
257

A Methodology for Decompilatio:n

Cristina Cifuentes
cifuente@íitmllil.qut.edu.au

K.John Gough
gough@fitmllil.qut.edu.a.u

Schoo! oí Computing Science
Queent~land U niversity oí Teehnology

GPO Box 2434, Brisb!!.lle, QLD 4001, Austra.lia

A ¡m>p<>•d m~olcgy fov' dea>mpilati<m of MM'i/
~- ,¡, z¡ruemd, ~ t!'lith a duaiptúm of .,
JiU'~ .. smp~~...wm of this ~log¡;, dcc.
dee .:. "' dectJm,mr fov' !he lr•tel IUJ..Sii 111.-d'medure,
whU:h t..!:e8 u ~" birn>'ill"""!!f'!'"" from a DOS
enllironment .,,..¡ prod~· e~- "' ~¡nd.

The lk""""¡¡iler ka. ¡¡.,¡¡¡ diwid!Ul ;,.t., lhvu sep«rote
molifmea whidl nsemhle !he &tlMid~<r.e of the compile,-.
The fron!-eru/, woed<Je ·i!J !114d'ti!ll< J.qm<knt and per­
jOffii.!J the lOO<liag !l!nd pa?siwg of ihe Jml!Jrnm, .,. well
u tho ¡¡.me~ of oo i..te,-,.,.ediate "'P'""•entatioill.
The ,.,,ri1¡.,..,,.[humpiling .,.,.,¡,me m~ ú ''"'chine
1Jl7!4 ~~e ~vu!e..t, aM per¡,..,.. ..XI the fim.o
~¡¡sio of the ~m. Fi....X!¡;, ~ kd-end moot<k
is l.mguag~ depauie"€ .,,.,¡ dlealo wi!J• the ddaib of the
ta?gd high lwel I<J.a¡¡¡uJJge.

Even though l.he proMem of deeompila!ion is imol­
~~,b/e in gene:Nl, " partial eoltdion """ l>e found, which
gives úajomuition ali<Y<tt !he b;n!llry progmm. Thu pa­

per describe• Bome of !.he ,.,.,.!ts fm.md no far.

[Key wo>rd•: decompiler, ""'"r" compiler, hal!ing
problemj

A compiler is en executable pwgram that takes ""
input l!. program •,written in 11 b.igh leve! langu&ge and
produces as output M execut11.b!e program for a tar­
get ma.clline; in o•her ~<ords, the input ís language
dependent ~md the output is machine dependent. A
clecompi!er, or reverne wmpiler, aHempts to perform
the inverne process: given an executable program the
aim ís to produce a high leve! la.nguage program that

3 '23

performs tbe treme funetion as the execntable program.
The input in tlm Cl!.fJe w machlne dependent, !md tbe
ontpnt is language dependent.

Compilers have been around since tbe early 195&
and there are widely known metbods for writing com­
pilers for any IMguage. Deeompilero, on the other
band, bave been !U<lund only ainee tbe 196011 and tbere
is no accepte& methodology íor their roru¡trnction. It
would be desirable for deeompilera to periom1 al.lt.o­
m&tic pwgrrun traool!!tion "" compilers do, but nnfor­
tnnately this is not poosible BS decompilation is insol­
uble in general.

A naíve approach to decompilation attempis to
enumeraí.e all milid phrBlreS of a.n 1!.11bittary attribuí.e
grammar, and then to perform a reverse match of
tbese pbro.ses to tbeir original source eode. An al­
goritbm to wlve tl:tis problem h<>B been proved to be
halting problem equivalent[l]. A more aensible ap­
proa.ch ís to try to deí.ermine whích add~ con­
tain data a.nd whicb ones contain instrurtioru~ in tbe
given binary program. Given tbat in a Von Neuma<>n
machine, data and instruetions are represented in the
same way in the computer mernory, an algorithm that
so!ves this data/instruction problem would also solve
the halting probiem[2], and that is impossible. This
means that lhe deoompilatíon problem beiongs to the
dass of non-computBble problems; it ilJ equivalent ro
the halting problem, and is therefore OlllY pa.rti..!ly
computo.ble[3]. !n other words, we can buil.d a derom­
piler which produces the right output for oome input
pr-ograms, but uot for a1l input pwgratrul in general.
The resder ¡r,igbt Mk, "why &re we iní.ereote<!l m build­
ing a decompile;", There are two reasoru~: íirst, to get
a oolution for the C1>5€3 for which it is posmble (i.e. w
recover source code), and second, to get oome infor­
mation about tbe underlying algorithm used by the

258

input progra.m in tbe caaes that do not have a com­
plete eolution.

This paper proposes, a methodology for decompila­
tion, and describes the cunent development state of
dcc, a decompiler projed currently under development
l<l the QueenslMd Unh:ersity ofTechnology (QUT), A
brief description of the use of decompilers throughout
the last dec..des is given, the proposed methodology
and ph&ees are explained, followed by a.n explll.llation
of the implementatioo of dcc, a swnmary and conclu­
sions.

The first decompilers were used u tools in the
translation of software from s...-.:ond to third genera­
tion machines in the 1.96&. The very first decompiler
ww; developed by Maurice Halstead at the N avy Elec­
tronic Labs[4]. This decompiler took machine code for
tbe IBM 7094® as input and produce& Neliac code for
the Univac nos®, whenever possible. I1 fiagged am­
biguiti"" and produced inline assemb!er for pieces of
code that could not be decompiled.

In the l970s and l980s, decompilers were used to
port programs, recreate lost somce code, modify ex­
isting binE~ries, doeument, and debug binaries. The
Piler system[5] was an attempt at a general decom­
piler for a large c!a.ss of source-target language pairs.
Because of the large number of languages imd oper­
ating systems it tried to cover, it ..-as never finished.
The decomp decompiler[6] took as input VAX® BSD
4.2® object files and produced C-like code. Although
this decompiler worked corre<:tly, it is not a complete
decompiler given that it ta.kes as input an objeci file
with symbol table information (i.e. the program must
have been compiled with the debugging flag on), in­
stead of a binary file without symbol table informa­
tion. In general, different techniques for decompila­
tion were implemented, including pattern matching
of a.ssembler instructiollS[i]; which does not prove to
be ideal, and graph oriente<~ methods[8, 9] which are
suitable for this job. Most of these methods limited
themselves to the a.nalysis of the underlying graph and
took as granted the problem of separation of data from
instructions, given that their input progra.ms were ..,.
•embler files rather thll.ll binary files. This assumption
simplifies the problem considerably.

In the 1990s, decompilatíon has becorne part of
a wider area, reverse engineering. In brief. reverse
engineering attempts to produce source code from

Figure l: Decompi!er Modules

object code by the use of disassemblers, decompílern,
debuggera, and related tools. Sorne people believe
that reverse engineering commercia.l programs violares
an author's copyright a.nd exclusive right. to make
copies, whereas others debate that thi.s is not the case
sin ce fair use permits the copying of programs for the
purpose of lea.ming the idea behind the product; the
idea not being protected by the copyright' law[!O]. In
Europe, the European Parliament decided to perm.it
reverse engineering of prod·ucl.s for the sole p!Upose
of interoperability[ll], and a similar law has been
proposed in Australia(l2]. USA and Japan h•we laws
to permit re verse compilation; in J apan 's case there
is no provision for fair use, whereas in the USA
decompila.tion is permitted if it qualifies under fair
use[l3].

2 Proposed Meihodology

This section presents a proposed methodology for
reverse compilation of progra.ms. We are not con­
cerned at this moment with any particular ma.chine
or language, all we are given is a binary program and
we need to produce a.nother program in a high leve!
language. The output language is not necessarily the
language from which the program ,..,.,. cornpiled.

A decompiler can be structured in a similar way
to a compiler, that is. by a series of modules that
deal with machine or language dependent features.

3.24

bin&y progrsm

,¡.

A

.¡.

lnterml'ldiale COOe
Gmerator

intGrm®diate cede

Figure 2: Front-end Phases

lt is proposed to ha.ve three main modules dedicated
to these features; a machine dependen! module that
reads in the program, loads it into virtual memory and
parses it (the front-end). a machine and language in d.,_
pendent module that ano.lyses the program in mem­
ory (the universal decompiling machine), and a lan­
guage dependen! module that writes formatted output
for tbe target language (the back-end) (refer to Fig­
ure 1). In this way, different front-ends can be used
for diíferent machines, and different back-ends can be
built for different target languages; this makes it eas­
ier to write decompilers for different maclllne/target
la.nguage pairs.

The front end module deals with machine depen­
dent features and produces a machine independent
representation. lt takes a.s input a binary program
for a specific machine, loads it into virtual memory,
parses it, and produces an intermediate representa­
tion of the program (see Fi!J'.IR 2).

The loadel!' is an operating system program that
loads an exeeutable program into memory if there is
sufficient free memory available, oets up the segment
registers and the stack, and transfers control to the
program. The decompiler's loa.der must perform a
similar function by a!locatíng dynamic memory (vir­
tual memory) to load the program, loading it, relocat­
ing addresses specified in the relocation table, and set­
ting up the initial contents of registers. ;>lote that ex­
ecutable files do not contain much information about.

259

which segments are use<! ¡¡¡; data a.nd wbieb ones are
use<! as code, data segments can contain code and/or
addresses.

The paroer decides the type of m achine instruction
at a given memory location, determines its operands
and any offsets involved. The parsing of machine in­
structions is not as easy as it might appea.r. First of
al!, there are addressing modes that depend on the
value of variables or registers at runtime. Seeond,
indexed and indirect acceoo to memory loeations are
difficult to r€Sülve. Third, the complex mo.chine in­
struction set.s in today '• machines utili:;;e almost o.ll
combination of bytes, and therefore it is very bard to
determine if a given byte i• an instruction or is data.
Fourth, tbere is no difference as to how data Md in­
structions are stored in memorv in a Von Neumann
macbine. Finally, idioms 1 .. re u.sed by eompiler writ­
ers to perform a function in the minimo.l number of
machine cycles, and therefore a group of iru;tructiow
will make sense only in a logical way, but not individ­
ually.

In order to determine which bytes of information
are instructions and which ones are data, we start at
the unique entry point to the program, given by the
loa.der. This entry point must the first instruction for
the program, in order to begin execution. From there
on, instructions are parsed sequentially, until the flow
of control changes due to a branch, a procedure cali,
etc. In this case, the target location is like a new entry
point to part of the program, and from there onwards,
instructions can be parsed in the previous way. Once
there are no more ínstructions toparse, dueto an end
of procedure or end of program, we return to where
the brand1 of control occurred and continue parsing
at that leve!. This method traverses all possible in­
struction paths. At the same time. data references
are placed in a global or local symbol table, depend­
ing on where the data is stored (i.e. as an offset on
the stack, or at a definite memor) location).

A major problem is introduc.ed by the access of in­
dexed and indirect memory inst ructions and locations.
To handle these, heuristic methods need to be imple­
mented to determine as much information as possible;
analytic methods, such as emulation, cannot provide
the V'Jhole range of soíutions anyway. In general 1 it
is impossible to salve these types of problems a.s they

1 .f:..n idiom i¡o. Q. sequen o: e of ~tJru.ctions w hlc:h fo:r.ne :~. lo@éal
entity and hma e m.eaning- th&t ca.nnot be derived by cowti.d~
the prima..7 mfi:'Wngn of the individuel iru.truclion.::..

3,25

&!'e equivalent to aolving tbe hwting problem, u pre­
viomly mentioned.

Different problems ""!' introdueed by self-modifying
eode and virus tricks. A way to tadtle these cues is
to flag the se<lions of code involved, and comment
them in the final program. Assembler code might be
al! that cM be produced in these caset~. Even more,
& sugg€Sted optima.l a.lgorithm for p~m~ing consists in
finding the maximum number of trees that contain in­
structions; this is a combinatoria.! method th&t bll.i!
been proved to be NP-complete[2]. For dense ma.­
chine instrudion sets, thill o.lgorithm does not salve
tbe problem of data residing in code segments.

The intermediate eode l!:"""'""tol!' produces llll

int.ermediate representation of tbe program: It works
elooe togetber with the parser, invoking it to get the
next instruction. Each machine instruction gets trans­
lated into an intermediate code instruction, such rep­
resentation being machine and language independent.
Defined/used (du) chains of regis•ers are ruoo attached
to the intermediate instruction; these are used later in
the data fiow analysill pbase.

The quality of the intermediate code can be im­
proved by an optimization stage that eliminates any
redundant instructions, finds probable idioms, and re­
places them by an appropriate intermediate instruc­
tion. Many idioms are machine dependent and reveal
sorne of the <>emantics associated with the program at
luwd. Sucb idioms represent low leve! functions that
are normally provided by tbe compiler ata hígher level
(e.g. multiplication and division of integers by pow­
ers of 2). Other idioms are machine independent and
they refiect " shortcut used by the compiler writer
in arder to get faster code {i.e. fewer machine cycles
for " gi,·en function), such as the addition and sub­
straction of long numbers. Sorne of tbese idioms are
wídely known in the compiler community, and should
be coded into the decompiler.

:l!.l! The Universal Decompili:ng Machl.ne

The universal decompiling machine (UDM) is an
int.ermedio.te module which is tota.lly machine and lan­
guage independent. lt deals with Bow graphs and the
intermediate representation of the program, and per­
forms all tbe Bow analysis the input program needs
{ see Figure .f}.

260

1 CFG g¡¡ner ator

..
oontrol ~ ll'"'lil

lntumodiata oode

Figure 3: UD!\.! phases

Tbe <:<>ntirol. ilow g¡<&pb. (dg) ¡;¡ene.rato¡r oon­
structs a cfg of basic blocks~ for each procedure. A cfg
is a connected, directed graph witb nodes represent­
ing basic blocks and directed a.rcs representing llow of
control from one node to another. Eacb basic block
needs to record information such as predecessors, suc­
cessors, and I>SSOciated intermedia te code. The type of
a basic block is determined by the final intermediate
instruction that cbanges the fiow of control, such as
unconditional or eonditionw branch, procedure cal!,
procedure retum, self loops, n-way branch, and end of
program. When any of these instructions is met, the
end of a basic block is reached as well. Tbere is one
other type of basie block, the one that falls through a
labelled3 basic block. Given that backward brancbes
may split a basic block into two, and hence create. a
labelled basic block, two passes are needed to generate
the grapb; one to crea! e a list of basic blocks, and the
next to transform this list into a graph of basic blocks.

Due to the nature of macbine code instructions,
the compíler might need to introduce intermediate
branches in an executable progra.m, because tbere is no
machine instruction capable or brancbing more than a
certain maximum distan ce in bytes (architecture de­
penden!). An optimization pass over the cfg removes
this redundancy, by repl&eing the target branch lo­
cation of a.ll conditiona.l or uneonditiona.l jumps that

2 A be!.ie block is a sequenee ol instructjons thet has a sinale
entry point snd !} ~e cxit point.

J A. labdled buie block ia GDe whOGe entey point is tbe tili"Set
ola br=ch.

3.26

bra.nch to. a.n unconditional jump (and any recursive
branches in this format) with the finaJ ooe. While per­
forming this process, sorne basic blocks are not going
to be referenced any more, as they were used only for
intermediate branches. · These nades must be elimi­
nated from the graph as welL

The control flow ~:r•u phase is coocerned
with the analysis of the llow of control of the cfg. First
of all, this phase oeeds to determine the type of grapb
it is dealiog with (reducible or irreducible), aod theo,
for reducible graphs only, structure the graph into a
set of high leve! langtiage constructs.

Flow graphs produced by structured laoguages
that do oot make use of the goto statement are
reducible[14, 15), Structured control constructs such
as while loops, for loops, if •. thiiJI •. elaes, cue
statements, multiexit loops, and multilevel exits,
found in commonly used languages such as e, Pas­
cal, Modula-2 aod Ada, will always produce reducible
llow graphs. Unstructuredoess is iotroduced by the
use of soto statements, either available in the lan­
guage (e.g. e, Pascal) or introduced by the optimizer.
Given that we do oot know whether the optirnizer has
unstructured a graph or not, it is not safe to say that
even languages that do oot implement the soto (e.g.
Modula-2, Bliss), will produce structured graphs. And
given that most languages allow for the use of sotos,
there is a srnall probability that the grapb at hand is
irreducible and needs to be converted iota a reducible
ooe.

Graph reducibilit7 is a concept introduced by
Fraoces Alleo [16, lí) and defined in terms of ínter­
vals, a graph construct defined by John Cocke [18).
Ao ioterval headed at node h is the maxirnal single­
eotry subgraph io which h is the unique entry nade
and in which all closed paths· contain h. By selecting
the· proper set of header nades, a flow graph G can
be partitioned into a unique set of disjoint intervals.
The process of reducibility consists in constructing a
series of graphs, G1 .•. G", by collapsing the intervals
of the graph iota a single nade. The limit llow graph
G" determines whether the original graph G = G1 is
reducible; if G" is a trivial graph, Gis reducible, oth­
erwise it is irreducible.

Irreducible graphs can always be transformed iota
functionally equivalen! reducible graphs by a method
of nade replication known as nade splitting; different
algorithms have been specified in the literature(19, 18,

261

14). Although nade splitting does oot assure the gen­
eration of a reducible graph, successive applications of
interval reduction a.nd nade splitting will always tra.ns­
forman irreducible graph iota a reducible one[14). In
practica! cases, nade .splittilig needs to be applied only
once.

A atructurinc .Jcorithm determines which high
levellanguage (hll) structures are present in the graph.
We are concerned with control structures that are
available in most lansuages; loops, conditionals, and
case statements, and that form the basis for tbe cre­
ation of other control structures. The structuring al­
gorithm determines where hll constructs are, as well
as their extent. A predetermined set of hll con­
structs should be selected from the most commonly
used constructs in current high leve! la.nsuaces. This
set forma the basis for the algorithin. Common con­
structs sbould include loops and conditionals. When­
ever there is a piece of code that cannot be structured
using the selected constructs, a soto is used instead
and the target nade is llagged as needing a !abe! dur­
ing code generation.

The data flow anal;r.U phase makes use of com­
piler optimization theory to analyse tbe data and de­
termine its type, temporary variables used for inter­
mediate operations, expressions described in the inter­
mediate code, argumenta to procedures and functions,
and values returned by functions. Def/use chains have
been built for registers during the parsing stage, and
they are now used to determine expressions. Aliases
and value sets of each variable are tracked in arder
to generate better andeasier to understand high leve!
language code. h arder to collect as much informa­
tion as possible, global data ftow analysis would be
desirable.

2.3 The Back-end

The ba.ck end module is language dependen!, as
it deals with the target high leve! language. This
module, óptionally, restructures the graph into. con­
trol constructs available only in the particular target
language, and then generates code for this language
(see Figure 4).

The restructuring stage is optional and it aims
at structuring the graph even further, so that con­
trol structures available in the target language but not

3.27

..,..,,.,¡ n ~V"Ph
ll

inte'medieht ®de

Reslruclurlng

t
hll progr..,

Figure 4: Baek-end Phares

262

present in the set of control structures of tbe structur­
íng a.lgorithm (see section 2.2) are utilized. For in­
stance, if the target la.nguage is Ada, multilevel exits
ue a.llowed. After tbe graph has been structured, mul­
tilevel exits will look like a loop wíth abnorma! goto
elcits. The restructuring stage can check the target
destínation of each goto, a.nd determine if an c:dt(i)
-rtatement is suitable instead. Anotber example is the
for loop; such a loop is equivalent to a wl!.ile loop
that makes use of an induction variable. In this case,
tbe induction variable needs to be found.

Tbe final stage is the <:ode ¡gene~"tion, which
emita code for the target language based on the cfg and
the !lSSociated intermediate code. First of a.ll, global
variables are defined according to tbeir type, described
in the global symbol table. Then, code is emitted
on a procedure by procedure basis, following a depth
first traversa! of the cfg. For each procedure. local
variables are defined according to the type specified in
the local symbol table. The llow of control is given by
the type of basic block in hand, and sequential code
is produced for each basic block from its associated
intermediate code. Whenever a basic block has been
fiagged as needing a !abe!, a unique !abe! is emitted
and any branches to the. entry of this basic block are
replaced by go~os. All variables get assigned names
of tbe form, varl, var2, etc, given that there is not
enough information concerning. tbeir use. In tbe same
way, procedures are named procl, proc2, and so on.
Any ·data types and simple functions not supported
by the target hinguage must be placed in a header file
wbich should be imported by the decompiled prog-r~.

1 CFG gm..-!IIO< j '"'""'-
¡~.:~-¡

figure 5: Structure of dcc

3 The RevComp Project

The Reverse C,ompilation project (RevComp) is
currently under development by the School of Com­
puting Science at QUT. lts aim is to produce a de­
compiler for the Intel B0x86@ architecture, ~. vib.ieh
takes o.s input .exe or .com files from " DOS envi­
ronment and produces e programs as output. e was
selected as the target output language, given ita !lexi­
bility, ea.se of low leve] manipulation. and portability.
This decompiler is currently being implemented on a
DECstation 3100® where a virtual 80x86 machine í.s
built.

The dcc decompiler differs from previous decornpi­
lation projects in severa! wa.ys. First oí all, binary
programs are ana.lysed instead of assembler or object
files. Given that we are dealing with Von Neumann
machines, heuristic methods are used to separ1>te i.n­
structions from data. Second, reducibil.ity of tbe un­
derlying program 's control flow graph is checked for,
ss irreducible programs can be produced by tbe op­
timizer (e ven if the language does nÓt u.ee ~otos, as
previously discussed). Third, well lmown idioms de­
pendent on the computer architecture are checked for

3,28

;u1d by their logic.~ F\-,:.L~h! a clc.t~
fiow ph&8i'! is t-2 be t-o determine
the type o{ d~t-8 being ~d. ru1d reht~'Ci data i.ssueB.
Finclly1 re0tructu.ring control struct.urr.a oco;ording
to the í.nrget high oonshu.cts h&B been
i_n~rcd.uccd as a.n. optional
as much as pre3ible the u.Be

the nu.mher of hll coJristructrJ

The m .in wtrudme o! de.:: ¡¡; illootcat.OO in Figt;re 5.
This •tructure follovro <he prop~ methocl, ¡md it
&loo integr,.tes a dimwsernbler in the §}'St~m, given tha.t
IIS!lembler code crw he produce<~ once the program ÍB

par!>e<l; no construets or d1>ta 11eed to be '''"'lysed in
this e"""'. The following paragraphs highlight sorne of
the more important Mpe<:ts of this projecL

One oí the heuristíc methods implemented in decís
&. widely known impl.omentatíon of '"'"'" statements
by the use oí indexed tables. F~.-. ll is a par­
ticular implementation of """" statements in the
8086. In this co.ae, 1m MSembler statement of the
form j"']? '-'O!"d ¡>tr CS :()l)ll:()[i,i] does not provide
t.he necessary information to uJculate tbe target jump
address. A lmown idiom is t.o check for lower and
upper bounds before indexing into a table. In this
way, the statemenl;s preceding the indexed jump will
very likely have the information tbat we need; the
bounds of the l>z register. This heuristie method
1;-qorks in most cases. In. ou.r exRmple, the statements
emp u, 1 Th and j b@ l01b! check for the contents of
!.he register ax to be between O :md 23, in which cru;,
the offset into the table is c<l>lculated in register b:< and
the indexed jump !s performffi; othenrise, an uncon­
ditiona! jump to the end of the case statement code
occurs.

Heurística are alw needed when building the con­
no! flow graph 1 spe-cificaHy, when trying to determine
the extent. of & basic b!oek that reaches the end of
program. in any DOS e.xecut;oblo, there ""e 7 difier­
eut possible ways of ex.~ting s-, _prograrra. They wre all
hMed on interrupts and oom~ of them m1 the
contentE of certain registerso Our is to sirn-
uh.te the .stat0 o[tbe virtu2! macl:!.ine i'or moot ot the
register-s 1 oo thet wheu S"n interrupt is reached, the
contents of the !f'equired registers tan be checlted fot.

A dif!icult o.se is prE:'lented witb indirect procedure
calle or indexed branches that do uot lit iuto our ""'m"

263

~l ~e:l,7h.

l&l"'
j~ l&bE

b]¡&g

~~"J bzp,'9-"'{

'""-1 l:J>:,1
j~ "B~ p'¡:r CfS: @rol@ [b%]

Cll¡@f!!l,@ .;_., l<!M

e~ , m>!l:l ilz l≪2

~S: 01\íll!: <!~ 1&1>24
C~:l!li!:HI !J:J>t:

Figure 6: An implementation of indexe<! t11bles

statement idiom. No heuristic method hu been imple­
mented yet for the;e cases, and therefore, we fl<~g the
correspoi!ding ba.sic bloc\; ru; going nowhere. No more
instrutlions are pa~R"<l after •uch instrudioru; alon.g
~he current path, and the basic block is finished. m
the caz" of indirect and indexe<! data oceesaea, these
loeations ru-e not place<! in the symbol table, and we
exped !1llter dat.~ !low ana!ysis t.o provide uz with a
plausible data type for theJe variables, base& upon
lheir use.

Severa! idioms are consiclered, sorne ml'V"Jline depen­
dent and ot.hers more general. Amongst the machine
dependen!. idioms are: procedure entry preMnble, p~
cedure exit pootambte, and. number of local va..riabies
defined in the stack by decrea.oing the conteo.w of reg­
ister ap. General idioms are machine independelilt,
a.nd cover funct.ions like: multiplication and division
of inte¡;ers by powe•-s of 2 by shifting the left:
or right, swapping variables, and access t.o vari-
al:>les ~E offset.s on the ota<:k.

The intermediate language use<! ir. thie proj.ed iJ! a
oimp~e, &52,.embler-Eke, 3-ad.dress code ~<epr-.esenta.tion
where all the operands are rnade explicit; it ha.e been
named kode. kode provides an n:l of as-
S€mbler to !code instrucl.ions (e,g. aH iWil.
insiructions (OzOO .. Ox05) are handled by the one Iwde

3,29

264

~ iootruetion).

Once the control llow g.aph has been built, the op­
timiza.tion pass tha.t rel)loves redundant intermediate
br!l.llches bas reduced the size of the cfg by up to 50%
in dili'erent programa tested by dcc. This simplifies
the atructure of the graphs in hand.

Checking for reducibility has been implemente<! by
construeting the derived sequence of gn.phs G1 ••• G"
and linding tbeir intervals; the implementation makes
use of pointers. lf the cfg ia found to be irreducible,
the gra.ph is flagged at thia stage; node splitting has
not yet been implemente<! as only a minority of graphs
are found to be irreducible.

The set of high leve! language constructs that was
selected as the b>l!le sel for the structuring algorithm
are: U .. tl>.<m, U .. tl!..,a .. el~©. ""g" statement,
"i>.il<l loop, ""!''"'" loop, and endless loop. These
constructs are used in most high levell!l.llguages (e.g.
C, Modula2, Pascal, Ada). These construéts belong
to tbree major groups; loops, C'-"""l (n-way brand!),
and conditionals. The algorithm makes use of tbe
G1 •.• G" graphs to find nested loops, and the immedi­
ate dominators to find conditionals and n-way branch
(a reverse walk of the underlying tree is performed in
these cases). Any abnormal exits from these control
structures make use of a goto statement. A detailed
explanation of this algorithm can be found in [20].

The data llow analysis stage has not yet been im­
plemented. lnstead, code generation has been imple­
mented to gel a feel for the type of output expected
from dcc.

At present. the output e programs from du reflect
the control structures of the program, but the instruc­
tions are still low leve! (i.e. assembler-like). ~!ore

idioms are currently being coded into <lec. Such id­
ioms are mostlv machine independent as they give a
semantic interp.retation to a group of instructions. For
example, the absolute value of a number placed in reg­
ister ®&X can be calculated in the following way: the
sign of the number is moved to the carry bit, a tem­
porary register, ecx, is substracted with borrow from
itseif (in order to gel all zeros for positive rmmbers
or a!l ones for negative numbers), then :rero is sub­
stracted from ihe original number in eu; resulting in
-1 ifthe number is negative, and linally !l.ll zor ofboth
regislers (<>u, ecx) will negate a negative number, or

i>t ou, u •ip -> <=r'¡

mbb a.cx9 G~ll: o.ll Oo o¡,: le
sbb eu& o -1 it m.ogathe
:or euD ocx aot i.f !lesa.tiws

Figure 7: ldiom for a.n absolute value

leave a positive number unmodilied. This sequence of
instrudions should be translated lo a .. bs (:<), where
" is the variable place& in .. u (refer to Figurt 1).

Programs decompiled by <lec make use of an in­
dude header lile wbich defines simple data type¡¡ (byte,
word), hM macros to manipulate imch data types, de­
fines macros to manipulate the registers (accessed in
C with a union REGS structure that is defined to be
global for the whole program). defines constants such
as true and fa.lse, and indudes simple functions not
supported by e' such as swap.

One of the major problems that we face is the
amount of extra code included by the compiler, su eh as
setup procedures and libraries (i.e. not all included li­
brarv functions are normally invoked by the program).
tbat-is indistinguishable from procedures writteo by a
programmer (given that most of the library procedures
ha ve a procedure preamble and postamble, justas any
other user procedure). This means that for a_ program
tha.t displays 'helio world' on the screen with the use
of printf in e, 23 procedures are decompiled. The
same program written in Pascal produces more than
40 procedures. An initial solution was to check for
compiler signatures4 , but this is not feasible as. even
if we know the compiler that compiled the code, not
even pattern matching of the decompiled code witb
the start of each library procedure would be possible
given that different memory models in the PC pro­
duce dilferent entries for the same pie<:e of code. Our
new solution is to let the user decide for himself whieh
procedures he ís interested in, after decompiling all
the available procedures and giving sorne indication as
to which procedures appear to be low leve! (possibly
hand-cooled in a.ssembler due to the machine instruc­
tions that are used, and by not having a procedure

o!l A compiler rai¡p:a.sture ie a etri.D.& pleced by &he atmpi}cr in 8

d:ta. lled.ioa of the b!nuj file. Nonnslly it conta.in.a eueb. detu.W
~ lhe compeny name1 compiler, Nld rele&ae ve:naon.

3.30

preamble or postamble).

There is a.n obvious need for a data flow analysis
stage, which is ptanned. to be implemented next. This
stage will be a.ble to determine expressions, temporary
variables that can be removed, and provide a more pre­
cise data type for the variables (i.e. according to the
use of the variable).

The output from dcc provides commenta at differ­
ent levels depending on the switch specified by the user
when running dce. By default, procedures have com­
ments for most of the DOS interrupta, to reflect the
function that has been invoked. A vailable switches for
extra information are, ·v' for verbose and 'V' for very
verbose. The 'v' switch displays information about
the binary file (file size, file type, number of relocation
items, and maximum memory allocated), a tree of the
procedures found, along with any flags that were set
up during this procedure, and the basic blocks· found
during the creation of the graph. The ·y• switch dis­
plays the relocation table (if any), the control flow
graph, and the derived sequence of graphs, along with
all their interval information.

Other switches available in dcc are: 'a' to produce
assembler output, 'm' to display the memory map (i.e.
data, instructions, bytes used as data and instructions.
and unknown areas), ·p' to print the procedure list,
and 's' to print statistics about the graph optimization
stage.

4 Summary and Conclusions

This paper has proposed a methodology for decom­
pilation of binary programs, and describes the curren!
development state of dcc. a decompiler for the lntel
80x86 architecture, built. upon the proposed method­
ology. The decompiler structure resembles that of a
compiler: three main modules are distinguished: the
front-end which is machine dependen!, the universal
decompiling machine (udm) which is machine and lan­
guage independent, and the back-end which is lan­
guage dependent.

The front-end deals with the loading of the binary
program, parsing it, and producing an intermediate
representation of the program (Icode). The udm con­
structs a graph for each procedure, associates the in­
termediate representation with each node, checks for
graph reducibility, determines which high leve! struc­
tures are used in the program, and _performs a data

265

flow analysis in order to learn how· data is used in the
program and be able to determine probable data' types
for the existing variables. Finally, the badc-end per­
forms the restructuring needed to accommodate the
structures found in the program into structures· avail­
able in the target high levellanguage, and emita global
variable information and c.ode for> eacb procedure.

The ·tlcc decompiler ta.kes as input DOS aecutable
programs (.I!Xe and :com) and produces e programs as
output. lt is in ita o stage, and it implementa most of
the stages defined in tbe proposed methodology. eur­
rently, data flow analysis has ·not been implemented,
therefore tbe output e programa are still assembler­
like. The control structures of tbe program are well
definéd, and \'&l'iábles are defined in terms of the. types
byte, word, or striilg. Éven thougb the decol)lpila­
tion problem is insoluble in general, partla! ~lutions
provide S!)me information about tbe original program.
Future releases are expected.

Acknowledgements

\\'e would like to thank Jeff Lederman for clarifying
sorne of the concepts associated with this project.
This researcb is partly fu0ded by Australian Research
Council (ARC) grant no.M913026l.

References

[1] P.T.Breuet and J.P.Bowen, "Decompilation: The
enumeration of types and grammars," Tech. Rep.
PRG-TR-11-92, Oxford University Computing
Laboratory, 11 Keble ¡:toad, Oxford OX1 3QD,
1992.

[2] R.:\.Horspool and N.Marovac, "An approach to
the problem of detranslation of computer pro­
grams." The Compvter Joumal. vol. 23, no. 3,
pp. 223-229:1979.

[3] L.Goldschlager and A.Lister, Computer Science:
A modern introdvctian. Prentice-Hall Interna­
tional, 1982.

[4] M.H.Halstead, Machine-independent compvter
progNmming, ch. 11, pp. 143-150. Spartan
Books, 1962.

[5] P.Barbe, '·The piler system of computer program
translation," tech. rep., Probe Consultanta Inc.,
Sept. 1974.

3.31

266

[6] J. Reuter.¡ "decomp.tau." Public dom&in ooft­
. ware. Anonymous ftp ce.w ... íüngt.on.edu, direc­

tory /pub, 1988.

[7] C.R.Hoilander, Decompilation cf Ohjecl Pro­
lf"G"""· PhD dissertation, Sta.nrord U nivenity,
Computer Science, Jan. 1973.

[8] B.C.HoW!el, A St..Jp of D--.piling Mmclaáne
ÚqgMges finto Bi,A-~Aftl .M.W.ioae 1>34~
Lo.ngHgu. PbD diasert .. tion, Purdue University,
Computer Science, Aug. 1973.

[9] G.L.Hopwood, D_,..,.Wtwn. l"hD dissertation.
Univenity or California, bvine, C.omputer Sci­
ence, 11178.

[lO) I'I.Swartx, "Tbe cue for revene engin~ring."
BUI!ineu C....,.atn S!7elenu, vol. 3, pp. 22-25,
~lec. 1984.

[11] "Software protection," Edge: Wori-Gro•p Com­
puting Repori, vol. 2, p. 7, 22 Apr 1991.

[121 S.MeNamara, "Augtralia: proposals open reverse
engineering debate," Nn!116!JCu, p. ??, 18 Ocl
19!11.

[13) G.Burldll, "Reverse compilalion of computer pro­
gramo and itli . permil!l!libility under the berne
convelmiion," Com~ w• ti Prw:ti«, vol. 6.
pp. 114-119, mar-apr lQOO.

(14) M.S.Hed!t, Flo .. Aulvoü of c...,.p,.ger Pro­
'"'""'· 52 Vanderbilt ÁYenue, New York, New
York 10017: Else•·ier North-Hoiland, lnc, 19ii.

[15] S.R.Kooaraju, "Analysis of strudured pro­
gra.ms," Joum<M of Cornpul~r "'"' Srolem Sd­
Eiicéii, ;·ol. S, ilo. 3, pp. 232-255. i974.

(16) F.E.AIIen, "C.ontrol fto .. Malysis," SIGPLAN
Notiees, vol. 5, pp. l-19, July I!HO.

[1 iJ F .E.AIIen, "A basis for pro¡¡ram optimization,"
in Proc. IFIP Co~u. (Amsterdam, Hoiland),
pp. 38&-390, Nortb-Ho!land Pub.Co., 1972.

[111) J .Cocke, sGiobal common subexpr-ion elimina­
tion," SlGPLAN Noticem, voH. 5, pp. 21)-25, Juiy
1!170.

(lll) F.E.AIIen Md .l'.Coclt~. "Grapb tbeoretic cón­
structo for progrrun control fto,. analy$is," Tech.
Rep. RC 3923 (No. 17789), lB M. Tbomas J. Wat­
son RaeMch Center, Yorktow11 Heights, New
York, July 1972.

[20] C.Cifuentea, "A etruduril:ll¡¡ a.lgorithm for decom­
pilo.tion." aubmitted for publieation, 1993.

3.32

