
Dealing with Coding Challenges Through Digital Platforms: Assessing Their Effectiveness
in Skill Development

Dr.Mohammed Yahya Alghamdi ,Department of Computer Science, Faculty of Computing & Information, Al-Baha
University, Al-Aqiq, 65779-7738, Saudi Arabia

myahya@bu.edu.sa

ABSTRACT

This research paper investigates the challenges faced by diploma-level IT students at Al-Baha
University in understanding programming concepts, writing code, and detecting errors. It also
examines the effectiveness of e-learning platform W3Schools in enhancing students' programming
skills. Through a comparative analysis of students using e-learning resources versus those
employing traditional learning methods, the study demonstrates the impact of the digital approach
in addressing common programming challenges. Both pre- and post-experiment surveys showed
positive gains in the Interactive Group, and the statistical data also confirmed a high level of
significance for all the programming skills measured. The significance of this paper lies in how
the research demonstrates that e-learning can reduce the barriers faced by programming students
and contribute to the literature on learning techniques in the context of today's technological
landscape. Consequently, the results provide a compelling argument for the necessity of
incorporating interactive e-learning resources into the programming curricula to improve student
performance and enhance confidence in their coding skills. The findings of this study offer
valuable insights into the use of digital approaches in education and suggest a potential way to
overcome common learning challenges on a large scale. This work aims to contribute to the
ongoing discussion on the impact and effectiveness of digital practices in education. Future
research recommendations focus on assessing the long-term value of e-learning in enhancing the
learning experience for programming students and better preparing them for future technologies.

Keywords: Programming Skills; W3Schools; Problem-Solving; Programming Challenges,
Software Development.

1. INTRODUCTION

This is the age of computers where we are direly in need of computer science, especially
programming language to be more equipped to better deal with situations in this technology-
controlled world. However, there are several challenges that a computer science student can come
across in grasping issues to do with programming language and the like. Software development is
the systematic use of scientific principles to design, develop, implement, and maintain software to
execute stated tasks using languages such as Python or Java. Professional programming skills is
cited as one of the most valuable skills that need to be developed in the world that is turn around
with technology and information. It needs in the process of formation of mental and logical skills
of students and give them a possibility to solve problems in rather creative ways. Nonetheless,
learning programming involves many problems and struggles which must be acknowledged and
solved. As a result, current research attempts to examine these challenges and determine how to

mailto:myahya@bu.edu.sa*
esteb
Typewriter
CLEI Electronic Journal, Volume 28, Issue 1, paper 9, February 2025

overcome them. In this research, the programming learning experience of the students will be
assessed along with the challenges faced while doing so. In Computer Science subjects, the
difficulty levels differ based on the teaching and learning processes [1]. The difficulty level for the
topic of Computer Science is determined by the participants' backgrounds and experiences.
Computer Science lecturers must strike a balance between theory and practical applications. It is
also necessary to provide students with opportunities to implement their knowledge and skills by
providing problem-solving exercises by practical applications on well-defined scenarios [2].
Problem-solving exercises, tasks designed to enhance critical thinking and the ability to solve
complex issues as well as coding project assignments involving the creation of software
applications by writing and implementing code are essential for mastering programming concepts.
Practical tasks that involve working with programming languages or software development tools
simplify and elevate the learning process. Computer Science courses may appear as interesting yet
challenging to pursue [3], [4]. It requires problem-solving abilities, logical thinking, as well as a
willingness to continuously learn and adjust to new technologies. Learning intricate ideas and
algorithms requires perseverance and practice. For instance, programming poses a common
problem in the Computer Science curriculum. Algorithms are step-by-step procedures for solving
problems efficiently, crucial for developing optimized code in various applications. It is common
for students to fail and drop out, especially during the early stages [5], [6]. A variety of tools should
be made accessible to support Computer Science students especially to practice programming.
From student perspective in their academics, a large fraction of students is lacking problem solving
skills [7],[8],[9], [10]. Programming is difficult as it requires time and effort, focused knowledge,
and skills. Acquiring these skills is an arduous trial-and-error process and requires persistence [11].
Hence, a series of skills, as well as persistence, is essential on the journey to becoming a proficient
programmer. Understanding programming syntax is just the initial step in the challenging journey
of developing effective programs. Students must delve deeper into understanding the syntax and
the logic of computer programming to address complex real-world problems [7]. Conventional
teaching materials such as printed books prove ineffective for grasping the dynamic nature of
Computer Science subjects such as programming [12],[13]. Regarding pedagogy, it is
recommended to start with simple complex programming [8]. Students' negative perceptions
influence their learning attitudes toward computer programming, undermining their intrinsic
motivation to pursue success [14],[15], [9]. This research seeks to reveal the programming
challenges faced by diploma-level IT students at Al-Baha University as they learn to code and
understand programming concepts. It also examines how effectively W3Schools addresses the
programming issues encountered by students. Furthermore, this study evaluates how W3Schools
helps students learn, comparing their outcomes with those of traditional educational methods
before and after implementing the digital approach. The research contributes to the development
of future learning methods and enhances programming education by analyzing the impact of e-
learning on student results using quantitative data.

2. Literature Review

A vast body of literature on computer science education reveals the diverse terrain of obstacles
experienced by students, specifically those related to programming, as well as provides metrics on
approaches and resources to address these challenges. Computer Science equips students with the

necessary skills for the digital age and has become an essential component of contemporary
education [16], [17]. Nonetheless, this area poses distinct difficulties for both students and
lecturers. One of the goals of this research study is to shed light on the important areas that require
attention and improvement. This review shall examine the challenges associated with teaching and
learning Computer Science. One of the many challenges for Computer Science students is that
they have to understand abstract concepts and advanced algorithms. A solid foundation and
understanding are needed such as algorithms, data structures, and programming paradigms [18].
An example of an optimum teaching technique is to dissect challenging subjects into smaller parts
while providing real-life applications for better understanding. The current challenge for both the
lecturers and students is the rapid technological development related to Computer Science.
Therefore, they need to be kept up to date with the latest developments [19]. There are also
challenges in being up to date with the current frameworks, tools, and programming languages
[20]. Instead of focusing solely on teaching specific technologies, lecturers should consider
focusing on fundamental concepts and problem-solving approaches. Such challenges can
subsequently be addressed by providing tools for students to be able to continuously improve their
skills by themselves. Another challenge is the common perception that Computer Science is
focused on theory and abstract fields with little practical applications. This may have an impact on
the students' motivations. For the purpose of highlighting the practicality and the applicability with
respect to Computer Science principles, it is proposed that lecturers integrate real-world scenarios
as well as hands-on projects into their lesson plans. Supporting the students in coding competitions,
engaging in practical projects, or cooperating with industries on actual projects may lead to
improvement in the student's enthusiasm and comprehension. Students’ enrollment also differs in
their gender preference, where there is a thin representation of females in Computer Science [17,
18]. Insufficient infrastructure and resources are a challenging factor in teaching and learning
Computer Science. It is vital for educational institutions and universities to invest in software
licenses, modern computer labs, as well as additional resources. Furthermore, it is essential to
provide lecturers with opportunities for professional development for the purpose of enhancing
their Computer Science pedagogical abilities as well as knowledge. According to past research
studies that highlight the challenges faced by Computer Science students in a variety of subjects,
students find it difficult to learn some aspects of Computer Science, such as programming. Based
on the insights gleaned from prior researchers, it has been observed that challenges arise in the
initial stages when learning programming. Students encounter challenges in grasping abstract
programming concepts such as control structures as well as formulating algorithms to address
concrete problems [8], [5], [9]. A lack of solidification regarding abilities, as well as problem-
solving skills and logical reasoning, exacerbates these issues during the early phases of learning
[7], [10]. As a result, there is a need to shift the focus towards higher-level knowledge, for instance,
programming strategies and conditional approaches. It is imperative to introduce metacognitive
skills, encompassing knowledge about 'when' and 'why' during the early stages of teaching
programming [19]. Several studies have underscored the significance of metacognitive skills
pertaining to computer programming courses, identifying them among the factors contributing to
students' struggles with programming problems [20], [21], [9]. Conventional teaching methods
that rely on static materials, for instance, books, notes, as well as slides, have proven to be
ineffective methods of teaching Computer Programming [12]. The inadequacy of static teaching

materials lies in their lack of personalization to cater to specific groups of students, as such
materials are developed for a broad, global audience. These materials fail to provide live
interactions and dynamic elements to elucidate programming concepts. The ideal scenario is to
have an instructor available for immediate feedback and detailed explanations when needed by
students. Nevertheless, this is often impractical due to time constraints, limited staff, and large
class sizes. The use of static printed materials to teach programming is a hindrance to explaining
dynamic software design conceptions, as some students struggle to grasp the dynamic nature of
programs due to the inflexibility of static materials [8]. Such a notion is supported by prior research
that determined that certain students may prefer solitary learning while some may favor an
interactive learning setting [13]. Apart from that, the dynamic learning environment involves
activities such as group discussions and peer interactions. Consequently, the current teaching
approach that employs static materials does not cater to the various learning styles of students.
Therefore, it is imperative for instructors to ensure that their teaching methods can accommodate
diverse student groups. In terms of pedagogy, instructors tend to prioritize teaching syntax when
it comes to programming languages over promoting problem-solving techniques. The selected
programming language used for the course is often based on popularity rather than the suitability
of the teaching methods [8]. Opting for an irrelevant programming language just to fulfill
educational purposes not only hampers the usefulness of teaching but also heightens the challenges
faced by students in grasping the subject [10]. Programming necessitates a high level of analysis
and abstraction in thinking to generate effective solutions. This involves implementing specific
programming concepts as well as algorithms. Consequently, selecting programming languages
based on industry popularity is inappropriate since these languages are primarily designed for
professional and specific use instead of supporting educational goals. Computer Science subjects
such as programming require persistence, continuous learning, and knowledge from other subjects
from time to time. Students often seek solutions or give up when faced with obstacles. Results
from previous experiments have demonstrated the existence of a relationship that exists between
mathematical problem-solving competencies as well as programming abilities in introductory
programming courses [22]. From a psychological perspective, students tend to hold negative
perceptions about programming. Such negativity arises from comments, opinions, as well as
suggestions from their friends who have previously studied this subject. When students harbor
negative thoughts and incorrect impressions, they are more likely to believe that programming is
challenging. Consequently, this negatively affects their intrinsic motivation and diminishes their
drive to learn [14]. Apart from that, the intensity of these negative perceptions does not only impact
intrinsic motivation but also influences students' attitudes toward computer programming.
Individual attitudes are shaped by behaviors and indicate the cognitive actions that determine an
individual's success or failure in accomplishing a particular task. The difficulties encountered in
learning computer programming can be attributed to various factors. Initially, students face hurdles
in creating programs to address specific tasks because they struggle with the delineation of distinct
functionalities into procedures. Students encounter difficulties in grasping the syntax of
programming languages, which is challenging in terms of recalling and comprehending the
knowledge [7][15]. Simultaneously, the arduous and time-consuming process of debugging
programs further diminishes students' motivation to excel in programming languages. There are
also some other challenges in computer programming that are discussed here. The first challenge

is the lack of problem-analysis skills and an understanding of programming concepts. This stems
from the fact that students lack essential prerequisites, for instance, discrete mathematics as well
as a course in logic programming [23]. The second contributing factor arises from the ineffective
utilization of presentation techniques related to problem-solving. Traditional methods such as
pseudo code and flowcharts are appropriate in teaching structured programming but fall short when
it comes to instructing object-oriented programming, which is the prevalent approach in
contemporary programming languages. To address this issue, instructional methods that offer
enhanced visualization and explanation are necessary to help students form a mental representation
of the problem [9]. The third challenge results from the unsuccessful practice regarding teaching
approaches concerning coding practices. Normal teaching approaches are no longer applicable for
instructing object-oriented programming, and instructors concur that implementing those
distinctive perceptive approaches is essential. Teaching materials that support spatial and
visualization abilities are required to aid students in comprehending the processes regarding data
as well as control flow. The absence of active student engagement and participation during
practical sessions exacerbates the problem, leading to students struggling to grasp computer
programming during the learning process. Therefore, the last element for challenges in
programming learning relates to the student's understanding and mastering of programming syntax
[7], [15]. This is made worse when the students are unable to code programming constructs well.
It can be elaborated by the factors of understanding programming concepts, lack of knowledge in
syntax, and inability to write efficient programming code [9]. Computer Science is difficult to
teach and learn for many reasons, including but not limited to the abstract nature of the subject,
the rapid development of technology, the inadequacy in practical application, the gender and
diversity gap, and a lack of resources. By implementing practical projects, effective teaching
strategies, promoting diversity, as well as infrastructure and resource investments, students
studying Computer Science in particular can benefit from a more stimulating and diverse learning
environment. Accessing online resources for Computer Science learning supports students and
helps them overcome their difficulties in Computer Science subjects. One of the resources to learn
Computer Science is Stack Overflow, a well-known online community for programmers, offering
an extensive archive of many programming-related issues and knowledge, providing solutions for
the international programming community through collaborative learning [24]. Coursera offers a
wide range of high-quality computer science courses and degree programs that help students gain
a more comprehensive understanding of the subject and practical skills with multiple learning
pathways [25]. A large variety of user-created courses designed for practical, hands-on learning
experiences designed for diverse skill levels can be found on Udemy [26]. Codecademy is a site
that specializes in interactive coding tutorials that are designed to make learning how to code fun
and accessible to beginners as well as professional developers, ranging from a gamified learning
experience and variety of programming languages and topics covered [27], [28]. Also, it offers
interactive coding exercises, including lessons in programming languages like Python, JavaScript,
HTML, as well as CSS. It provides a practical learning environment with instant feedback. There
are various Computer Science courses available at Khan Academy that are beyond algorithms, data
structures, and computer programming [29]. The platform offers quizzes, practice tasks, and video
tutorials. In addition, Coursera also offers online courses from top institutions and universities
worldwide [30]. There are a variety of subjects taught by experts in the field, such as web

development, machine learning, including artificial intelligence [31]. Another website that offers
a choice of selection of Computer Science courses from top universities is edX [32]. It provides
activities and quizzes in interactive programming assignments, tests and video lectures. Students
can work together to write code and share their works on coding projects through GitHub which
is an online hosting service use by computer sciences [33]. W3Schools is an online educational
platform that provides resources for students to learn programming through hands-on practice [34].
Consequently, this research examines whether W3Schools can help students address their
programming challenges at Al-Baha University. It investigates how the e-learning platform
W3Schools supports diploma-level IT students at Al-Baha University in developing programming
skills while enhancing their problem-solving abilities and knowledge acquisition. The study
validates existing research on how technology improves learning experiences and resolves
difficulties through educational programming content.

3. Research Method

This research study used a quantitative research approach to investigate the barriers that diploma-
level IT students at Al-Baha University face in learning programming, writing code, and
recognizing mistakes. In addition, the study aimed at evaluating the efficacy of the e-learning
resources in enhancing the students’ performance experimental group compared to the control
group during the pre and post treatment periods with the traditional facilitators. The overall goal
was to carry out quantitative research based on quantitative data, and then quantify the identified
problems to shed a light on those difficulties which the aforesaid students can encounter when
learning computer programming, and to compare how these challenges were met in the two groups.
In this study, the participants were 100 Diploma level IT students who have already developed
adequate programming ability imperative for ascertaining the effects of e-learning and were
recruited consecutively. Specifically, out of the total number of students, 50 were assigned to the
experimental group, while the remaining 50 formed the control group. Experimental group had 50
students enrolled to e-learning for their programming resources from W3Schools and control
group had 50 students following traditional methods. As shown in Figure1, out of the 50 students
in the experimental group 32 were female and 18 were male along with the control group, 30 of
the 50 students were female while 20 were male. Age distribution of the experimental group is
shown in Figure 2 in which 44 students of the total experimental group belongs to the age group
of 18-20 years and six students belongs to the age group of 21-23 years. The students in the control
group comprised 37 students aged 18 to 20 years and 13 students aged 21 to 23 years. Participants
were first informed of the goals of the study, making them aware that the study sought to establish
common difficulties in learning programming. Surveys conducted before and after the experiment
were utilized to collect data on student difficulties associated with programming. The surveys
included questions, detailed in Table 1, designed to assess the difficulties faced by students in
programming and problem-solving, specifically focusing on four key challenges: understanding
basic concepts, writing programs, learning code, and error recognition. Descriptive statistics were
utilized to highlight the major issues faced by students, offering insights into the efficacy of e-
learning platforms, such as W3Schools, in alleviating programming difficulties and improving the

educational experience. The investigation sought to find optimal strategies for enhancing student
learning in digital environments.

Figure 1 Gender Distribution of Experimental and Control Groups

Figure 2 Age Range of Students in Experimental vs. Control Groups

0

5

10

15

20

25

30

35

Female Male

Experimental Group Non-experimental Group

0

5

10

15

20

25

30

35

40

45

50

18-20 Years 21-23 Years

Experimental Group Non-experimental Group

Table 1 Survey Questions Addressing Key Programming Challenges

Challenge Statement

1. Comprehending Fundamental
Concepts

I find it difficult to comprehend the fundamental concepts of
programming.

2. Writing Programs I'm having a hard time writing programs to solve certain problems.

3. Learning Code Learning and writing code sentences is very Challenging.

4. Error Recognition Inability to Identify Errors.

4. RESEARCH RESULTS

This section presents the results from both pre-experiment and post-experiment participant
surveys, highlighting how the p-values for programming difficulty measures differed between the
experimental and control groups. These findings show how the intervention helped shed light on
major differences in programming competencies both before and after the experiment.

Table 2: Pre-Experiment on Programming Difficulties Across Experimental and Control
Groups

Statement Experimental
Group (Mean)

Control Group
(Mean) p-value

Challenges in Comprehending Fundamental
Concepts 2.88 2.98 0.703603

Difficulty writing programs to solve
problems 2.88 3.10 0.426286

Learning and writing code sentences is
challenging 3.02 2.70 0.245134

Inability to Identify Errors 2.86 2.94 0.770260

This table shows the mean scores and p-values for the various assertions prior to any training
intervention.

• Challenges in Comprehending Fundamental Concepts:

The experimental group achieved a mean score of 2.88, while the control group attained 2.98 for
the same test. The result shows no major difference between groups since the p-value stands at
0.703603. Both groups encounter similar challenges in learning basic programming knowledge.

• Difficulty Writing Programs to Solve Problems:

The experimental group again scored lower (2.88) compared to the control group (3.10). The p-
value of 0.426286 further supports the conclusion that there is no significant difference in their
abilities to write programs to solve problems.

• Learning and Writing Code Sentences is Challenging:

The experimental group’s mean was 3.02, while the control group scored 2.70. The study results
show no significant variation as both groups experienced similar difficulties when writing code,
yielding a p-value of 0.245134.

• Inability to Identify Errors:

The results indicated that both the experimental and control groups scored nearly the same (2.86
and 2.94, respectively) in detecting errors in code, with no significant statistical difference
observed (p-value = 0.770260). The overall results in Table 2 indicated that, before the training,
both the experimental and control groups faced similar challenges across different aspects of
programming.

Table 3: Post- Experiment on Programming Difficulties Across Experimental and Control
Groups

Statement Experimental
Group (Mean)

Control Group
(Mean) p-value

Challenges in comprehending fundamental
Concepts 2.68 3.52 0.000853

Difficulty writing programs to solve
problems 2.66 3.75 1.67238E-06

Learning and writing code sentences is
Challenging 2.70 3.57 0.000457

Inability to Identify Errors 2.50 3.52 1.46576E-07

This table summarizes the results after the training intervention, showing how the mean scores
and p-values changed.

• Difficulty Comprehending Fundamental Concepts:

 The mean of the control group increased to 3.52, while the experimental group mean decreased
to 2.68. Experimental group knowledge improved because of the training; this was demonstrated
by the p-value of 0.000853 for programming comprehension.

• Difficulty writing Programs to Solve Problems:

The experimental group mean was 2.66, whereas the control group was 3.75. The low p-value
shows that there is a highly significant difference, 1.67238E-06, meaning that the experimental
group has significantly enhanced their capability to write programs after the training.

• Learning and writing code sentences is challenging:

The control group's score increased to 3.57, while the experimental group's score reduced to
2.70. The experimental group's confidence and competence in learning and writing code were
positively influenced by the training, as evidenced by the p-value of 0.000457: a significant
difference.

• Inability to Identify Errors: The experimental group achieved a score of 2.50, while the
control group achieved a score of3.52. The experimental group demonstrated a significant
improvement in error recognition following the training, as evidenced by the p-value (1.46576E-
07). In conclusion, Table 3 demonstrates that the experimental group experienced substantial
improvements in all aspects measured following the training, indicating that the training was
effective in overcoming the programming challenges they encountered.

4. DISCUSSION

These results of the study provide significant insights into the efficacy of e-learning platforms in
improving programming education for diploma-level students at Al-Baha University. The analysis
of pre- and post-experiment outcomes reveals a substantial enhancement in the difficulties
encountered by the experimental group, which employed e-learning resources, in contrast to the
control group, which depended on conventional teaching methods. Initially, the pre-experiment
findings indicated that both groups faced comparable challenges in comprehending programming
concepts, writing programs, acquiring coding skills, and identifying errors. The lack of significant
differences in the mean scores (with p-values ranging from 0.245 to 0.770) indicates that all
students struggled with foundational programming skills, a finding consistent with prior studies
highlighting the initial challenges faced by diploma-level learners [35]. In contrast, the post-
experiment results indicated notable improvements for the experimental group across all assessed
challenges, with p-values reflecting a high level of statistical significance (ranging from 0.000457
to 1.67238E-06). For example, the mean score for difficulty in understanding basic concepts
decreased from 2.88 to 2.68, while the control group's score increased to 3.52. This substantial
shift suggests that e-learning platforms significantly aided the experimental group in mastering
foundational programming concepts more effectively than their peers without access to these

resources. The experimental group showed significant enhancements in their ability to write
programs and recognize errors, further reinforcing the effectiveness of the e-learning interventions.
These results support prior research pointing out that while using e-learning platforms, students
apply enhanced problem-solving skills and code more confidently than the students who attended
traditional classes [36], [37]. The importance of this study is based on an ability to show that e-
learning can solve problems of programming students. As programming is crucial to the modern
world education and career, identifying the antecedents of effective programming learning is
important and pivotal for the educators and educational institutions of the world. The positive
effects found in the present study indicate that incorporating e-learning in curricula can improve
the performance of students and increase their self- efficacy on coding skills. The fact that
computer-mediated discussions can be used successfully in higher education also has implications
for educational practice. integrating e-learning platforms into programming courses to Improve
Learning journeys should be considered by Institutions. If students encounter a problem during
programming, they can use additional materials and interactive resources made available to them
by their instructors to solve a problem. Furthermore, an understanding of how to apply the e-
learning tools to the environment will significantly be required by training the faculty.
Comparisons with findings from other universities further highlight the effectiveness of e-learning
in programming education. For instance, a study at Afyon Kocatepe University in Turkey found
that students using blended learning approaches exhibited significant improvements in
programming skills and overall course satisfaction [38]. Similarly, research from Zhejiang Normal
University in China indicated that students utilizing e-learning platforms outperformed their peers
in traditional settings, especially in problem-solving tasks [39]. These comparisons reinforce the
notion that e-learning is a valuable pedagogical strategy in programming education, providing a
scalable solution to common learning challenges. In summary, this study underscores the
significant impact of e-learning platforms on programming education at Al-Baha University. The
improvements in student performance observed after utilizing these resources highlight the
potential of e-learning to address the challenges faced by programming students. As educational
institutions continue to adapt to digital learning environments, the findings from this research can
serve as a foundation for future studies and the development of effective teaching strategies in
programming education.

6. Conclusion

This study evaluates the effectiveness of e-learning platforms in enhancing the programming skills
of diploma-level students at Al-Baha University. The pre- and post-experiment comparison clearly
reveals that students using e-learning resources especially W3Schools have shown great
improvement in perceived understanding of programming concepts, coding abilities and ability to
detect errors. Such research proves that e-learning is a viable supplemental educational tool that
resolves multiple difficulties learners encounter in this subject. The improvements noted in the
experimental group suggest that e-learning resources, which are easy to interact with, should be
part of programming curricula. In the world that is rapidly turning into a digital world, people need
programming skills and the educational institutions have to develop the methods of teaching for

this. The results of this study point to the efficacy of e-learning as a means of supporting learning
programming, which would enhance students’ performance when coupled with enhancement of
their self confidence in coding skills. As for the future work, it is proposed to strengthen the
research of the effects of e-learning for programming education and look at more e-learning
environments that may diversify information helping. Continuing to grow and develop as
educators, the incorporation of digital learning becomes enhanced and allows the preparation of
students for the solutions and pitfalls presented within the realm of technology.

REFERENCES
[1] T. Korhonen et al., "Finnish teachers as adopters of educational innovation: perceptions of programming as a
new part of the curriculum," Computer Science Education, vol. 33, no. 1, pp. 94-116, Jan. 2023, doi:
10.1080/08993408.2022.2095595.
https://doi.org/10.1080/08993408.2022.2095595

[2] X. Du and E. B. Meier, "Innovating Pedagogical Practices through Professional Development in Computer
Science Education," Journal of Computer Science Research, vol. 5, no. 3, pp. 46-56, Jul. 2023, doi:
10.30564/jcsr.v5i3.5757.
https://doi.org/10.30564/jcsr.v5i3.5757

[3] K. M. Malik and M. Zhu, "Do project-based learning, hands-on activities, and flipped teaching enhance
student's learning of introductory theoretical computing classes?," Educ Inf Technol (Dordr), vol. 28, no. 3, pp.
3581-3604, Mar. 2023, doi: 10.1007/s10639-022-11350-8.
https://doi.org/10.1007/s10639-022-11350-8

[4] C. Mouza, S. Sheridan, N. C. Lavigne, and L. Pollock, "Preparing undergraduate students to support K-12
computer science teaching through school-university partnerships: reflections from the field," Computer Science
Education, vol. 33, no. 1, pp. 3-28, Jan. 2023, doi: 10.1080/08993408.2021.1970435.
https://doi.org/10.1080/08993408.2021.1970435

[5] A. Luxton-Reilly, "Learning to program is easy," in Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education, 2016, pp. 284-289.
https://doi.org/10.1145/2899415.2899432

[6] A. Robins, J. Rountree, and N. Rountree, "Learning and teaching programming: A review and discussion,"
Computer science education, vol. 13, no. 2, pp. 137-172, 2003.
https://doi.org/10.1076/csed.13.2.137.14200

https://doi.org/10.1080/08993408.2022.2095595
https://doi.org/10.30564/jcsr.v5i3.5757
https://doi.org/10.1007/s10639-022-11350-8
https://doi.org/10.1080/08993408.2021.1970435
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1076/csed.13.2.137.14200

[7] Y. Bosse and M. A. Gerosa, "Why is programming so difficult to learn? Patterns of Difficulties Related to
Programming Learning Mid-Stage," ACM SIGSOFT Software Engineering Notes, vol. 41, no. 6, pp. 1-6, 2017.
https://doi.org/10.1145/3011286.3011301

[8] A. Gomes and A. J. Mendes, "Learning to program-difficulties and solutions," in International Conference on
Engineering Education-ICEE, 2007.

[9] A. V Robins, "12 novice programmers and introductory programming," The Cambridge handbook of
computing education research, p. 327, 2019.
https://doi.org/10.1017/9781108654555.013

[10] S. Savage and P. Piwek, "Full report on challenges with learning to program and problem solve: an analysis
of first year undergraduate Open University distance learning students' online discussions," 2019.

[11] H. C. Jiau, J. C. Chen, and K.-F. Ssu, "Enhancing self-motivation in learning programming using game-based
simulation and metrics," IEEE Transactions on Education, vol. 52, no. 4, pp. 555-562, 2009.
https://doi.org/10.1109/TE.2008.2010983

[12] J. Bennedsen and M. E. Caspersen, "Revealing the programming process," in Proceedings of the 36th SIGCSE
technical symposium on Computer science education, 2005, pp. 186-190.
https://doi.org/10.1145/1047344.1047413

[13] T. Jenkins, "On the difficulty of learning to program," in Proceedings of the 3rd Annual Conference of the
LTSN Centre for Information and Computer Sciences, 2002, pp. 53-58.

[14] E. Ng and C. Bereiter, "Three levels of goal orientation in learning," Journal of the Learning Sciences, vol. 1,
no. 3-4, pp. 243-271, 1991.
https://doi.org/10.1080/10508406.1991.9671972

[15] Y. Qian and J. Lehman, "Students' misconceptions and other difficulties in introductory programming: A
literature review," ACM Transactions on Computing Education (TOCE), vol. 18, no. 1, pp. 1-24, 2017.
https://doi.org/10.1145/3077618

[16] A. Bough and G. Martinez Sainz, "Digital learning experiences and spaces: Learning from the past to design
better pedagogical and curricular futures," Curric J, vol. 34, no. 3, pp. 375-393, Sep. 2023, doi: 10.1002/curj.184.
https://doi.org/10.1002/curj.184

https://doi.org/10.1145/3011286.3011301
https://doi.org/10.1017/9781108654555.013
https://doi.org/10.1109/TE.2008.2010983
https://doi.org/10.1145/1047344.1047413
https://doi.org/10.1080/10508406.1991.9671972
https://doi.org/10.1145/3077618
https://doi.org/10.1002/curj.184

[17] J. C. Lapan and K. N. Smith, "'No Girls on the Software Team': Internship Experiences of Women in Computer
Science," J Career Dev, vol. 50, no. 1, pp. 119-134, Feb. 2023, doi: 10.1177/08948453211070842.
https://doi.org/10.1177/08948453211070842

[18] E. Tereshchenko, A. Happonen, and V. Hasheela-Mufeti, "Barriers for Females to Pursue Stem Careers and
Studies at Higher Education Institutions (HEI). A Closer Look at Academic Literature," International Journal of
Computer Science & Engineering Survey, vol. 14, no. 1/2/3/4, pp. 01-23, Aug. 2023, doi:
10.5121/ijcses.2023.14401.
https://doi.org/10.5121/ijcses.2023.14401

[19] M. N. Ismail, N. A. Ngah, and I. N. Umar, "The effects of mind mapping with cooperative learning on
programming performance, problem solving skill and metacognitive knowledge among computer science
students," Journal of Educational Computing Research, vol. 42, no. 1, pp. 35-61, 2010.
https://doi.org/10.2190/EC.42.1.b

[20] J. Chetty and D. van der Westhuizen, "Implementing metacognition skills for learners studying computer
programming," in EdMedia+ Innovate Learning, 2014, pp. 726-731.

[21] J. Holvikivi, "Conditions for successful learning of programming skills," in IFIP International Conference on
Key Competencies in the Knowledge Society, 2010, pp. 155-164.
https://doi.org/10.1007/978-3-642-15378-5_15

[22] A. Gomes, L. Carmo, E. Bigotte, and A. Mendes, "Mathematics and programming problem solving," in 3rd
e-learning conference-computer science education, 2006, pp. 1-5.

[23] M. N. Ismail, N. A. Ngah, and I. N. Umar, "Instructional strategy in the teaching of computer programming:
a need assessment analyses," The Turkish Online Journal of Educational Technology, vol. 9, no. 2, pp. 125-131,
2010.

[24] T. Bhasin, A. Murray, and M.-A. Storey, "Student Experiences with GitHub and Stack Overflow: An
Exploratory Study," in 2021 IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), IEEE, May 2021, pp. 81-90. doi: 10.1109/CHASE52884.2021.00017.
https://doi.org/10.1109/CHASE52884.2021.00017

https://doi.org/10.1177/08948453211070842
https://doi.org/10.5121/ijcses.2023.14401
https://doi.org/10.2190/EC.42.1.b
https://doi.org/10.1007/978-3-642-15378-5_15
https://doi.org/10.1109/CHASE52884.2021.00017

[25] T. T. A. Ngo, T. T. Tran, G. K. An, and P. T. Nguyen, "Students' Perception Towards Learning Massive Open
Online Courses on Coursera Platform: Benefits and Barriers," International Journal of Emerging Technologies in
Learning (iJET), vol. 18, no. 14, pp. 4-23, Jul. 2023, doi: 10.3991/ijet.v18i14.39903.
https://doi.org/10.3991/ijet.v18i14.39903

[26] S. Sharov, S. Tereshchuk, A. Tereshchuk, V. Kolmakova, and N. Yankova, "Using MOOC to Learn the Python
Programming Language," International Journal of Emerging Technologies in Learning (iJET), vol. 18, no. 02, pp.
17-32, Jan. 2023, doi: 10.3991/ijet.v18i02.36431.
https://doi.org/10.3991/ijet.v18i02.36431

[27] R. Shen and M. J. Lee, "Learners' Perspectives on Learning Programming from Interactive Computer Tutors
in a MOOC," in 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), IEEE,
Aug. 2020, pp. 1-5. doi: 10.1109/VL/HCC50065.2020.9127270.
https://doi.org/10.1109/VL/HCC50065.2020.9127270

[28] J. Swacha, "DEVELOPMENT AND EVALUATION OF AN INTERACTIVE PYTHON COURSE," Nov.
2018, pp. 456-466. doi: 10.21125/iceri.2018.1094.
https://doi.org/10.21125/iceri.2018.1094

[29] V. Karavirta, R. Haavisto, E. Kaila, M.-J. Laakso, T. Rajala, and T. Salakoski, "Interactive Learning Content
for Introductory Computer Science Course Using the ViLLE Exercise Framework," in 2015 International
Conference on Learning and Teaching in Computing and Engineering, IEEE, Apr. 2015, pp. 9-16. doi:
10.1109/LaTiCE.2015.24.
https://doi.org/10.1109/LaTiCE.2015.24

[30] E. Ponomarenko, A. Oganesyan, and V. Teslenko, "New trends in higher education: massive open online
courses as an innovative tool for increasing university performance," International Journal of Economic Policy in
Emerging Economies, vol. 12, no. 4, p. 391, 2019, doi: 10.1504/IJEPEE.2019.104635.
https://doi.org/10.1504/IJEPEE.2019.104635

[31] J. J. Xu and T. Babaian, "Artificial intelligence in business curriculum: The pedagogy and learning outcomes,"
The International Journal of Management Education, vol. 19, no. 3, p. 100550, Nov. 2021, doi:
10.1016/j.ijme.2021.100550.
https://doi.org/10.1016/j.ijme.2021.100550

[32] K.-I. Voigt, O. Buliga, and K. Michl, "Democracy in Education: The Case of edX," 2017, pp. 159-170. doi:
10.1007/978-3-319-38845-8_13.
https://doi.org/10.1007/978-3-319-38845-8_13

https://doi.org/10.3991/ijet.v18i14.39903
https://doi.org/10.3991/ijet.v18i02.36431
https://doi.org/10.1109/VL/HCC50065.2020.9127270
https://doi.org/10.21125/iceri.2018.1094
https://doi.org/10.1109/LaTiCE.2015.24
https://doi.org/10.1504/IJEPEE.2019.104635
https://doi.org/10.1016/j.ijme.2021.100550
https://doi.org/10.1007/978-3-319-38845-8_13

[33] C. Raibulet and F. Arcelli Fontana, "Collaborative and teamwork software development in an undergraduate
software engineering course," Journal of Systems and Software, vol. 144, pp. 409-422, Oct. 2018, doi:
10.1016/j.jss.2018.07.010.
https://doi.org/10.1016/j.jss.2018.07.010

[34]D. I. De Silva, K. A. S. N. Perera, R. A. H. B. Ranasinghe, B. D. Gunawardena, R. R. A. N. N. Jayawardena,
and S. Vidhanaarachchi, "CodePedia: Crafting the Ultimate Java Learning Odyssey for Novice Programmers," Int.
Congress on Inf. and Commun. Technol., Singapore: Springer Nature Singapore, Feb. 2024, pp. 55–64.

[35] C.-Y. Tsai, “Improving students’ understanding of basic programming concepts through visual
programming language: The role of self-efficacy,” Comput Human Behav, vol. 95, pp. 224–232, Jun. 2019, doi:
10.1016/j.chb.2018.11.038.

[36] S. I. Malik, R. Mathew, R. Al-Nuaimi, A. Al-Sideiri, and J. Coldwell-Neilson, “Learning problem solving
skills: Comparison of E-learning and M-learning in an introductory programming course,” Educ Inf Technol
(Dordr), vol. 24, no. 5, pp. 2779–2796, Sep. 2019, doi: 10.1007/s10639-019-09896-1.

[37] A. Bernik, D. Radošević, and D. Strmečki, “Research on Efficiency of Applying Gamified Design into
University’s e-Courses: 3D Modeling and Programming,” Journal of Computer Science, vol. 13, no. 12, pp. 718–
727, Dec. 2017, doi: 10.3844/jcssp.2017.718.727.

[38] O. Deperlioglu and U. Kose, “The effectiveness and experiences of blended learning approaches to
computer programming education,” Computer Applications in Engineering Education, vol. 21, no. 2, pp. 328–342,
Jun. 2013, doi: 10.1002/cae.20476.

[39] X.-M. Wang and G.-J. Hwang, “A problem posing-based practicing strategy for facilitating students’
computer programming skills in the team-based learning mode,” Educational Technology Research and
Development, vol. 65, no. 6, pp. 1655–1671, Dec. 2017, doi: 10.1007/s11423-017-9551-0.

https://doi.org/10.1016/j.jss.2018.07.010

