un nodo a otro. Ejemplos son el ingreso de nombre y password, contador de número de veces que ingresa a una rutina dada, o un examen de preguntas con alternativas.
- **Tecla**: Se refiere a la captura de la presión de una o más teclas, por ejemplo cambio de contexto originado al presionar la tecla escape (ESC).
- **Comunicación serial/paralela**: Captura de señales y datos que provienen desde dispositivos externos conectados a las puertas serial o paralela.

Figura 3: Estructura de un enlace del modelo

2.3 Organización de la Producción
La coordinación puede realizarse básicamente en dos esquemas, que difieren entre sí en la manera de controlar el proyecto a nivel de implementación.
Coordinación por Temas: A partir del storyboard se puede obtener los medios a desarrollar agrupados por los temas en que están insertos. Así, se entrega paulatinamente las tareas a cada experto, de manera que éste las realice y entregue en el orden y tiempo definido. Esto permite modularizar la entrega, con el objetivo de disponer de todos los medios de un tópico en un determinado momento, para comenzar la etapa de integración, mientras cada experto realiza el siguiente grupo de medios. Así, trabajando en paralelo se reduce el tiempo de desarrollo, y permite hacer entregas paulatinas al cliente, aprobando el producto parcializado en módulos. Por contrapartida, la cantidad de recurso humano y material es alta, dado que se cuenta con personal trabajando simultáneamente.

Coordinación por Medios: Otro esquema es que a partir del diseño expresado en el storyboard, se trabaje en paralelo la obtención del material, la producción y captura de cada uno de los medios, de manera que cuando se inicie la etapa de integración del material se cuente con la totalidad de los medios. Este método propone que los expertos reciban la especificación de los medios que deben producir, los que entregarán en su totalidad a los expertos encargados de la producción y captura. Luego entregan este gran volumen de información y material al equipo de integración, quienes contarán con todos los medios necesarios para enlazar la aplicación completa. Esto sugiere una marcada división de las tareas, dado que la etapa de obtención, producción y captura puede llevar meses, en los que no serán necesarios los expertos en authoring. Una vez entregados los medios, la mano de obra que los generó se requiere sólo para posibles correcciones o mejoras, necesitando solamente expertos de authoring. El jefe de proyecto debe tener una visión total, que dicte las normas para reducir problemas de acoplamiento de medios. En la práctica, es necesario contar durante todo el proyecto con una persona que domine estas etapas, para evitar errores en los formatos de los medios dado su gran volumen. Cambiar tamaño, cantidad de colores, retocar una foto, no son tareas que pueda realizar un experto en authoring. Este método de abordar la producción es más arriesgado que el anterior, dado el alto grado de dependencia que existe de los generadores de los distintos medios.

3. ESTIMACIÓN DE COSTOS, TIEMPO DE DESARROLLO Y ALMACENAMIENTO

Tal vez, ésta es una de las estimaciones más difíciles en la definición de un proyecto MM y en Ingeniería de Software en general. Se aprecia que las tareas no son pocas ni triviales, y la cantidad y perfil profesional de los integrantes del equipo de producción son multidisciplinarios, por lo que es necesario coordinar las tareas y el personal de producción en forma óptima.

Para estas estimaciones se emplea como base la información contenida en el grafo $G(N, E)$ generado por el storyboard del modelo GGG. Cada nodo $n \in G(N, E)$ define una cantidad de medios y tiene asociado valores de tiempo de desarrollo y espacio de almacenamiento según naturaleza y complejidad.

Al recorrer el grafo en su totalidad, se puede obtener el total de los medios contenidos en la aplicación diseñada, y se puede deducir a partir de esto, el tiempo de desarrollo del proyecto, su costo asociado, como también el almacenamiento total requerido por el producto final. A continuación, se presenta la obtención de esta información, uniendo la contenida en grafo $G(N, E)$ generado en el diseño con las tablas de costos asociadas a cada uno de los medios.