A CAD

System

for Teaching the Design of VLSI Circuits

- Status and

Evolution -

M. L. Anido and C. E. T. Oliveira

Nicleo de Computacéo Eletrénica da UFRJ
Cx. Postal 2324 - CEP 20.001 - Rio de Janeiro - Brasil
e-mailincd10121@Qufrj.bitnet

8 July

Abstract

This paper presents the main characteristics of
TEDMOS - a CAD (Computer Aided Design) sys-
tem for teaching the design of VLSI (Very Large
Scale Integrated) circuits. The paper starts by
discussing the main assets of TEDMOS, when
‘compared with commercial CAD systems, and
presents the high-level characteristics of its main
constituent programs. At the end, the paper dis-
cusses the evolution of the TEDMOS system.

Keywords: CAD, VLSI, Circuit Simulation, DRC,
Extractor, Graphic Editor.

1 Introduction

The development of integrated circuits depends
ever more on software tools to, automatically, gen-
erate and verify the basic building blocks specified
by the circuit designer.

The motivation, sometimes difficult to be under-
stood by researchers in the First World, that led
to the development of TEDMOS, can be easily
explained by two reasons. Firstly, commercial
and powerful CAD packages for VLSI design are
very expensive and require powerful workstations.
Secondly, these packages have a very long learn-
ing time. These reasons forbid these CAD pack-
ages to be made available to large groups of stu-
dents, which is normally the case in undergradu-

70

1992

ate courses. On the other hand, commercial CAD
packages are essential to develop highly complex
designs.

TEDMOS is a rather complete CAD package
for teaching VLSI design, which is distributed
free of charge to universities and research cen-
ters. TEDMOS has been highly successful in sev-
eral Latin American countries among the teach-
ing community, because it runs on IBM-PC
like workstations and because its highly integrated
programs increase productivity which compensate
other weakness originated from system simplicity.
The system is orientated towards full custom de-
sign. This design style does not provide the same
productivity of standard cell or gate array designs.
Nevertheless, it allows very compact designs and
also allows students to learn the basic operation
of many fundamental transistor structures (cells).
Additionally, this approach can be used for digital,
analog or mixed designs.

2 An Overview of TEDMOS
and its Main Constituent
Programs

The TEDMOS system comprises several well inte-
grated programs, that is, the user can invoke some

programs within others, without leaving the envi-

ronment. The main programs of the TEDMOS

system are:

File Utility Program - This program permits
to perform several operations on files and di-
rectories, without leaving the environment,
such as: file deletion, copy, rename, print,
change directory, etc.

Text Editor - The text editor allows file edit-
ing operations, without leaving the environ-
ment, which are sometimes necessary -to edit
configuration files.

Cell Editor - The cell editor is a graphic editor
which allows the creation and modification of
cells. This editor is targeted to edit cells and
not the complete layout, as opposed to the
hierarchical editor described below.

Hierarchical Editor - The hierarchical editor
was developed to permit the assembly of the
many cells which generally comprise an inte-
grated circuit. It also allows editing individ-
ual cells, similarly to the cell editor. The hi-
erarchical editor permits to edit much larger
circuits than the cell editor does, because it
deals with subtrees of the layout tree and be-
cause it uses a more compact data structure
than the cell editor does.

PLA Generator - This program accepts logic
equations in the form of sum of products and
generates the final layout, automatically.

Switch-Level Simulator - Switch-Level simu-
lation can be used before the actual layout
of the chip to make sure that the designed
circuit implements the planned function. It
can also be employed after the layout and ex-
traction phase to verify that the layout imple-
ments the planned function. This simulator
has a graphic driver capable of displaying the
waveforms generated by the simulation.

Design Rule Checker - Each fabrication pro-
cess is characterized by a set of parameters
that describe the valid geometric construc-
tions used in the integrated circuit. This set
of rules is called geometric design rules.

e Eztractor - The circuit extractor takes a ge-
ometrical description of the circuit and pro-
vides a transistor netlist which can be used
by other programs for logical and electrical
verification of the layout.

FElectrical Simulator - The electrical simulator
is composed of three main units, namely: Pre-
processor, Electrical Simulator and Graphic
Driver. The Pre-Processor converts extracted
files to SPICE-like inputs for simulation. The
electrical simulator performs a simulation of
the circuit, using a Wave Relaxation [5] algo-
rithm , which allows speeding up the simula-
tion. The Graphic Driver makes it possible to
visualize the waveform outputs from de elec-
trical simulator, on the screen or on plotters.

3 The Cell Editor of TEDMOS

The graphic editor is the nucleous of TEDMOS [4].
By using it, the designer can create and modify
cell layouts of integrated circuits on the computer
screen. The screen depicts the complete layout
or part of it. The designer moves the rectangular
cursor around the screen and orders the editor to
fill that rectangle with a certain pattern, which
represents one of the fabrication masks (see fig-
ure 1). The editor of TEDMOS was designed to
operate with orthogonal (Manhattan) geommetry,
that is, it is not possible to draw rectangles with
inclination.

This cell editor uses an in-memory bitmap to rep-
resent the data structure of the mask geommetry.
Each element of the bitmap (matrix) is composed
of a set of bits. Each bit indicates the presence or
absence of a mask at that point. This represen-
tation is only valid for Manhatam or orthogonal
geommetries. The algorithms for this type of rep-
resentation are trivial. However, the memory area,
required is much larger than it is using alterna-
tive data structures. This form of representation
is only used internally to the system and it is con-
verted to a more compact form of representation
(CIF language) to be archived. The visualization
of the editing matrix is performed by mapping
each element of this matrix onto a set of screen

71

pixels.

In order to copy one area of the layout to the
screen, it is necessary to encode each element of
this area, generating a matrix of points that have
to be written onto the screen pixels. This encod-
ing task is accomplished by a look-up table, that
is created from an external configuration file. This
file is distributed together with the TEDMOS sys-
tem, but it can be modified by the user.

4 CIRCO - The Hierarchical
Editor of TEDMOS

CIRCO is a hierarchical editor, that is, it allows
working with a hierarchy of cells which can be
tepresented by blocks that can be interconnected.
It was developed to faciliate the assembly of the
many cells that usually comprise an integrated cir-
cuit [8]. All graphics editing functions of the cell
editor can also be found in the hierarchical editor.
Additionally, there are special functions for the
manipulation of hierarchies. Figure 2 illustrates
the interconnection of some cells in CIRCO.

The main groups of commands of CIRCO are:

e Commands related to Cursor Position and
Others - Among these commands are: Cur-
sor Fill, Cursor Delete, Change Layer, Select
Visibility, Change Scaling Factor, Move Win-
dow, etc;

e Area Commands - The most important com-
mands of this group are: Area Adjust, Area
Mirror, Set Position, Area Copy, Return to
Position, Repeat Area, Adjust Dimensions;

e Node Commands - Among the most impor-
tant commands are: Create Node, Delete
Node, Show/Hide Node, List Nodes;

Cell Manipulation and Hierarchy Commands
- The most important commands ate: Cell
Edit, Cell Store, Create Call to Cell, Remove
Call, Move Call, Create Hierarchy, Remove
Hierarchy, Expand Hierarchy, Edit Symbol
Table.

4.1 The Data Structure of the Hierar-
chical Editor

Every graphics editing operation involves a Mem-
ory Storage Organisation and a Disk Storage Or-
ganisation, which are discussed below.

?.1.1 Memory Storage Organisation

Cell editing is an interactive process and in con-
sequence the time required to execute the editing
tasks is directly proportional to the time required
to access the stored information. Therefore, the
data structure has to allow the fast editing of the
information.

Sequential search is an important limitation to
be considered when defining a data structure, be-
cause it is a time consuming operation. In order
to solve this problem, a bucket partitioning tech-
nique [2] was employed, and it is very efficient for
this type of application. The layout is divided
into rectangular regions - buckets - of equal size.
Each bucket emcompasses a list with the boxes
that intercept its region. Figure 3 illustrates the
structure of buckets of a hypothetical layout. Be-
cause a certain box can occupy an area that in-
tercepts more than one bucket, such box will be
associated to several buckets. This limits the se-
quential search operation to the boxes of a cer-
tain area, searching only the buckets that they
intercept. The selection of the convenient boxes
is done by comparing the minimum and maxi-
mum co-ordinates [2]. Care has to be taken to
avoid boxes already selected in previous buckets,
because a box can occupy an area that incorpo-
rates several buckets.

Each box is associated to a layer. This association
is represented by several lists of boxes, one for each
layer of the layout. The advantages are: (a) speed
in the search of boxes for certain layers, because
it is not necessary to traverse all the list elements
and (b) memory space, eliminating one field in
each element of the list. This representation is
very efficient to redraw areas by temporal priority
of layers. In this case, only the boxes of the visible
layers are searched, and only once, for the whole
design.

Besides occupying less space in memory, this type

72

of implementation allows greater speed in the exe-
cution of editing operations. These operations are
basically:

1. Select the target region;

2. Traverse the data structure, finding the ele-

ments which belong to the region;

. Modify lists associated to the selected ele-
ments;

. Redraw a screen region;

The amount of memory space required to store
lists of elements of all cells would be considerably
large, once the layout of a complex circuit may
incorporate tens of thousands of elements. For
this reason, the editing task is performed on one
cell at a time. Additionally, editing its subcells is
restricted to editing the contour-of such subcells.
Accordingly, only the elements of the cell being
edited have to be stored in memory.

However, the editing task demands that all the
hierarchy specified by the user be stored, either
for the allocation of a subcell or for the access to
its calls. This data structure has to store all the
set of cells that constitute the layout and also all
the hierarchic structure, created or modified by
the user during the editing operation.

A symbol table is used for this purpose and is
subdivided into two structures:

o A Symbol Table - A table describing the set
of cells used.

e A List of Calls - Each cell points to a list of
its subcells, which can be one of the lists of
elements already described above. Only the
list of calls of the cell being edited has to be
in memory.

According to this organisation, the hierarchical
structure is obtained by searching the lists of calls
of each subcell. This implementation allows that
several parts of the whole layout (each one with an
independent hierarchical structure) can be main-
tained in the set of cells. This allows greater free-
dom in the design phase of the circuit and during

updates of the hierarchical organisation. It is pos-
sible to delete a complete subtree of the layout and
use it later, once all subcells remain in the sym-
bol table and the structure still remains intact in
its lists of calls. The information about each cell,
contained in the symbol table is:

e Number : Identification used by the program,
which is present in the CIF file;

Name : Alternative Identification;
Dz,Dy : Cell Dimensions;
File : File Name Containing its description;

Connections : A description of the connec-
tions of each cell.

Part of the symbol table is shown on the screen
and it can be edited. The dimensions of each cell
were included in the symbol table to be consulted
during the drawing operation, if necessary. There-
fore, to draw the contour of subcell calls it is not
necessary to fetch this information from disk. The
same occurs to show the connections of a certain
cell, which can also be found in the symbol ta-
ble. However, information about connections is
not shown on the screen, although it is present in
the symbol table.

The data structure chosen for the storage of the
layout was the implementation of linear lists of el-
ements, with linked lists. Linked lists are more
dynamic in insertion and deletion operations, dis-
pensing with preliminary memory, space alloca-
tion. ’

4.1.2 Disk Storage Organisation

A disk storage organisation of one file for each
cell was found to be appropriated because it is
the simplest organisation. This disk organisation
allows a sequential file describing its elements for
each cell of the circuit, generally in textual format:
One of the main aspects considered when choosing
a disk layout organisation was the need to provide
easy editing of cells coming from non-hierarchical
editors, particularly the cell editor of TEDMOS.

In order to fullfill the requirements stated above,
the stantard format CIF 2.0 (Caltech Intermediate

73

Format) was chosen. It allows the description of
the design in a portable textual format and it also
allows the definition of the hierarchy. FEach file
defines the elements of a single cell, including the
calls to its subcells.

5 The Design Rule Checker

Each fabrication process is characterized by a set
of parameters that describes the valid geometric
constructions used in the integrated circuit. This
set of rules is called geometric design rules.

Due to the extremely large number of transistors
and masks in an integrated circuit, it is impossible
to verify the correctness of the circuit by visual
means. However, this can be done reliably by a
computer program that sistematically verifies all
the design rules of the circuit. i

According to Mead and Conway [6], the geom-
metric verifications can be classified in categories,
such as:

e Width of Lines - The dimension of a line of a
given layer should be larger than a minimum
value.

e Spacing Rules - Two geommetric forms of the
same layer or of different layers, should keep
a minimum distance between them.

e FEztension Rules - Extension rules are used
when a geommetric form should extend over
another by a certain value.

The design rule checking task is performed within
the editor, that is, the designer does not have to
exit the editor to run the DRC. TEDMOS’s verifi-
cation routines are parametric, which means that
both the layers and the circuit dimensions involved
on each verification routine are read from a file,
on execution time. A set of rules is described in
this file which specifies rectangle width, rectangle
spacing, extensions and transistor construction.

The DRC algorithm employed is a variant of the
raster method [3], which is compatible with the
form of representation used by the cell editor. The
algorithm performs a double scan of the circuit for
each rule been scrutinized. This scan operation is

74

performed in two steps: line by line in the hori-
zontal direction and column by column in the ver-
tical direction. The layout is verified as a line of
elements, where each element is the set of layers
present at that point.

This algorithm is not sufficient to verify all cases
and this a deficiency of this DRC program. For
example, it does not detect spacing violations at
corners. To solve this problem, a new and hier-
archical DRC, capable of working with rectangles
instead of a bitmap description, is under develop-
ment.

6 The Circuit Extractor

The circuit extractor takes a geometrical descrip-
tion of the circuit and provides a transistor netlist
which can be used by other programs for logical
and electrical verification of the layout. Basically,
the circuit extracting problem consists of the fol-
lowing operations:

1. Locate transistors, including source, gate, and
drain terminals.

2. Find transistor connections.

The circuit extractor of TEDMOS operates on a
bitmap description of the layout and produces an
output file which contains two types of registers:
transistors and nodes. The register of transistors
associates a number to each transistor and gives
a number to each transistor terminal. If two ter-
minals are interconnected by a wire, they will re-
ceive the same number. The set of interconnected
terminals and wires is termed node. During the
editing operation, the designer can give a name to
a node to identify simulation points, for example.

‘The registers of nodes identify the name of each

node.

This circuit extracting method is based on the
lakes and islands algorithm [1], which tries to solve
the following problem: given a matrix of zeros (0)
and ones (1), where 1 indicates ground and 0 wa-
ter, atribute a code to each contiguous region of
ground (island). The solution of this problem is
a bidimensional automata that scans the bitmap

from top to bottom and from left to right, at-
tributing a code to each position. This code is a
function of the codes of the positions immediately
above and immediately to the left. The code zero
(0) indicates that the region is water.

This algorithm is capable of extracting wires only.
Nevertheless, it can be used to identify periph-
eral regions of transistors, determining also gates,
drains and sources. In order to achieve this, every
time that the bitmap contains an intersection of
polisilicon with diffusion, this region is marked as
a transistor channel. The algorithm is also capa-
ble of extracting the capacitances and resistances
of wires and transistors, based upon the area of
the elements. A new extractor program that takes
as input a hierarchical description of the circuit
based on rectangles, instead of a bitmap descrip-
tion is also under development.

7 The Switch-Level Simulator

A simulator is a program that describes the be-
haviour of a model of a system. This model can
be created with several levels of detail, for exam-
ple, registers, logic gates and transistors. Each
model describes the system in a certain level of
abstraction, which can be convenient, depending
on the stage of the project. After producing the
layout it is very difficult to reconstruct the model
at the level of logic gates, and therefore a simu-
lator working at the level of transistors is more
adequate.

The switch-level simulator can be used during the
design phase to check if a given network of tran-
sistors implements the logic operation required.
Most important, it can also be used to verify if the
implemented layout performs the logic operation
desired. This type of verification is fundamental
in a full-custom design because of the errors that
can occur when editing the layout.

Transistors can be modelled with several degrees
of refinement. The more refined the transistor
model, the more precise will be the results. How-
ever, the computation time will increase. The cir-
cuit model used by the TEDMOS switch-level sim-
ulator is based on the MOSSIM I simulator [3]

and contains two elements: transistors and nodes.
Each transistor is modelled as a perfect key, with
interchangeable terminals.

Circuit nodes can be in one of the states (0,1,X),
where 0 and 1 correspond to low and high voltage
levels, respectively, and X denotes an undefined
state corresponding to an uninitialized node or a
node with a signal value between 0 and 1. Nodes
can also be of three types: input (when a node
is a voltage power supply with an infinite current
supply), Pull-up (when connected to a load tran-
sistor) and Normal (none of the previous cases).

A transistor is modelled as a three-terminal (gate,

-drain, source) bilateral device which could be in

any of three states: 0 (open or noconducting), 1
(closed or conducting), and X (undefined, interme-
diate conductance between its conductance when
open and when closed).

The switch-level simulator works well for syn-
chronous circuits or time-independent circuits
(e.g. combinational circuits and synchronous fi-
nite state machines). The model of transistor used
is rudimentary and does not allow the calcula-
tion of precise delays or voltage levels. However,
this type of simulator provides very fast responses,
making it possible to simulate large circuits, which
is very useful for a first validation of the circuit.

This is a unit-delay simulator, that is, it uses a
virtual delay of one time unit for all transistors.
The output of the simulator is the output of the
steady state of the circuit. It is not possible to
analyse the dynamic or transitory behaviour of the
transistor network.

A visual interface was created to show the re-
sults of the simulation, emulating a ten (10) chan-
nel osciloscope and it is shown in the computer
screen allowing the simultaneous visualization of
10 points of the circuit. Figure 4 illustrates an ex-
ample of the output of the switch-level simulator.

8 The Electrical Simulator -
ONDAS.
The electrical simulator ONDAS uses an input for-

mat that is compatible with the SPICE II simu-
lator, except for some restrictions [5]. This for-

75

mat has the advantage of being very well known
among microelectronics designers. Unfortunately,
this input format is not user friendly, particularly
for the beginner. In order to allow the creation
of input files for electrical simulation, a converter
program was included in the TEDMOS sytem and
it generates a SPICE format, from the output of
the circuit extractor. The generated file incorpo-
rates a series of informations which are necessary
for the electrical simulation and are:

Technology parameters;
e Dimension of the Elements of the Circuit;
e Capacitance of the Elements of the Circuit;

e Simulation Commands;

ONDAS was developed aiming the reduction of
the processing time required by conventional elec-
trical simulators, such as SPICE. Its operation is
based on the Wave Relaxation algorithm, that ex-
plores some of the characteristics of MOS-VLSI
circuits which are stated below:

1. MOS transistors are highly unidirectional de-
vices, that is, source and drain currents are
highly dependant of the gate voltage, while
the current at the gate node is almost inde-
pendant of the drain and source voltages.

2. In a MOS-VLSI circuit, typically less than
20% of the node voltages varies significantly
in a certain moment of time; ONDAS tries
to solve only the equations of active nodes,
which represent a significant time reduction.

3. The simulation process occurs in discrete time
intervals, termed integration steps. In order
to obtain precise results, certain waveform re-
gions, which vary rapidly, have to be calcu-
lated in more points, that is, using smaller
integration steps.

In conventional simulators, the integration steps
are dictated by the worst case, that is, by the
waveform that varies more rapidly in the circuit
and this sequence of integration steps is used for
the whole circuit. The algorithm used by ONDAS

allows that one of the waveforms be discretized
using its own sequence of integration steps, which
implicates considerable reductions of processing
time, in comparison with conventional electrical
simulators.

The algorithm used by ONDAS has guaranteed
convergence only when applied to MOS circuits
containing only transistors and capacitors. For
this reason the simulator can not be applied to the
analisys of circuits containing bipolar transistors,
diodes, resistors, inductors and other elements.
The convergence of the algorithm used in the sim-
ulator is conditioned to the existence of non-zero
capacitances connected to each active node of the
circuit. By active nodes it should be understood
those nodes not connected to the power supplies.

9 PLA Automatic Synthesis

Programmable Logic Arrays (PLA) are structures
with regular layout, which are used to implement
logic functions. These are mostly used in the con-
trol section of integrated circuits. This program
accepts logic equations in the form of sum, of prod-
ucts and generates the final layout, automatically.
A technology file has to be created for each tech-
nology.

A PLA consists of two matrices called the planes
of the PLA. The most common forms of PLAs are
NOR-NOR (two NOR planes) and NAND-NAND
(two NAND planes). In order to define a PLA, a
language is used to describe the logic equations.
For example, a PLA can be described as follows:

OP planumber 10; * cell number

EN A B C; * normal inputs

SN S1 S2; * normal ocutputs

EQ S1 = AB; * equation

EQ S2 = AB + A’B’C; * equation

10 Evolution of the TEDMOS

System

The encouragement provided by TEDMOS users,
from several countries, has been the driving force
to improve the system. New tools to improve the
system are under development. They will allow

76

the design of medium size to large size circuits,
using PC-like workstations and other more pow- -
erful workstations. Among the improvements and
new tools under developemnt are:

A TEDMOS version for Windows;
A hierarchical DRC;

)
®
o A hierachical Extractor;

A new version of the Electrical Simulator -
ONDAS;

Porting the system to a SPARC workstation;

A channel router;

Automatic synthesis fo regular circuits, such
as ROM and RAM. '

11

This paper described TEDMOS - a rather com-
plete CAD system for teaching the design of VLSI
integrated circuits.

Concluding Remarks

Commercial and powerful CAD software packages
for VLSI design are very expensive, require pow-
erful workstations and they also require a con-
tinual investment in maintenance and upgrading.
Additionally, these packages demand a very long
learning time. These reasons prohibit these CAD
packages to be made available to large groups of
students, which is normally the case in undergrad-
uate courses. TEDMOS fills this gap at zero cost
- it is distributed free of charge to universities and
research centers.

Presently, TEDMOS runs on IBM-PCO like
workstations and its highly integrated programs
increase productivity, which compensate other
weakness originated from system simplicity.

12 Acknowledgements

The TEDMOS system was originally developed by
Dr. Eber A. Schmitz, José A. Borges, Jonas Knop-
man, Jilio T. C. Silveira, Jodo Assis, Paula Cyrillo
and many other students to whom we sincerely
thank for their work. We are currently working
on the improvements stated on section 10.

77

References

[1] Baker, C. M. ,”Artwork Analysis Tools for
VLSI Circuits”, Cambridge, Mass., MIT,
75p, M.Sc. Thesis, (MIT LCS TR-239), 1980.

Borges, J. A. S.,”Editores Gréficos para Pro-
jeto de Circuitos Integrados”, Rio de Janeiro,
COPPE/UFRJ, M.Sc. Thesis, 1987.

Bryant, R. E., "An Algorithm for MOS
Logic Simulation”, Lambda, Palo Alto, CA,
Redwood Systems Group, 1(3): 46-8, 50-3,
Fourth Quarter, 1980.

4

Schmitz, E. A., Borges, J. A. S. and Knop-
man, J., "TEDMOS - Um sistema de CAD
para ensino de projeto de circuitos eletrénicos
de alta integracdo”, Revista Brasileira de
Computagdo, Vol. 5, N. 2, pp. 45-61,
Out/Dez, 1989. ’

Knopman, J., Mesquita Filho, A. C., Schecht-
man, J., "Convergence Properties of Relax-
ation Methods in the DC Analysis of Large
MOS Circuits”, Proc. IEEE Int. Symp. on
Circuits and Systems. Espoo, Finland, June
7-9, pp. 1639-42, 1988.

[5

Mead, C. and Conway, L. "Introduction to
VLSI Systems”, Reading, Mass., Addison-
Wesley, 396p., 1980.

(6]

[7] Schﬁxitz, E. and Borges, J. A. S., "Projeto de
Circuitos Integrados CMOS”, Rio de Janeiro,
LTC, 1989.

[8] Silveira, J. T. C., "CIRCO: Um Editor
Gréfico Hierdrquico de Circuitos Integrados
para Microcomputadores IBM-PC”, M.Sc.
Thesis, Instituto de Matemdtica da Univer-
sidade Federal do Rio de Janeiro, 61p, 1990.

Figure

1 - The Graphic Cell Editor.

NHALTTOE_._T6E:

PYe.

fEDHOS 1V (1508) 8, 8 5 5 (8 8 VIS, DPHCSNAVGO.... |
COMANDO: FA Nowo Fator (1): -5 CAH. W Meeovinnd
I l onRY EVENIOS HALDS| SODS LINKS L_"
__psel _bnankg___ \wiast_bm___fuento - LINK M
— TN
] ey °
NSTHI -

Figure 2 - The Hierarchical Editor.

78

T
D | H
, L Pl
________ L _ 1 _ 1" - -TIr"—-—-____
L E! F
L= [
1 t
D | T
_______ T -1- ____IT___ - - -
7 I
6 1 |
l 1 T
G ! H!
1 D— L
A] 1
[B | 2 — 4
3 —
[D | 5
| E | 2 s — 7
[F] 7
G} 6
| H | 2 —>6 —7
L] 7

Figure 3 - Partition of The Layout in Buckets

3
inpat 1
’ input l—I LI LI 1 7
ulmt YN Wy Ny Ny 5y N oy Yy BN
P o LI rrer
f—T

15:8

Figure 4 - A Plot Output of the Switch-Level

Simulator

