247

Automata and Weightless Neural Networks

Teresa B. Ludermir* Wilson R. de Oliveiral
Departamento de Informadtica
Universidade Federal de Pernambuco
Recife - PE - Brazil
CEP: 50.739

e-mails: tbl@di.ufpe.br wrdo@di.ufpe.br

Abstract

The aim of this paper is to compare Automata with Weightless Neural Networks (WNN). The WNN

of Aleksaader ([5]) is extended initially to compute Weighted Regular Lang; and then to simulate

the behaviour of a Turing Machine.

1 Introduction

A Weightless neural network is an arrangement of 2 finite number of nodes in any number of layers, with or
without feedback connections between the nodes and where the nodes are RAM nodes storing n-bit words
({4]). The n-bits have been considered to store a number in the interval from 0 to 1 which represents the
‘firing probability’ of the node. There are many advantages of such models in relation to weighted-sum-
and-threshold approaches and the most important one is that this model is straightforward to implement in

hardware.

°Partially supported by Neffield Foundation and FACEPE (Rescarch Foundation of the State of Pernambuco).

'Supported by the Braziian Rescarch Council (CNPq).

13.89

248

Natural networks can casily process temporal information whilst artificial networks to date are not well-
suited for dealing with time-varying input patterns. Different recurrent neural networks models have been
used to learn temiporal spquences, for example see ([16]). Most of these systems simulate the behaviour of
finite state machines. They are able to learn some regular languages. Regular languages are generated by
regular grammars and they are the simplest languages in the Chomsky hierarchy ([12]).

Some basic principles of Automata Theory are necessary for the understanding of this work. These
principles are the concepts of probabilist automata ([26}), weighted regular grammars and languages ([27])
and the Chomsky’s hicrarchy ([12]). These concepts are omitted here but they can be found in the literature
mentioned above. One important result is the relationship between the Chomsky's hierarchy and weighted
regular languages (these are the languages recognised by probabilist automata) which can be illustrated by
the following equations: (1) WRL C RL; (2) WRLN CFL # ¢; (3) WRL N CSL # ¢; (4) WRLNTZL # ¢;
where the abbreviated notation means: WRL is the set of weighted regular languages, RL is the set of regular
languages, ('FL is the set of context-free languages, CSL is the set of context-sensitive languages and TZL

is the set of type zero languages.

2 RAM, PLN, MPLN

Definition 1 A RAM Neural Network is an arrangement of a finite number of neurons in any number of
layers, in which the nearons are RAM (Random Access Memory) nodes. The RAM node is represented in

the Figure 1 below:

The input may represent external input or the output of neurons from another layer or a feedback input.
The data out may be 0's or 1's. The set of connections is fixed and there are no weights in such nets. Instcad
the function performed by the neuron is determined by the contents of the RAM - its output is the value
accessed by the activated memory location. There are 22" different functions which can be performed on N

address lines and these correspond exactly to the 2V states that the RAM can be in, that is a single RAM

13.90

249

read/write mode

| i 10
n-address i |1
t i 2
etminal — DATA OUT
f
2u-l

l

DATA IN
Figure 1: RAM node
can compute any function of its inputs.

Secing 2 RAM node as look-up table (iruth table) the output of the RAM node is described by equation

1 below:

0 seClpj=0
1 seClpj=1
where C[p] is the content of the address position associated with the input pattern p.

Learning in a RAM node takes place simply by wriling into it, which is much simpler than the adjustment
of weights as in a weighted-sum-and-threshold network. The RAM node, as defined above, can compute
all binary functions of its input while the weighted-sum-and-threshold nodes can only compute linearly
separable function of its input. There is no generalisation in the RAM node itsel((the node must store the
appropriate response for every possible input), but there is generalisation in networks composed of RAM
nodes (Aleksander [2]). Generalisation in weightless networks is aflected first by the diversity of the patterns
in the training set, that is, the more diverse the patterns in the training set, the greater will be the number
of subpaiterns scen by each RAM, resulting in a larger generalisation set. Secondly, the connection of RAMs
to common features in the training set reduces the generalisation set.

The introduction of a probabilistic element into the weightless node was proposed by Aleksander (Alek-
sander [4]) after attempting a rapprochement beiween Boltzmann machines and weightless node networks
(Aleksander [3]). lle called ithe node with this probabilistic element a probabilistic logic node (PLN). The

main feature of the PLN model is the unknown state, u, which responds with a randomly generated output

13.91

for inputs on which it has not been trained. Below is given a definition of a PLN node.

Definition 2 A PLN Neural Network is an arrangement of a finite number of neurons in any number of
layers, in which the neufous are PLN (Probabilistic Logic Node) nodes. A PLN node differs from a RAM
node in the sense that a 2-bit number (rather than a single bit) is now stored at the addressed memory
location. The coutent of this location is turned into the probability of firing (i.e. generating a 1) at the
overall output of the nude. In other words, a PLN consists of 2 RAM-node augmented with a probabilistic
outpul generator. As in a simple RAM node, the / binary inputs to a node form an address into one of the
2! RAM locations. Simple RAM nodes then output the stored value directly. In the PLN, the value stored
at this address is passed through the output function which converts it into a binary node output. Thus
cach stored value may be interpreted as affecting the probability of outputting a 1 for a given pattern of

node inputs.

The contents of the nodes are 0's, 1's and u's. u means the same probability to produce as output 0 or
1. The output of the PLN node is described by equation 2 below:
0 se Cp}=0
r=41 se Clp) = 1 2)
random(0,1) se Clp]=u
where C'[p] is the content of address position associated with the input pattern p and random(0,1) is a random
function that generates zeros and ones with the same probability.

Training with PLN networks becomes a process of replacing u’s with 0's and !’s so that the network
consistently produces the correct output pattern in response to training patiern inputs. At the start of
training. all stored values in all nodes are initialised to u, and thus the net’s beliaviour is completely
unbiased. In a fully converged PLN net, every addressed location should contain a 0 or a 1. and the net’s

behaviour will be completely deterministic. !

'There may be PLN locations which are never addressed, c.g. addresses to nodes in the input layer which represcnt n-tuples
not present in the (raining sct, or to nodes in higher layers if some combinations of lower mode outputs never occur. These

unaddressed locations may coutain u without affecting the status of the net as converged.

13,92

251

Weightless PLN nodes also have had notable success in a number of applications. PLN networks have
some advantages relative to RAM networks. First, because there are no pre-exisiing structures in the state
spacce of PLN nets, they are easier to train (Kan-Aleksander {13]). There are a number of training strategies
for PLN networks suclh as the ones in ((Aleksander-Morton [5]), (Myers [22]) and (Al-Alawi-Stonham [1])).
Second, while RAM nets are not very sensitive to small differences in input patterns, PLN nets can be made
very seusitive if they are organised into a pyramid of PLNs (Aleksander-Morton [5]). Thirdly, there are
various sources of noise in the activity of natural neurons in neural networks (Taylor [30]); and with the
stochastic activity of PLNs a slightly more realistic modeling of neural activity is achieved than with RAMs.
Forthly, by experimental results, it is known that when solving the same problem with PLN nets and RAM
nets, it is possible in many cases to save states when using PLN nets. This means that smaller number of
nodes arc necessary when using PLN networks than when using RAM networks.

The Multiple-w;.lued Probabilistic Logic Neuron (MPLN) (Myers [23]) is simply an extension of the PLN.
A MPLN differs from a PLN node in the sense that a g-bit number (rather than two bits) is now stored at
the addressed memory location. The content of this location is alse the probability of firing at the overall
output of the node: Say that q is 3, then the numbers 0 to 7 can be stored in each location of the MPLN.
One way of regarding the actual number stored may be as a direct representation of the firing probability
by treating the number as a fraction of 7. So a stored 2 would cause the output to fire with a probability of
2/7, and so on.

One result of extending the PLN to MPLN is that the node locations may now store output probabilities
which are more finely gradated than in the PLN - for example, it is possible that a node will output 1
with 3% probability under a certain input. The second result of the extension is that learning can allow
incremental changes in stored values. In this way. one reset does not erase much information. Erroneous
information is discarded only after a series of errors. Similarly. new information is only acquired after a
series of expericnces indicate its validity.

There are three important parameters involved in the MPLN models:

13.93

252

e the number of inputs of the node / (and hence 2, the number of stored values in the node): I
has a direct iufluence on the memory requirements and on the tradeoff between generalisation and

memorisation (thisis also true for RAM, PLN and most of the weightless nodes).

o the number of elements representing possible stored values which is defined by the number of bits used
in the nodes: the number of elements used to represent the probability of outputs will influence the

speed of learning.

o the output function which is applied on the addressed content: the output function may be probabilis-

tic, linear, step or sigmoid function as described for the weighted node.

3 Description of the new node

In this section the new node ([18]) is explained. This new node is an extension of the MPLN node and it is
based on ideas {rom the theory of probabilistic automata. Probabilistic automata recognise patterns depend
on two information. The final state of the automaton after the pattern has been submitted to it and the
the overall probability associated wit‘h such pattern. If the final state of the automaton belongs to the set of
final states of the language to be recognised, then the probability associated with the pattern is compared
with the threshold associated with the language. Only if the probability is bigger than the threshold, the
pattern is considered accepted by the automaton as belonging to the language in question.

To simulate the behaviour of a probabilistic automata with neural networks we need to have a node
capable of storing the probability of the path followed by the network up to that node with a fed pattern.
To be able to store the probability of the path extra memory was given to our node. That is, besides the n
words of I}-bits (considering a node with n inputs) the node is going to have an extra.word with k-bits to
store the probability.

With a MPLN node the numbers stored in the n words of B-bits represent the ‘firing pfobability‘ of the
neuron and the node outputs 1/0 depending on this ‘firing probability’. Once the node outputted 1/0 there

is no other use for the ‘firing probability” with a MPLN. The overall output of the network is only a pattern.

13.94

253

without apy probability. In our case, the overall output of the network needs to be the pattern followed by
the probability associated with this pattern. The way the probability is calculate depends en the type of
the function the node is.computing and it will be explained with more details later in this paper. Every
node needs to have only one prebability associated with it in order to calculate the probability of the whole

pattern submitted to the network. This probability is used basically in the recogaition phase of the system.

4 Description of the recognition method

A different method of achieving pattern recognition is used with our model. This method was firstly used
for MPLN networks in ([17]), 20d we called it cut-point recognition algorithm. The output of our network
consists of two parts: a pattern (which is the final state of the network) and a probability (which is the
probability of the input to be recognised by the neiwork). Patterns will be recognised by the network if
the last states of the network, when such patierns were submitted to it, are in the set of final states of the
network for the language in question and the probabilities associated with the patterns are greater than the
threshald.

A short description of the cut point recognition algorithm, applied for the new nodes, is given below,
where P is the probability of the path in each node and pf is the probability of the node to fire. ALGO-

RITHM
1. Make for all nodes P = 0 (there is no path followed before the first symbal of each pattern is fed).
2. Chogse aun input pattern X= XXy X

3. Feed the pattern X = X} X5...X,, into the network symbol by symbol and calculate the overall probability
associated with the pattern X.
For every symbol X; do
3.1 Feed symbol X; to all external input terminals.

3.2 For all nodes j in the network do

13.95

254

If the node j fire then calculate probability P for this node.
3.2.1 If the node j is an and node P = pf; ¢ Piuputs of the node j that have fire i time i~
3.2.2 If the node j is an or node P = ¥ Pinputs of the node j that have fire in time i+
3.2.3 If the node j is a complement or a delay node

P = Pinput of the node j if it has fired in time §

4. If the final state of the net is in the set of final states for the language then compare the overall probability
with the threshold. If the probability is bigger than the threshold then the pattern X is accepted as

belonging to the language.

This algorithm was based on the way probabilistic automata recognise patterns with t;l:amholds. The
class of patterns recognised by the network depends not only on the structure of the network but also
on the threshold associated with the neiwork. This algorithm working together with the new mode not
only increases the computation power of the network but also it is more appropriate to pattern recogpition
because it gives a deterministic decision as to whether a pattern X belongs to the language recogrised by a

given network or not.

5 Computability of Weightless Neural Networks

The recognition nletl;ods used to date with weightless neural networks make them behave like finite statc
machines. By the other hand many neural problems, for instance, natural language understandiag, make
use of context free grammars, therefore it is important to be able to implement in neural networks at least
some of the context-free grammars.

As mentioned before weightless networks composed of the nodes defined in section 3 and using the
algorithm in section 4 are similar to probabilistic automata. In order to show that the computational power

of a MPLN network and a probabilistic automaton is the same it is necessary to prove the following theorems:

13.96

255

e (Theorem 1) Let G, be a weighted regular grammar and L{G,,) be the language generated by Gy
associated with some cut-point A then there exists a weightless neural network, which associated with

the same cut-point A, that recognises L(G,,), and

e (Theorem 2) If a set of patterns L is recognised by a weightless neural network associated with some
cut-point A then this set can be generated by a weighted regular grammar G, associated with the

same cut-point A.

A formal proof of these theoremns can be found in ([20]). Here a short description of the proofs are given.

The proof of theorem 1 is an algorithm for transforming any weighted regular grammar into a weightless
network. The way in which the grammar is tran;formed into the neural network is-such that all the properties
of the grammar are preserved and it is possible to infer the grammar from the weightless netv;ork generated.
Networks constructed with four kinds of nodes: p-and, p-or, complement and delay nodes will be considered.
The proof is based on the complexity of the production rules. Transformation of the production rules, in
weightless networks, will be started by the simplest production rule. The proofis then divided in three cases. '
The first case deals with producliuq rules of the form §; — w(p) where w is a word in the language, S is
a non-terminal symbol of the grammar and p is the probability associated with this production rule. The
second case deals with production rules of the form §, — wS;(p) and the last case deals with production
rules of the form S; — wS,(py) | $i — w2Sk(p2) where | denotes the possibility of S; being replaced by
w Sj(p,i) or by w;Sk(p2). Each ones of these cases are divided into sub-cases for the simplicity of the proof.
For every sub-case it is given the circuit which implement it. The circuitous are designed in function of the
four types of nodes mentioned above.

Although the method described to transform the weighted regular granmar into network gives a compiete
structure - ‘the network and its memory contents - the language recognised by the network can be changed
either by training 01; by changing the value of the threshold. This is particularly u_seful when the exact
grammar of the language to be recognised is not know, only an approximation is known. The training of

the network can involve only changes in the probabilities stored in the nodes or changes in any memory

13.97

256

position of the node. If changes are allowed in any memory position of the nodes, a different structure will
be gencrated after the training. The generation of the network by the method described in this theorem can
also be useful as an initial set up of the network.

‘The main purpose of the theorem 2 is to show that the relationship between weighted regular languages .
and weightless networks is an if then if relation. This proof can be used to determine the total generalisation
of a network after the network has been trained. This method of calculating the total generalisation is more
efficient than many others, for example: submitting patterns to the network to see if they are recognised
by the net. It is also better than going through the whole network in order to calculate the generalisation.
The method derived from the theorem gives also the probability of recognition for each pattern in the class
recogunised by the network.

Examples of the transformation of the weighted regular grammars into weightless networks can be found
in ([15]) and ([19]) while an example of the transformation of a weightless network into a weighted regular
grammar.can be found in ({15}).

Qur mcthod of generating networks for parsing has many advantages over others models such as the
method in ([11]) and in ([10}). In the model in ([14]) only finite regular grammars without recursive pro-
ductions rules can be transformed in networks while ([10]) can deal with some context-free languages with
the use of a stack. as an auxiliary memory. The use of stacks for pattern recognition is not very natural. It

is not likely that human beings recognise patterns using stacks.

6 Turing Machine Simulation by Weightless Neural Networks

In this section we extend the WNN further (slightly and naturally) in order to simulate Turing mnachines
([6]). A Turing machine is a combination of a finite state machine with a device of infinite memory or cells
(tape) on which it can be printed and read symbols from a finite set. The tape is scanned in either left
or right direction one cell at a time. A WNN, and any Artificial Neural Network (ANN), is a finite state

automata. The only missing component is the access to a tape in a similar fashion to Turing machines. This

13.98

257

can be achieved by encoding instructions from the output of a neural network with feedback and imagine
that the input of the network is fed from a tape. This very same tape is used also to st;)re the output of the
net. We call this extensipn a Turing weightless neural nelwork. This extension is not at all unrealistic as it
may at first seem. A macro view of the human neural system as a neural black-box makes the world outside
play the role of the Turing machine’s tape. If we are, for example, making pen—rand»paper calculations, the
paper plays both the role of the input and output device.

It is important to note that the “brain” of 2 Turing Machine is its control: a finite state automaton. The
access Lo a memory device (tape) is just for helping the computation: storing partial results. What makes
a Turing machine computationally powerful enough as to model effective computations (Church-Turing’s
Thesis) is the set of permissible operations on the tape. The various classical kinds of finite automata in
the computer science literature can then be roughly classified according to the set of permissible operations
on their tape(s). A finite state automaton (regular languages recognisers) have one input and one output
tape, but it is allowed to just move the heads to the right and as a couseqxgence is not able to reuse
past computations. A pushdown automata (context-free languages recognisers) has its access to the tape
restricted to stack operations. A linear bounded automata (context sensitive languages recognisers) is a
Turing machine with the restrictions that the head can not leave those cells on which the input was placed.
While a Turing machine have unrestricted access to the tape. It is worth point out that in the four cases the
tapes arc assumed to be infinite and the “brain” of each type of machine is indeed a finite state automaton.
In some cases it is important to distinguish between deterministic and non deterministic machines but this
is outside the scope of the present work and the interested reader should consult the literature {(e.g. the
classic [12]).

Our point is that the fact that this memory is pofentially infinite should not be considered as an
intrinsical feature of a Turing machine as has been indicated in some neural computing literature. The
menory is there for use but at any time the Turing machine is not allowed to use the whole infinite resource.

Ouly finite portions of the tape can be used at any stage of a computation. It is the finitistic, repetitive and

13.99

258

uninspired execution of instructions that matters. And, as we saw above, the set of permissible operations
is of fundamental significance. And these aspects of a Turing machine capture reasonably well the notion of
effective compulability. The access to an infinite tape has also obvious technical advantages. We can talk,
e.g., of computations of number theoretic functions, f : N — . where N is the set of natural numbers,
cven if it is not possible for any cxisting device or any human being to actually compute the whole of 2 such
function. Take as an example the addition of natural numbers; we all know how to perform the addition of
two given numbers, but it would not be possible for us to actually compute the function + : N2 — N for
its whole domain of definition: just imagine sufficiently large numbers whose addition would take us, say, a
billion of years to perform. But that is not what matters for the study of eflective computations but rather
the fact that there is something mechanical, repetitive. effective, algorithmic about addition that we can
capture. And once we have learned how to add a finite set of pairs of small natural numbers we say that we
can (in principle) add any two given natural numbers when we actually know how to perform an algorithm
for addition.

This idea of supplying an artificial neural networks with a head and a tape has been put forward before
by McCulloch and Pitts in their seminal paper [21] for the weighted systems. This approach has been
criLic‘;zcd as not being truly a neural network simulation [9]. We strongly disagree with that and base our
simulation exactly on the idea of adding a tape to a weightless neural network.

Below we formalise the intuitive notion of a Turing machine depicted above. Amongst the various
equivalent ways of defining a Turing machine we base ours upen the notation of [24][Chapter 2,pp. 40-97].
I\llllOl;gh we do not entirely agree with the conclusions of the book, it is nevertheless an cxcellent non-
specialist source for the ideas of effective computability. And more important for us. technically, is the use

of a binary system of coding.

Definition 3 A Turing Machine M over T = {0. 1} counsists of:

L. a finite sct of states Q = {qo,....q,} with a distinguished (initial) state. go.

13.100

259

2. afunction § : Q x & — Q x L x {L,R,S}. 6 is to be thought as a finite set of instructions and
(gir0) = (g, 0", m)
means that the ma;-hine being in the state ¢; € Q and reading the symbol o € £ from the current cell
in the tape will take the following actions:
o erase ¢ {rom the cell and write ¢’ in its place;
e change the internal state from ¢; to ¢; and

o move the head position one cell to the left (m = L), one to the right (m = R) or stops (m = §)

Remark 1 Observe that by asking the set of instructions to be 2 function, our definition requires that the
machine is deterministic and must be completely specified. This is not much of a (theoretical) restriction

but simplifies our proof.

The simulation can easily be grasped by observing that computations in a Turing machine is controlled
by three finite state auiomata: one controls the head movements, the second controls the input/output and
a third the next state. These automata correspond to the three components in the range of the instruction
function é in Definition 3.

We can thus easily see that we can simulate the behaviour of a Turing machine with a single layer
weightless neural networks with feedback as in Figure 2. Every neuron is a k-RAM with k& = [log, n] + 1.
The j'™ bit of the current state vector ¢ is linked (but not shown in the figure) to the input terminal zj,
1 £ j < k-1, of every neuron. Equally, the current symbol ¢ is linked (but not shown) to the input terminal
z. of every neuron. The first two RAM neurons (from top to bottom) output the movements with, e.g.,
L =00, R =01 and S = 10; the third RAM neuron outputs symbols in £2. The remaining [log, n] neurons
output the next state of the Turing machine being simulated which is then fed back to the ne.v.work. The
configuration in Figure 2 represents the equation: §(g;,o) = (g;,0’,m). We have thus sketchily proved the

following:

?It is not difficult 1o see that if we were to allow symbols other than 0 and 1, we would have just to add [log, n] neurons

and code the symbols accordingly.

13,101

260

qi T —
. } -
T~

Ty ——

zp ——

Zp —— _.I

L

Figure 2: A Turing weightless network simulating the behaviour of 2 Turing machine.

Theorem 1 Any Turing machine over © = {0,1} with m states can be simulated by a Turing weightless

neural network with [log, n] + 3 with ([log, n] + 1)-RAMs neurons.

7 Discussions and Conclusions

A study of the relationship between probabilistic automata and weightless networks was made. The (;1ain
ideas behind this methodology are: (1) the proposition of a new weightless node; (2) the proposition of a
new recognition algorithm; (3) the proof of the equivalence between probabilistic automata and weightless
networks and (4) the increasing of the computation power of weightless networks.

The main strengths of the method are that: (1) the ability to construct weightless networks to recognise
any weighted regular language; (2) the possibility of parallel implementations in hardware for compilers
based on weighted regular languages and (3) to provide a deterministic decision whether a pattern belongs
to a language or not.

Regular grammars can be transformed in RAM nets and vice versa using the same algorithms of the proofs

of theorems 1 and 2: but where the neuron stores 0, 1 and not probabilities. Regular grammars and RAM

13.102

261

neurons are sp«.‘ial cases of weighted regular grammars and weightless neurons respectively, as a consequence
it is clear that the algorithms will work for them. It is well known that RAM nets are finite state machines
and so they are able to gecognise finite state languages. No weighted regular grammar of languages other
than regular ones can be implemented in RAM nets, since RAM nets are finite state machines and finite
state machines can only recognise regular languages. If MPLN nodes, with the conventional recognition
algorithm, are used instcad of RAM, the functions which can be recognised will be the same ones. The
difference between RAM and MPLN networks is the same as the difference between deterministic and non-
deterministic automata. It was shown that networks constructed with the nodes and algorithms in this
paper can compute all weighted regular languages and RAM and MPLN networks can only compute regular
languages then we can counclude that the model here is more powerful than the previous ones.

There are several interesting points that were not examined in this paper as for instance the practical
applications of weighted regular languages. There are weighted regular languages which are context-free,
context-sensitive and even recursive languages. The possibility of dealing with weighted regular languages by
itself is, then, a very good result but the practical shortcomings of such a result was not really investigated.
Clearly, this investigation needs to done soon.

The Turing Machiue simulation is extraordinaryly simple if one compares with similar equivalence proofs
using the weighted model [28]. [9]. In their approach the infinite tape is simulated “inside™ the net via the
weights of the connections or by assuming infinite amount of nodes. The former requires unbounded weights
and both requires very intricate encoding. It is worth pointing out that, as our model is weightless, there is
no conceivable way to employ the techniques used in [29, 28] where the tape is represented in the weights of
the connections. The weighted approaches differ among themselves by using

o infinite number of nodes: [9], [11], [29);

o finite number of high order nodes with unbounded weights: [25];

o finite number of nodes with linear-interconnections but unbounded weights: [28]. It is worth mentioning

that this is achieved by using rational weights.

13.103

262

We could have used an intcrnal representation of the Turing machine's tape by allowing an infinite number
of neurons, as in [9, 29), but we find that very unnatural.

Our resnlts establish, at a theoretical level, the relationship between conventional and neural models of
computation and allow for the (theoretical) possibilities of using ANN in “high-level” cognitive tasks such as
natural language processing and weightless or common sense reasoning, that have traditionally been dealt
with the symbolic representation and processing techniques of Artificial Intelligence.

In relation to the controversy surrounding the distinction between symbolical and neural methods of
computation, we have the position that the two are varianis of the notion of eflective computability. The
results here give further evidence to that. Qur earlier research [20], [18], [19] can be seen as an evidence that
neural computing is not inappropriate neither incompatible as a way of modeling cognitive tasks [8] and we
claim that we have given further evidence of this with the results showed in this paper.

The problem of learning effective computable functions is being investigated in (7).

References

(1] R. Al-Alawi and J. Stonham. A training strategy and functionality analysis of multillayer boolean neural

networks. Technical report, Brunel University, 1989.

[2] . Aleksander. Emergent intelligent properties of progressivelystructured pattern recognition nets. Pat-

tern Recognition Letlers, 81:375-384, 1983.

(3] I. Aleksander. Adaptive pattern recognition systems and bholtzmann machines: A rapprochement.

Pattern Recognition Letlers, 1987.

(4] L Aleksander. The logic of connectionist systems. In R. Eckmiller and C. Malsburg, editors, Neural

Compulers, pages 189-197. Springer-Verlag, Berlin, 1983.

[5] I. Aleksander and lI. Morton. An Introduction to Neural Computing. Chapman and Hall, London, 1990.

13.104

263

[6] W. R. de Oliveira and T. B. Ludermir. Turing machine simulation by logical neural networks. In

I. Aleksander and J. Taylor, editors, Artificial Neural Networks II, pages 663-668. North-Holland, 1992.

[7] W. R. de Oliveira aiid T. B. Ludermir. Learnability of logical neural networks. Submitted for Publica-

tion, 1993.

8] J. A. Fodor and Z. W. Pylyshyn. Connectionism and itive architecture: a critical analysis. Cogni-
cogn

lion, 28:2 71, 1983.

{9] S. Franklin and M. Garzon. Neural computability. Progress in Neural Nefworks, 1:128,144, 1990. Ablex,

Norwood.

{10] C. Giles, G. Chen, H. Chen, and Y. Chen. Higher order recurrent networks and gramatical inference. In
D. Touretzky, editor, Advances in Neural Information Processing Systems 2. Morgan Kaufmann, San

Mateo, 1990.

[11] R. Hartley and H. Szu. A comparison of the computational power of neural network models. In Proc.

IEEE Conf. Neural Networks 111, pages 17,22, 1987.

[12] J. Hopcroft and J. Ullman. Introduction te Automata Theory, Languages and Computation. Addison-

Wesley, 1979.

[13] W. K. Kan and 1. Aleksander. Neural Computing Architectures, chapter RAM-Neurosn for adaptive

image transformation tasks. Chapman and Hall, 89.

[14] S. Lucas and R. Damper. A new learning paradigm for neural networks. In Proceedings First IEE

Intcrnational Conference on Artificial Neural Networks, 1989.

(15) T. B. Ludermir. Automata theoretic aspects of temporal behavior and computability in Logical ncural

networks. PhD thesis, Imperial College, London, UK, December 1990.

[16] T. B. Ludermir. A feedback network for temporal pattern recognition. In R. Eckmiller, editor, Parallel

Processing in Neural Systems and Compulers, pages 395-98. North-Holland. 1990.

13.105

264

[17) T. B. Ludermir. A cut-point recognition algorithm using PLN node. In Proceedings of ICANN-91,

Helsinki, 1991.

T. B. Ludermir. Logical networks capable of computing weighted regular languages. In Proceedings of

IJCNN-91, Singapore, 1991.

[19] T. B. Ludermir. Logical neural nets and distributed implementations of weighted regular languages.

In International Conference on Arlificial Neural Networks, Proceedings of the IEE 349, Bournemouth,

1991.

[20] T. B. Ludermir. Computability of logical neural networks. Journal of Intelligent Systems, 2:261-290,

1992.

[21] W. McCulloch and W. Pitts. A logical calulus of the ideas immanent in nervous activity. Bulletin of

Mathematical Biophysics, 5:115-133, 1943.

[22] C. E. Myers. Learning algorithms for probabilistic neural nets. In Proceedings First INNS Annual

Meeting, 1988.

[23] C. E. Myers. Output functions for probabilistic logic nodes. In Proceedings First IEE International

Conference on Artifictal Neural Networks, 1989.

R. Penrose. The Emperor’s New Mind: concerning computers, minds and the laws of Physics. Oxford

University Press, vintage edition edition, 1990.

1. Pollack. On conncctionist models of natural language processing. PhD thesis, Computer Science

Dept, Univ. of Ulinois, 1987.

[26] M. O. Rabin. Probabilistic automata. Information and Control, 6:320-345, 1963.

[27] A. Salomaa. Probabilistics and weighted grammars. Information and Control, 15:529-44, 1969.

[28] H. Siegelman and E. D. Sontag. Neural nets are universal computing devices. Technical Report SYCON-

91-08, Rutgers Center for Systems and Control, 1991.

13.106

265

{29) G. Sun, H. Chen, Y. Lee, and C. Giles. Turing equivalence of neural networks with second order

connection weights. In Proc. Int. Joint Conf. Neural Netmorks..lQQL

[30] J. G. Taylor. Noisy neural net states and their time evolution. Technical report, Kings College London,

1987.

13.107

