A hypermap data model for integrating multimedia and geographical information systems

Jonás Arturo Montilva C.
University of Los Andes
Faculty of Engineering
Computer Science Department
Data & Knowledge Engineering Research Group
Mérida, Venezuela
e-mail: jonas@ing.ula.ve

Abstract
Adding multimedia data types to a digital map increases tremendously its semantic capability and creates a new instrument for cartography and spatial analysis in Geographical Information Systems (GIS). The notion of hypermap has emerged as a response to the need for integrating GIS and Multimedia. This paper describes a hypermap data model, an object-oriented data model that enhances the ability of a GIS to manipulate maps by adding multimedia data types (e.g., unformatted text, still images, audio, animation, and video).

The model has three key benefits: (1) it provides the concepts, constructs, operations and rules needed to define and manipulate hypermaps; (2) it can be used as a framework for the implementation of multimedia GIS; and (3) it serves as a valuable research tool for investigating the integration of GIS and Multimedia Systems at a conceptual level.
1 Introduction

To enhance the functionality of geographical information systems (GIS) with multimedia capabilities is becoming an important research direction. A traditional GIS has the ability to create, access, analyze, and manipulate spatial data, about a given region of the earth, using maps as the unit of manipulation. Maps are created and manipulated by a GIS using graphical data types, such as points, lines, areas and cells called tesselations. Adding multimedia data types, such as unformatted text, still images, audio, animation and video, to a GIS increases the semantic power of its maps, by allowing the user to manage new types of information that were not possible, not even conceivable, with traditional cartography.

The notion of hypermap has recently emerged from the idea of extending the functionality of a GIS with the potential of Hypermedia Systems to manipulate multimedia data types. A hypermap is a hyperdocument extended with geographical references, in which the location of an object on a map is used to retrieve its associated multimedia data through mouse clicking. The notion of hypermap is relatively new. Although several definitions of this notion are found in the literature [LAU90, WAL90, LAU92, BOU92, MON93], no data models have been proposed yet. This paper introduces a hypermap data model. This model can be used for designing and implementing hypermap database management systems, as well as for modeling hypermap applications in GIS.

The hypermap data model was designed based on the conceptual integration of two existing data models: a spatial object-oriented data model proposed by S. A. Roberts, et al., [RGH91] and a hypermedia reference model [MON93]. A software integration method was applied for integrating the concepts, constructs, operation and rules of both models. This method is described in detail elsewhere [MON93]. The details of how the hypermap data model was designed using the mentioned method is given in [MON95].

The paper is organized as follows. Section 2 defines the concept of hypermap based on the notions of hyperdocument and digital maps. The method used for designing the model is described very briefly in Section 3. The concepts, constructs, operations and rules of the hypermap data model are given in Section 4. Finally, the implementation of the model and concluding remarks are discussed in Section 5.
2 The concept of hypermap

The notion of hypermap arises from the integration of hyperdocuments and digital maps. The concept of hyperdocument comes from the Hypermedia-Multimedia technologies; whereas digital maps are the object of study and manipulation in Geographical Information Systems. The definition of each of these two concepts is given first before introducing the notion of hypermap.

2.1 Hyperdocuments

A hyperdocument is a non-sequential document whose structure is a network or hierarchy of nodes (called cards, units, notecards, frames, etc.) composed by multimedia information (i.e., text, graphics, images, audio, animation and video) and interconnected by links. A hyperdocument can be organized, written and read in any order determined only by links between the information nodes. A hyperdocument is created, used, and maintained by a multimedia system. A multimedia system is a software tool that integrates into a single framework the functionality of a database management system, a graphical user interface system, and an information retrieval system [CON87].

2.2 Digital maps

GIS are concerned with the collection, organization, storage, analysis and display of data that represent geographical entities. Geographical entities are characterized by: (a) having a location in a 2D/3D space referred to the earth' surface, as well as other spatial properties (e.g., direction, form and area); and (b) maintaining spatial relationships between them (e.g., neighborhood, distance and spatial inclusion).

The unit of manipulation and display in a GIS is a digital map. A map is a model of the spatial distribution of significant entities of a portion of the earth' surface [BUR86]. Properties of the entities existing on the earth' surface are classified into spatial and non-spatial properties. The spatial properties -- geometrical and topological -- are represented in a digital map using points, lines and areas, which are defined by their location in space with reference to a given coordinate system. An important component of a map is the legend, which associates the non-spatial attributes (non-spatial represented properties) to the spatial objects (spatially represented entities) displayed on the map.
2.3 A definition of hypermap

On the basis of the given definitions of hyperdocument and digital map, we can now define a hypermap as a hyperdocument about a geographical region, in which the spatial properties of its entities are represented by one or more maps linked to multimedia information in the form of text, graphics, images, audio and video. Objects on a map are associated with multimedia information through links. Both the name and the location of an object on a map are used as buttons that when are activated cause the retrieval and display of its associated multimedia information, as shown in Figure 1.

A hypermap is a database that has associated a graphical user interface. The hypermap database stores the information nodes as composite objects whose components are either maps or multimedia objects. The links that associate the information nodes in the database are also objects. The graphical user interface uses windows to display the active information node and buttons to display the links associated with the active node.

![Hypermap Diagram](image)

Figure 1. A hypermap example

3 The design of the hypermap data model

The hypermap data model was designed using an integration method [MON93, MON95]. This method creates a specific-purpose data model based on the integration of two or more existing data models. A set of database requirements that justifies the creation of a new data model must be given as input to the method. The method is composed by four phases: pre-integration, conceptual analysis, conceptual comparison and conceptual integration, as shown in Figure 2.

For the design of the hypermap data model, two models were selected as input models: the object-oriented spatial data model of S.A. Roberts, et al. [RGH91], called here *OO-GIS model*, for brevity; and a
hypermedia reference model (HMR model) described in [MON93]. The OO-GIS model was chosen because of its expressive power for representing spatial objects, and its semantics for modeling and manipulating multiple geometrical representation of the same object, which is essential for modeling spatial databases. The HMR model, on the other hand, is a reference model. It is based mainly on the Lange's hypermedia formal model [LAN90] and is extended with some features drawn from the Dexter Hypertext Reference Model [HAL94]. The data models of KMS [AKS88], Notecards [HAL88], and HyperCard also influenced the design of the HMR model. A description of each of these two models and the details of the application of the integration methodology to the hypermap model design is given in [MON95].

![Diagram](image)

Figure 2. The Integration Methodology: Phases and information flow

4 The hypermap data model

The hypermap data model is described here based on the three properties that characterize a data model: (1) the paradigm(s) used for its design and its associated view of the world (i.e., the way of looking at the world used by the designer and users of the model); (2) the concepts that it supports; and (3) its three components: constructs, operations, and modeling rules.

4.1 The paradigm and view of the world

The hypermap data model was designed based on the object-oriented paradigm. In this paradigm, the real world is modeled in terms of five constructs: object, classes, attributes, methods and messages [KIM90,
GOL89]. The mapping between these constructs and the elements of the real world they represent are shown in Table 1. An ontological view of the world, proposed by M. Bunge [BUN77], is used here to define the meaning of the object-oriented constructs. According to this view, the world is composed of things. A thing may be an entity (concrete object) or a concept (abstract object). All things possess properties. Things that possess the same set of properties form a kind. The set of all values associated with the properties of a thing at a given time is called the state of the thing. A thing changes its state with time. A change of state, called state transformation, is caused by an event.

<table>
<thead>
<tr>
<th>Element of the View</th>
<th>Object-oriented Construct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entity or Concept</td>
<td>Object or Instance</td>
</tr>
<tr>
<td>Kind</td>
<td>Class</td>
</tr>
<tr>
<td>Property</td>
<td>Attribute</td>
</tr>
<tr>
<td>State of a thing</td>
<td>Values of the object's attributes</td>
</tr>
<tr>
<td>Action</td>
<td>Method</td>
</tr>
<tr>
<td>Event</td>
<td>Message</td>
</tr>
</tbody>
</table>

Table 1. The meaning of the object-oriented constructs

The hypermap data model is an object-oriented data model that, besides the mentioned object-oriented constructs, provides a set of specialized constructs (see Figure 3). A hypermap is an object-oriented database that represents information about an application domain in terms of objects, called nodes of information. A node describes the properties of an entity or concept of the application domain using items of information. An item is an object that contains multimedia information in the form of text, graphics, images, sounds, videos or maps. The relationships between the entities or concepts of the application domain are captured by links. A link is an object that relates two different nodes in an organizational, associative, spatial or active way.

4.2 The concepts supported by the model

As an object-oriented database, a hypermap must comply with the concepts that characterize the object-oriented (OO) paradigm. It also supports concepts from GIS data models and Multimedia, as shown in Table 2. The details of how these concepts are supported by the hypermap data model are given in [MON93].
A definition of each of these concepts can be found in the related literature (see, for example, [ZDO90, KIM90, LAU92, PAR89, MOL90]).

<table>
<thead>
<tr>
<th>Object oriented concepts</th>
<th>GIS concepts</th>
<th>Multimedia concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surrogate-based object identity</td>
<td>Vector-based spatial data</td>
<td>Hypertext-Hypermedia</td>
</tr>
<tr>
<td></td>
<td>representation</td>
<td></td>
</tr>
<tr>
<td>ADT & encapsulation:</td>
<td>Multiple representation of</td>
<td>Organizational, associative spatial</td>
</tr>
<tr>
<td>private and subclass visible</td>
<td>geometrical properties</td>
<td>and active linking</td>
</tr>
<tr>
<td>Classification: intension</td>
<td>Topological relationships</td>
<td>Navigation by</td>
</tr>
<tr>
<td>integrated with extension</td>
<td></td>
<td>activation of buttons</td>
</tr>
<tr>
<td>Class specialization with</td>
<td>Map generalization</td>
<td>Composition of units by</td>
</tr>
<tr>
<td>multiple inheritance</td>
<td>through different scales</td>
<td>organizational linking</td>
</tr>
<tr>
<td>Composition by attribute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aggregation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistence by reachability,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>orthogonal to instances</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Concepts supported by the hypermap data model

4.3 The constructs of the model

Besides the general-purpose object oriented constructs -- object, class, attribute, method and message --, the hypermap data model has a set of specialized constructs for supporting the modeling and manipulation of hypermap databases. These constructs are implemented as classes.

A meta-model (a database schema of the model), expressed in terms of the Object Modeling Technique [RUM91], is presented in Figure 3. The structure and behaviour of selected classes of the model are shown in Figures 4-6.

According to the meta-model, a hypermap is a composite object made of spatial information units. It forms a network of multimedia information nodes related by instances of the class Link. Each information node is a composite object. It is composed by a set of instances of two classes: Item or Button, which are specialized into more specific classes. The class Item is specialized into the following subclasses: Textual_Item, Graphical_Item, Image_Item, Audio_Item, Video_Item and Map. These subclasses provide the operations needed to create, manipulate and display multimedia information.

It should be noted that a map is defined as a special kind of item. As defined by the class Map, a map is composed by a set of spatial objects. Each spatial object has a name and one or more spatial
representations. Each spatial representation is an object that defines the geometry of the object for a given scale. This feature allows the user to create and manipulate maps of the same region at different scales.

Figure 3. The schema of the hypermap data model

Since the model supports only a vector representation of spatial data, each geometry of a spatial object is defined by a set of graphical objects, i.e., points, lines and polygons. However, a raster representation can easily be incorporated by specializing the Image_Item class.

The model includes the textual and iconic buttons used in most hypermedia systems. Two new types of buttons emerges from the integration of the OO-GIS and HMR data models. The first type of button, called Sp_Name_Button, uses the spatial object's name to link the object with another information node. The second one, called Spatial_Button, is related to the spatial representation (geometry) of a spatial object. The shape of a spatial button is the geometry of the object, that is, the button is activated by clicking on any location of the object's geometry.

4.4 Operations of the model

The operations of the hypermap model are defined by its classes. Database operations, such as instance creation, object persistence, instance selection, and attribute projection, are provided by the root of the
class hierarchy of the model and inherited by all its subclasses. This root, called OBJECT, is an abstract class that provides the behaviour needed to manage: (1) the persistence of the instances created by the user; and (2) the retrieval of instances from the database. The structure and behaviour of the root class are shown in Figure 4.

<table>
<thead>
<tr>
<th>Object</th>
<th>Hypermaph</th>
<th>Spatial_Info_Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>objId: IDENT</td>
<td>title: STRING</td>
<td>title: STRING</td>
</tr>
<tr>
<td>new delete save</td>
<td>nodes: Set(Spatial_Info_Node)</td>
<td>infoSpace: RECTANGLE</td>
</tr>
<tr>
<td></td>
<td>creationDate: DATE</td>
<td>items: SET(Item)</td>
</tr>
<tr>
<td></td>
<td>author: STRING</td>
<td>itemLocation: DICT(Item, XYCoord)</td>
</tr>
<tr>
<td></td>
<td>open close displayNode deleteNode editNode printNode</td>
<td>buttons: SET(Button)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>buttonsLocation: DICT(Button, XYCoord)</td>
</tr>
</tbody>
</table>

Figure 4. The classes Object, Hypermaph and Spatial_Info_Node

The attributes and methods of the classes Hypermaph and Spatial_Info_Node are shown in Figure 4. A hypermaph database should be opened before being used and closed after its use. The method displayNode presents in a given winchow the current spatial information node. The editNode method changes the display mode of the node to the edit mode, which allows the user to update the content of the node (e.g., add, relocate, and delete its items and buttons).

The items and buttons that conform a spatial information node are organized into an area or information space. Each item or button has a position relative to the origin of this space. The activation of a button on the screen (activateButton) causes the button to activate the associated link, whose final effect is to display the destination node or perform the action indicated by the content of the destination anchor.

<table>
<thead>
<tr>
<th>Link</th>
<th>Item</th>
<th>Button</th>
</tr>
</thead>
<tbody>
<tr>
<td>source: Spatial_Info_Node dest: Spatial_Info_Node</td>
<td>boundingBox: RECTANGLE</td>
<td>linkingElem: Link</td>
</tr>
<tr>
<td>sourceAnchor: Button destAnchor: Item</td>
<td>display edit setBoundingBox compress decompress</td>
<td>activate getSource getDest</td>
</tr>
</tbody>
</table>

Figure 5. The classes Link, Item and Button

Figure 5 illustrates part of the attributes and methods of the classes Link, Item and Button. Item is an
abstract class that generalizes the common structure and behaviour of the different multimedia and map items. The bounding box of an item is the area required by its content when the item is displayed. Methods for display, edition, compression, decompression are redefined for each subclass of Item.

Button is also an abstract class. The operations for navigating through the hypermap are provided by this class. Four subclasses of buttons are provided by the model. The Textual_Button class allows the user to associate a button to a substring of a textual item. The Iconic_Button class defines buttons whose shapes are icons. They are useful for navigating, performing actions or playing sounds, animation, and videos. Spatial objects on a map may have associated two types of buttons: Spatial_Button and Sp_Name_Button. They are classes of buttons for linking a map to another map or activating a multimedia item, such as a sound, an animation or a video related to the map. A Sp_Name_Button is associated with the name of the object and behaves as a textual button. A Spatial_Button takes the shape of the spatial representation (geometry) of the object for a given scale. Clicking on any location of a spatial object on a map causes the activation of its spatial button.

![Figure 6. Classes for the creation and manipulation of maps](image)

The classes for creating and manipulating maps in a hypermap are presented in Figure 6. The Map class, a subclass of Item, preserves all the spatial structure and behaviour of the map type defined by the OO-GIS data model [RGH91]. This feature is the major distinction between a hypermap and those hypermedia systems that display maps as images, but don't provide the mechanism for manipulating the objects on the maps. In contrast, a hypermap allows the user to manipulate interactively the spatial objects associated with each of its maps. The spatial analysis operations that characterize a GIS are provided by the Spatial_Object and Spatial_Representation classes. The user is therefore allowed to perform, on any
map of a hypermap, operations such as intersection, overlay, buffering, calculation of distances, areas, and perimeters, graphical operations (e.g., rotation, translation) and scale transformation.

5 Conclusions

We have introduced, in this paper, a novel specific-purpose data model for the creation, manipulation, navigation, and access of hypermap databases. This model is the result of integrating spatial object-oriented databases and hypermedia databases at a conceptual level. A software integration method was used for designing the model. This method helped to deal with the complexity inherent to the integration of concepts, constructs, operations and rules of the two models that were used as input to the design process.

The notion of hypermap in GIS is very recent and the related literature is limited. Our definition of hypermaps is inspired on that given by Laurini, Milleret-Raffort and Thompson [LAU90, LAU92]. The main differences are that our definition: (1) uses an object-oriented approach; (2) incorporates sound, animation, and video; (3) uses a more comprehensive approach to the internal organization of nodes, which are defined as composite objects comprised by one or more multimedia items or maps, instead of only one item as defined by the Laurini’s approach; and (4) is the result of applying a software integration method to extend the notion of hyper-document with digital maps.

The hypermap data model is being used for the design and implementation of a hypermap database system, an object-oriented software tool for creating, manipulating and maintaining hypermaps. A library of classes in C++ has been developed for implementing the classes of model in a XWindow platform. PEX and Xlib has been used for implementing the windowing and spatial analysis operations.

References

